PMR205 Series Metallized Impregnated Paper, 125 VAC/250 VDC

Overview

The PMR205 Series is constructed of multilayer metallized paper encapsulated and impregnated in self-extinguishing material meeting the requirements of UL 94 V–0.

Benefits

- Rated voltage: 125 VAC/250 VDC, 50/60 Hz
- Capacitance range: 0.1 1.0 µF
- Capacitance tolerance: ±20%
- Resistance range: 22 680 Ω
- Resistance tolerance: ±30%
- Lead spacing: 15.2 25.4 mm
- Climatic category: 40/085/56/B, IEC 60068-1
- Tape and reel packaging in accordance with IEC 60286-2
- · RoHS Compliant and lead-free terminations

Legacy Part Number System

Operating temperature range of -40°C to +85°C

• Excellent self-healing properties which ensure long life even when subjected to frequent over voltages

Typical applications include worldwide use in contact protection,

contact interference suppression and transient suppression.

- Good resistance to ionization due to impregnated paper dielectric
- · High dV/dt capability

Applications

 Impregnated paper ensures excellent stability and reliability properties, particularly in applications with continuous operation

PMR205	Α	В	6100	М	033	R30
Series	Rated Voltage (VAC)	Lead Spacing (mm)	Capacitance Code (pF)	Capacitance Tolerance	Resistance (Ω)	Lead and Packaging Code
RC Snubber, Metallized Paper	A = 125	B = 15.2 C = 20.3 E = 25.4	Digits 2 – 4 (3) indicates the first three digits of the capacitance value. First digit indicates the total number of digits in the capacitance value.	M = ±20%	Resistance Value in Ω	See Ordering Options Table

New KEMET Part Number System

Р	405	Q	E	104	М	125	Α	H330
Capacitor Class	Series	Lead Spacing (mm)	Size Code	Capacitance Code (pF)	Capacitance Tolerance	Rated Voltage (VAC)	Lead and Packaging Code	Resistance (Ω)
P = Metallized Paper	RC Snubber	Q = 15.2 C = 20.3 E = 25.4	See Dimension Table	First two digits represent significant figures. Third digit specifies number of zeros.	M = ±20%	125 = 125	See Ordering Options Table	H + first two digits representing significant figures. Third digit specifies number of zeros.

One world. One KEMET

© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com

Ordering Options Table

Lead Spacing Nominal (mm)	Type of Leads and Packaging	Lead Length (mm)	KEMET Lead and Packaging Code	Legacy Lead and Packaging Code
	Standard Lead and Packaging Options			
	Bulk (Bag) – Short Leads	6 +0/-1	С	R06
15.2	Bulk (Bag) – Max Length Leads	30 +5/-0	A	R30
13.2	Tape & Reel (Standard Reel)	H ₀ = 18.5 +/-0.5	L	R19T0
	Other Lead and Packaging Options			
	Tape & Reel (Large Reel)	H ₀ = 18.5 +/-0.5	Р	R19T1
	Standard Lead and Packaging Options			
	Bulk (Tray) – Short Leads	6 +0/-1	С	R06
20.3	Bulk (Bag) – Max Length Leads	30 +5/-0	A	R30
20.5	Tape & Reel (Standard Reel)	H ₀ = 18.5 +/-0.5	L	R19T0
	Other Lead and Packaging Options			
	Tape & Reel (Large Reel)	H ₀ = 18.5 +/-0.5	Р	R19T1
	Standard Lead and Packaging Options			
25.4	Bulk (Bag) – Short Leads	6 +0/-1	С	R06
	Bulk (Tray) – Max Length Leads	30 +5/-0	A	R30

Dimensions – Millimeters

Size Code	р		В		Н		L		d		
	Nominal	Tolerance	Nominal	Tolerance	Nominal	Tolerance	Nominal	Tolerance	Nominal	Tolerance	
QE	15.2	+/-0.4	5.2	Maximum	10.5	Maximum	18.5	Maximum	0.8	+/-0.05	
QM	15.2	+/-0.4	7.3	Maximum	13	Maximum	18.5	Maximum	0.8	+/-0.05	
QP	15.2	+/-0.4	7.8	Maximum	13.5	Maximum	18.5	Maximum	0.8	+/-0.05	
CE	20.3	+/-0.4	7.6	Maximum	14	Maximum	24	Maximum	0.8	+/-0.05	
CJ	20.3	+/-0.4	9	Maximum	15	Maximum	24	Maximum	0.8	+/-0.05	
СР	20.3	+/-0.4	11.3	Maximum	16.5	Maximum	24	Maximum	0.8	+/-0.05	
EE	25.4	+/-0.4	10.6	Maximum	16.1	Maximum	30.5	Maximum	1.0	+/-0.05	
	Note: See Ordering Options Table for lead length (LL) options.										

Performance Characteristics

Rated Voltage	125 VAC 50/60 Hz							
Capacitance Range	0.1 – 1.0 μF							
Capacitance Tolerance	±20%							
Resistance Range	22 – 680 Ω							
Resistance Tolerance	±30%							
Temperature Range	-40°C to +85°C							
Climatic Category	40/085/56/B							
Peak Pulse Voltage	375 V							
Series Resistance	The series resistance is defined at kHz for RC < 50 μs	1 kHz for RC ≥ 50 μ s and at 100						
	Minimum Values E	Between Terminals						
Insulation Resistance	C ≤ 0.33 µF	≥ 3,000 MΩ						
	C > 0.33 μF	≥ 1,000 MΩ • μF						
Power Ratings	The average losses may reach 0.5 W provided the surface temperature does not exceed + 85°C. For maximum permitted power dissipation vs. temperature, see Derating Curves.							
Derating Curves	Maximum Allowable Power Dissipations $Case Sizes.$	Tamb Ta Ta Ta Ta Ta Tamb Ta Tamb Ta Tamb Tamb Tamb Tamb Tamb Tamb Tamb Tamb Tamb Tamb Ta Ta Tamb Tamb Tamb Tamb Tamb Tamb Tamb Tamb Tamb Tamb Tamb Tamb						

Environmental Test Data

Test	IEC Publication	Procedure
Vibration	IEC 60068–2–6 Test Fc	3 directions at 2 hours each 10 – 500 Hz at 0.75 mm or 98 m/s 2
Bump	IEC 60068-2-29 Test Eb	4,000 bumps at 390 m/s²
Solderability	IEC 60068–2–20 Test Ta	Wetting time for d > 0.8 < 1.5 seconds
Damp Heat Steady State	IEC 60068–2–78 Test Cab	+40°C and 93% RH, 56 days

Environmental Compliance

All KEMET EMI capacitors are RoHS Compliant.

Table 1 – Ratings	&	Part	Number	Reference
-------------------	---	------	--------	-----------

Lead	Capacitance	Resistance	Maximun	n Dimensio	ons in mm	New KEMET	Logoov Dort Number
Spacing (p)	Value (µF)	(Ω)	В	Н	L	Part Number	Legacy Part Number
15.2	0.10	33	5.2	10.5	18.5	P405QE104M125(1)H330	PMR205AB6100M033(1)
15.2	0.10	47	5.2	10.5	18.5	P405QE104M125(1)H470	PMR205AB6100M047(1)
15.2	0.10	100	5.2	10.5	18.5	P405QE104M125(1)H101	PMR205AB6100M100(1)
15.2	0.10	220	5.2	10.5	18.5	P405QE104M125(1)H221	PMR205AB6100M220(1)
15.2	0.15	68	5.2	10.5	18.5	P405QE154M125(1)H680	PMR205AB6150M068(1)
15.2	0.15	100	5.2	10.5	18.5	P405QE154M125(1)H101	PMR205AB6150M100(1)
15.2	0.22	47	7.3	13.0	18.5	P405QM224M125(1)H470	PMR205AB6220M047(1)
15.2	0.22	100	7.3	13.0	18.5	P405QM224M125(1)H101	PMR205AB6220M100(1)
15.2	0.22	220	7.3	13.0	18.5	P405QM224M125(1)H221	PMR205AB6220M220(1)
15.2	0.22	330	7.3	13.0	18.5	P405QM224M125(1)H331	PMR205AB6220M330(1)
15.2	0.22	470	7.3	13.0	18.5	P405QM224M125(1)H471	PMR205AB6220M470(1)
15.2	0.25	200	7.3	13.0	18.5	P405QM254M125(1)H201	PMR205AB6250M200(1)
15.2	0.25	350	7.3	13.0	18.5	P405QM254M125(1)H351	PMR205AB6250M350(1)
15.2	0.25	600	7.3	13.0	18.5	P405QM254M125(1)H601	PMR205AB6250M600(1)
15.2	0.33	47	7.8	13.5	18.5	P405QP334M125(1)H470	PMR205AB6330M047(1)
20.3	0.47	22	7.6	14.0	24.0	P405CE474M125(1)H220	PMR205AC6470M022(1)
20.3	0.47	33	7.6	14.0	24.0	P405CE474M125(1)H330	PMR205AC6470M033(1)
20.3	0.47	47	7.6	14.0	24.0	P405CE474M125(1)H470	PMR205AC6470M047(1)
20.3	0.47	68	7.6	14.0	24.0	P405CE474M125(1)H680	PMR205AC6470M068(1)
20.3	0.47	100	7.6	14.0	24.0	P405CE474M125(1)H101	PMR205AC6470M100(1)
20.3	0.47	150	7.6	14.0	24.0	P405CE474M125(1)H151	PMR205AC6470M150(1)
20.3	0.47	220	7.6	14.0	24.0	P405CE474M125(1)H221	PMR205AC6470M220(1)
20.3	0.47	330	7.6	14.0	24.0	P405CE474M125(1)H331	PMR205AC6470M330(1)
20.3	0.47	470	9.0	15.0	24.0	P405CJ474M125(1)H471	PMR205AC6470M470(1)
20.3	0.47	680	11.3	16.5	24.0	P405CP474M125(1)H681	PMR205AC6470M680(1)
25.4	1.0	33	10.6	16.1	30.5	P405EE105M125(1)H330	PMR205AE7100M033(1)
20.3	1.0	47	11.3	16.5	24.0	P405CP105M125(1)H470	PMR205AC7100M047(1)
20.3	1.0	68	11.3	16.5	24.0	P405CP105M125(1)H680	PMR205AC7100M068(1)
20.3	1.0	100	11.3	16.5	24.0	P405CP105M125(1)H101	PMR205AC7100M100(1)
20.3	1.0	150	11.3	16.5	24.0	P405CP105M125(1)H151	PMR205AC7100M150(1)
20.3	1.0	220	11.3	16.5	24.0	P405CP105M125(1)H221	PMR205AC7100M220(1)
Lead Spacing (p)	Capacitance Value (µF)	Resistance Ω	B (mm)	H (mm)	L (mm)	New KEMET Part Number	Legacy Part Number

(1) Insert lead and packaging code. See Ordering Options Table for available options.

Soldering Process

The implementation of the RoHS Directive has required the use of SnAgCu (SAC) or SnCu alloys as primary solder. These alloys require a higher liquidus temperature (217° C – 221° C) as compared to SnPb eutectic alloy (183°C). Due to the higher pre-heat and wave temperatures, the heat stress to components has increased considerably. Polypropylene capacitors are especially sensitive to soldering temperature due to the relatively low melting point of polypropylene material (160° C – 170° C). As a result, wave soldering can be destructive, especially to mechanically small polypropylene capacitors with lead spacings of 5 – 10 mm. For more information, please refer to KEMET's Recommended Soldering Profiles or contact a KEMET representative. IEC Publication 61760–1 Edition 2 may also be consulted for general guidelines.

Marking

- KEMET's logo
- Series
- RC unit
- Capacitance
- · Rated resistance
- Rated voltage
- · IEC climatic category
- Circuit diagram
- · Passive flammability class
- Manufacturing date code

Packaging Quantities

Size Code	Lead Spacing (mm)	Thickness (mm)	Height (mm)	Length (mm)	Bulk Short Leads	Bulk Long Leads	Standard Reel ø 360 mm
QE	15.2	5.2	10.5	18.5	500	100	600
QM	15.2	7.3	13	18.5	400	800	400
QP	15.2	7.8	13.5	18.5	400	800	400
CE	20.3	7.6	14	24	250	1500	250
CJ	20.3	9	15	24	200	1200	250
CP	20.3	11.3	16.5	24	150	1000	180
EE	25.4	10.6	16.1	30.5	150	1000	