

Compact Guide Cylinder **Series MGP** Ø12, Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63, Ø80, Ø100

New end lock type introduced to Series MGP

Suitable for use as a pusher and lifter.

Long strokes up to 400mm standardised.

End lock type introduced

Holds the cylinder's home position even if the air supply is cut off.
Compact body length is only 25mm longer than standard.

Stroke Variations

Air cushion type standardized

• An air cushion has been added to the compact guide cylinder to suppress vibration and noise at the stroke end. It can absorb nearly three times as much kinetic energy as a rubber bumper.

Cushion valve is built into the body

50

80

Stroke Variations

Heavy duty guide rod type with improved load resistance

- Lateral load resistance: 10% increase
- Eccentric load resistance: 25% increase • Impact load resistance: 140% increase

30

45

(Compared with MGPM50 compact guide cylinder)

 Bore size (mm)
 Guide rod diameter (mm)

 MGPS
 MGPM

Precautions

Series Variations

25

30

Bore size (mm)

With Air Cushion

With End Lock

Heavy Duty Guide Rod Type MGPS

0 Ø

Compact Guide Cylinder Series MGP ø12, ø16, ø20, ø25, ø32, ø40, ø50, ø63, ø80, ø100

How to Order

Applicable auto switches

_ <u>.</u>					1	Load voltage		Auto switch model Lead wire length (m) Note 1)					1)			
Type	Special function	Electrical	Indicator	Wiring	L	uau vu		Flectrical er	ntry direction			(III) ····· ·	Applica	blo lood	Detailed	S
Type		entry	light	(output)	D	C	AC	Perpendicular	In-line	0.5 (Nil)		(7)	Аррііса	Die Idau	specifications	pe
				3 wire	_	5V	_	—	Z76	•	•	_	IC circuit	_		der N
Reed switch	-	Grommet	Yes	2 wire	241/	12V	100V	—	Z73	•	•	•	_	Relay,	P. 59	lade
			No	2 wite	240	5V 12V	100V or less	—	Z80	•	•	_	IC circuit	PLC		0
				3 wire (NPN)		5V		Y69A	Y59A	•	•	0	IC			
	_			3 wire (PNP)		12V		Y7PV	Y7P	•	•	0	circuit		P. 60	A
				2 wire	2 wire	12V		Y69B	Y59B	•	•	0	—			uto
Solid state	Diagnostic	Grommet	Vec	3 wire (NPN)	241/	5V		Y7NWV	Y7NW	•	•	0	IC	Relay,		Swite
switch	indication (2 colour	Grommer	103	3 wire (PNP)	240	12V		Y7PWV	Y7PW	•	•	0	circuit	PLC	P. 61	ches
	indicator)					121/		Y7BWV	Y7BW	•	•	0				
	Water resistant (2 colour indicator)			2 wire				_	Y7BA	_	•	0	—		P. 62	
	Magnetic field resistant (2 colour indicator)					_		_	P5DW	_	•	•			P. 63	Pre
Note 1) Lead	ote 1) Lead wire symbols 0.5m Nil (Example) Y69B 3m L Y69BL 5m Z Y69BZ lote 2) Solid state auto switches marked with a "O" are produced upon receipt of order.															

Note 2) Solid state auto switches marked with a "O" are produced upon receipt of order.

Note 3) Type D-P5DW cannot be mounted on bore sizes of ø32 or less.

Standard Type MGP

With Air Cushion

With End Lock

Specifications

Action		Double acting					
Fluid	Air						
Proof pressure	1.5MPa						
Maximum operating pressure		1.0MPa					
Minimum operating pressure	ø12, ø16	0.12MPa					
Minimum operating pressure	ø20 to ø100	0.1MPa					
Ambient and fluid temperature		-10 to 60°C (with no freezing)					
Diston anood	ø12 to ø63	50 to 500mm/s					
Piston speed	ø80, ø100	50 to 400mm/s					
Cushion		Rubber bumper at both ends					
Lubrication		Non-lube					
Stroke length tolerance	^{+1.5} ₀ mm						

Standard Strokes

Bore size (mm)	Standard stroke (mm)
12, 16	10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 250
20, 25	20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400
32 to 100	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400

Manufacture of Intermediate Strokes

Modification method	Spacer installation type Spacers are installed in a sta • Ø12 to 32 : Available in 1m • Ø40 to 100: Available in 5m	ndard stroke cylinder. m stroke increments m stroke increments	Special body type (-XB10) A special body is manufactured for the specified stroke. • All bore sizes are available in 1mm increments.				
Part number	Refer to standard part numbers	and ordering procedure.	Indicate -XB10 at the end of the standard model no. Refer to P.52 for order made specifications.				
Applicable	ø 12 , ø 16	1 to 249	ø 12 , ø16	11 to 249			
stroke	ø 20 , ø 25 , ø 32	1 to 399	ø 20 , ø 25 21 to 399				
(mm)	ø40 to ø100	5 to 395	ø32 to ø100	26 to 399			
Example	Part no.: MGPM20—39 A spacer 1mm in width is MGPM20—40. C dimens	installed in a ion is 77mm.	Part no.: MGPM20—39—XB10 Special body manufactured for 39mm stroke. C dimension is 76mm.				

Note) The minimum stroke for mounting auto switches is 10mm or more for two switches, and 5mm or more for one switch.

Theoretical Output

									→ [-	<u> </u>	(N)
Bore size	Rod	Operating	Piston area			Op	erating	press	ure (MF	Pa)		
(mm)	(mm)	direction	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
10	6	OUT	113	23	34	45	57	68	79	90	102	113
12	0	IN	85	17	26	34	43	51	60	68	77	85
16	8	OUT	201	40	60	80	101	121	141	161	181	201
10	0	IN	151	30	45	60	76	91	106	121	136	151
20	10	OUT	314	63	94	126	157	188	220	251	283	314
20	10	IN	236	47	71	94	118	142	165	189	212	236
25	12	OUT	491	98	147	196	246	295	344	393	442	491
25	12	IN	378	76	113	151	189	227	265	302	340	378
32	16	OUT	804	161	241	322	402	482	563	643	724	804
52	10	IN	603	121	181	241	302	362	422	482	543	603
40	16	OUT	1257	251	377	503	629	754	880	1006	1131	1257
40	10	IN	1056	211	317	422	528	634	739	845	950	1056
50	20	OUT	1963	393	589	785	982	1178	1374	1570	1767	1963
50	20	IN	1649	330	495	660	825	990	1154	1319	1484	1649
63	20	OUT	3117	623	935	1247	1559	1870	2182	2494	2805	3117
	20	IN	2803	561	841	1121	1402	1682	1962	2242	2523	2803
80	25	OUT	5027	1005	1508	2011	2514	3016	3519	4022	4524	5027
00	20	IN	4536	907	1361	1814	2268	2722	3175	3629	4082	4536
100	30	OUT	7854	1571	2356	3142	3927	4712	5498	6283	7069	7854
100	50	IN	7147	1429	2144	2859	3574	4288	5003	5718	6432	7147

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Auto switch mounting bracket part no. for D-P5DW

Bore size (mm)	Mounting bracket part no.	Notes
40, 50, 63, 80, 100	BMG1-040	Switch mounting bracket Hexagon socket head cap screw (M2.5 x $0.45 \times 8\ell$) 2 pcs. Hexagon socket head cap screw (M3 x $0.5 \times 16\ell$) 2 pcs. Spring washer (nominal size 3)

Weights

Slide bearing: MGPM12 to 100

Bore size	Madal							Standa	ard stroke	e (mm)							
(mm)	IVIODEI	10	20	25	30	40	50	75	100	125	150	175	200	250	300	350	400
12	MGPM12	0.24	0.28	—	0.31	0.35	0.39	0.50	0.59	0.70	0.79	0.89	0.98	1.17	—	—	—
16	MGPM16	0.33	0.38	—	0.43	0.48	0.53	0.68	0.80	0.97	1.09	1.22	1.35	1.60	—	—	—
20	MGPM20	_	0.67	_	0.75	0.83	0.91	1.17	1.37	1.57	1.76	1.96	2.16	2.63	3.03	3.42	3.82
25	MGPM25	_	0.95	_	1.05	1.16	1.27	1.65	1.92	2.19	2.47	2.74	3.01	3.67	4.21	4.76	5.30
32	MGPM32	_		1.69	—		2.07	2.47	2.85	3.24	3.62	4.00	4.38	5.33	6.09	6.86	7.62
40	MGPM40	—	—	1.95	—	_	2.37	2.83	3.25	3.68	4.10	4.53	4.95	5.99	6.85	7.70	8.55
50	MGPM50	_	_	3.36	_	—	4.00	4.73	5.37	6.01	6.65	7.29	7.93	9.54	10.8	12.1	13.4
63	MGPM63	—	_	4.18	—	_	4.94	5.78	6.54	7.29	8.05	8.80	9.56	11.4	12.9	14.4	15.9
80	MGPM80	—	_	6.49	—	_	7.43	8.67	9.61	10.5	11.5	12.4	13.4	15.8	17.7	19.5	21.4
100	MGPM100	_	_	10.5	_	_	11.9	13.6	14.9	16.3	17.6	18.9	20.2	23.6	26.2	28.9	31.5

Ball bushing: MGPL12 to 100

Bore size	Madal							Standa	rd stroke	e (mm)								
(mm)	wodei	10	20	25	30	40	50	75	100	125	150	175	200	250	300	350	400	
12	MGPL12	0.24	0.27	-	0.30	0.35	0.39	0.47	0.56	0.66	0.74	0.83	0.91	1.08	—	_		M
16	MGPL16	0.34	0.39		0.43	0.51	0.56	0.67	0.79	0.93	1.04	1.16	1.28	1.50	_	_	_	- <u>-</u>
20	MGPL20	_	0.70		0.77	0.89	0.97	1.14	1.31	1.52	1.69	1.87	2.04	2.42	2.77	3.12	3.47	
25	MGPL25		0.98		1.07	1.25	1.34	1.57	1.81	2.08	2.31	2.54	2.77	3.27	3.74	4.20	4.66	
32	MGPL32	_	_	1.54	_	_	1.85	2.30	2.62	2.99	3.31	3.62	3.94	4.63	5.26	5.89	6.52	
40	MGPL40	_	_	1.79	_	_	2.15	2.64	3.00	3.42	3.78	4.14	4.50	5.28	6.00	6.72	7.44	
50	MGPL50		_	3.11	_	_	3.66	4.41	4.96	5.60	6.15	6.70	7.25	8.48	9.57	10.7	11.8	
63	MGPL63	_	—	3.93	_	_	4.59	5.46	6.12	6.88	7.54	8.21	8.87	10.3	11.7	13.0	14.3	
80	MGPL80	_	—	6.25	_	_	7.39	8.69	9.51	10.3	11.1	12.0	12.8	14.7	16.3	18.0	19.6	
100	MGPL100	_	_	9.89	_	_	11.6	13.4	14.5	15.7	16.9	18.1	19.3	21.9	24.2	26.6	28.9	

∕@SMC

Allowable Rotational Torque of Plate

																Т (N·m)
Bore size	Bearing		Stroke (mm)														
(mm)	type	10	20	25	30	40	50	75	100	125	150	175	200	250	300	350	400
12	MGPM	0.39	0.32	-	0.27	0.24	0.21	0.43	0.36	0.31	0.27	0.24	0.22	0.19	—	—	_
12	MGPL	0.61	0.45	—	0.35	0.58	0.50	0.37	0.29	0.24	0.20	0.18	0.16	0.12	—	—	—
16	MGPM	0.69	0.58	_	0.49	0.43	0.38	0.69	0.58	0.50	0.44	0.40	0.36	0.30	—	—	_
10	MGPL	0.99	0.74	—	0.59	0.99	0.86	0.65	0.52	0.43	0.37	0.32	0.28	0.23	—	—	—
20	MGPM	—	1.05	—	0.93	0.83	0.75	1.88	1.63	1.44	1.28	1.16	1.06	0.90	0.78	0.69	0.62
20	MGPL	—	1.26	—	1.03	2.17	1.94	1.52	1.25	1.34	1.17	1.03	0.93	0.76	0.65	0.56	0.49
25	MGPM	—	1.76	—	1.55	1.38	1.25	2.96	2.57	2.26	2.02	1.83	1.67	1.42	1.24	1.09	0.98
20	MGPL	—	2.11	—	1.75	3.37	3.02	2.38	1.97	2.05	1.78	1.58	1.41	1.16	0.98	0.85	0.74
32	MGPM	—	_	6.35	_	—	5.13	5.69	4.97	4.42	3.98	3.61	3.31	2.84	2.48	2.20	1.98
	MGPL	—	—	5.95	_	—	4.89	5.11	4.51	6.34	5.79	5.33	4.93	4.29	3.78	3.38	3.04
40	MGPM	—	—	7.00	—	—	5.66	6.27	5.48	4.87	4.38	3.98	3.65	3.13	2.74	2.43	2.19
-10	MGPL	—	—	6.55	—	—	5.39	5.62	4.96	6.98	6.38	5.87	5.43	4.72	4.16	3.71	3.35
50	MGPM	—	_	13.0	_	—	10.8	12.0	10.6	9.50	8.60	7.86	7.24	6.24	5.49	4.90	4.43
	MGPL	—	—	9.17	_	—	7.62	9.83	8.74	11.6	10.7	9.83	9.12	7.95	7.02	6.26	5.63
63	MGPM	—	—	14.7	—	—	12.1	13.5	11.9	10.7	9.69	8.86	8.16	7.04	6.19	5.52	4.99
	MGPL	—	—	10.2	—	—	8.48	11.0	9.74	13.0	11.9	11.0	10.2	8.84	7.80	6.94	6.24
80	MGPM	—	—	21.9	_	—	18.6	22.9	20.5	18.6	17.0	15.6	14.5	12.6	11.2	10.0	9.11
	MGPL	_	_	15.1	_	_	23.3	22.7	20.6	18.9	17.3	16.0	14.8	12.9	11.3	10.0	8.94
100	MGPM	—	—	38.8	—	—	33.5	37.5	33.8	30.9	28.4	26.2	24.4	21.4	19.1	17.2	15.7
	MGPL	—	—	27.1	—	—	30.6	37.9	34.6	31.8	29.3	27.2	25.3	22.1	19.5	17.3	15.5

Non-rotating Accuracy of Plate

For non-rotating accuracy θ without load, use a value no more than the values in the table as a guide.

Bore size	Non-rotating	g accuracy θ			
(mm)	MGPM	MGPL			
12	+0.08°	+0.10°			
16	±0.08	±0.10			
20	+0.07°	+0.09°			
25	±0.07	±0.05			
32	+0.06°	+0.08°			
40	±0.00	±0.00			
50	+0.05°	+0.06°			
63	±0.00	±0.00			
80	+0.04°	+0.05°			
100	±0.04	±0.05°			

Precautions

(kg)

With Air Cushion MGP

(kg)

With End Lock

Heavy Duty Guide Rod Type MGPS

Order Made Specifications

Series MGP Model Selection

Selecting Conditions

Selection Example 1 (Vertical Mounting)

Selecting conditions Mounting: Vertical Bearing type: Ball bushing Stroke: 30mm Maximum speed: 200mm/s Load weight: 3kg Eccentric distance: 90mm

Find the point of intersection for the load weight of 3kg and the eccentric distance of 90mm on graph , based on vertical mounting, ball bushing, 30mm stroke, and the speed of 200mm/s. →MGPL25-30 is selected.

5 Less than 40mm stroke V = 200mm/s

Selection Example 2 (Horizontal Mounting)

Selecting conditions

- Mounting: Horizontal
- Bearing type: Slide bearing

Distance between plate and load center of gravity: 50mm

- Maximum speed: 200mm/s Load weight: 2kg
- Stroke: 30mm

Find the point of intersection for the load weight of 2kg and stroke of 30mm on graph **16**, based on horizontal mounting, slide bearing, the distance of 50mm between the plate and load center of gravity, and the speed of 200mm/s. \rightarrow MGPM20-30 is selected.

$\ell = 50 \text{mm} \text{ V} = 200 \text{mm/s}$

Compact Guide Cylinder Series MGP

Vertical Mounting Slide Bearing

Operating pressure: 0.4MPa ---- Operating pressure: 0.5MPa or more

MGPM12 to 100

Vertical Mounting Ball Bushing

Operating pressure: 0.4MPa

MGPL12 to 25

MGPL32 to 100

Compact Guide Cylinder Series MGP

Vertical Mounting Ball Bushing

Operating pressure: 0.4MPa

MGPL12 to 25

ø40

ø32

50

Eccentric distance ℓ (mm)

100

200

5

1 10

ø40

ø32

0.2

∕@SMC

10

100

Eccentric distance ℓ (mm)

50

7

200

Horizontal Mounting Slide Bearing

MGPM12 to 100

@SMC

Horizontal Mounting Ball Bushing

∕@SMC

9

Horizontal Mounting Ball Bushing

19 ℓ = 50mm V = 400m/s

ø25 ø25 ø25 ø20 ø20 ø20 ø16 116 ø16 ø12 ø12 ø12 30 31 20 50 100 101 200 300 Stroke (mm) **MGPL32 to 63** ø63 ø50 ø50, 63 ø50, 63 •ø40 ø40 ø40 ø32 ø32 20 30 40 50 51 100 101 200 300 Stroke (mm) MGPL80, 100

20 *l* = 100mm V = 400m/s

Operating Range when Used as Stopper

Bore Sizes ø12 to 25/MGPM12 to 25 (Slide bearing)

Bore Sizes ø32 to 100/MGPM32 to 100 (Slide bearing)

∕⁄@SMC

 \ast When selecting a model with a longer $\boldsymbol{\ell}$ dimension, be sure to choose a bore size which is sufficiently large.

∧Caution

Handling precautions

- Note 1) When using as a stopper, select a model with a stroke of 50mm or less.
- Note 2) Model MGPL (ball bushing) cannot be used as a stopper.

1. Water Resistant

Ideal for use in a machine tool envrionment exposed to coolants. Also applicable for use in an environment with water splashing such as food processing and car wash equipment, etc.

Specifications

Applica	ble series	MGPM					
Bearing typ	e	Slide bearing					
Bore size (I	mm)	20, 25, 32, 40, 50, 63, 80, 100					
Cushion	MGPM⊡R	Rubber cushion					
Cushion	MGPM⊡V	Without cushion					

* Specifications other than above are identical to the standard basic type

How to Order

Dimensions

Bore size		A	-		
(mm)	50mm stroke or less	51mm stroke or more	в	гр	
20	66	97.5	66	19	
25	67.5	99	67.5	20	
32	109	114	71.5	22	
40	109	114	78	22	
50	117.5	129	83	23	
63	117.5	129	88	23	
80	121	148	102.5	24	
100	141	166	120	29	

* Other dimensions are identical to the standard type.

2. Copper-free Series (applicable to CRT manufacturing process)

To prevent the influence of copper ions or halogen ions during CRT manufacturing processes, copper and fluorine materials are not used as component parts.

Specifications

Applicable series	MGPM	MGPL
Bearing type	Slide bearing	Ball bushing
Bore size (mm)	12, 16, 2 40, 50, 63	0, 25, 32 3, 80, 100

* Specifications and dimensions other than above are identical to the standard basic type

How to Order

3. Clean Room Series

Applicable in a clean room environment.

Ideal for use in conveyor lines for semi-conductor (LSI), liquid crystal (LCD), food processing, pharmaceutical, and electronic parts, etc.

Specifications

Applicable series				MO	PL			
Bearing type				Ball b	ushing			
Bore size (mm)	12	16	20	25	32	40	50	63
Stroke (mm)	10 to 100		20 to	200	25 to 200			
+ Specifications other than ab		dontion	to the of	ondord	hooio tur	20		

er than above are identical to the standard basic type

How to Order

Dimensions

					(mm)
Bore size		Α			
(mm)	30mm stroke or less	Over 30mm to 100mm stroke	Over 100mm stroke	В	FB
12	56	68	-	55	18
16	62	78	—	59	18
20	76	93	117	66	19
25	82.5	98.5	117.5	66.5	19

(mm)

Dere eize		Α			
(mm)	50mm stroke or less	Over 50mm to 100mm stroke	Over 100mm stroke	В	FB
32	93	110	130	71.5	22
40	93	110	130	78	22
50	104	125	145	83	23
63	104	125	145	88	23

* Other dimensions are identical to the standard type.

Auto Switches/Proper Mounting Position for Stroke End Detection

For D-P5DW	(* Cannot be mounted on bore sizes ø32 or less.)
------------	--

ø80, ø100

For 25mm stroke

* For bore sizes ø40 through 63 with two switches one switch is mounted on each side

Note 1) Minimum mountable strokes for auto switch are 10mm or more for two switches, and 5mm or more for one switch

Note 2) Type D-P5DW can be mounted only on bore sizes ø40 through ø100.

Auto Switch Mounting

Auto switch mounting tool

• When tightening the auto switch mounting screw (included with auto switch), use a watchmakers screw driver with a handle about 5 to 6mm in diameter.

Tightening torque

• Tighten with a torque of 0.05 to 0.1N·m. As a rule, it should be turned about 90° past the point at which tightening can be felt.

For D-P5DW

Auto switch mounting tool

• When tightening hexagon socket head cap screws of the auto switch, use hexagon wrench key 2 or 2.5 with the appropriate screws.

Tightening torque

• Tighten M2.5 screws with a torque of about 0.3 to 0.5N·m, and M3 screws with a torque of about 0.5 to 0.7 N·m.

Hexagon wrench key 2

Hexagon socket head cap screw (M2.5 x 8ℓ)

With Air Cushion

With End Lock

Heavy Duty Guide Rod Type

MGPS

MGP

MGP

Construction

Series MGPM

MGPM12 to 25

50mm stroke or less

MGPM32 to 100

Series MGPL

MGPL12 to 25

30mm stroke or less

20 \sim >

ø20, ø25 over 100mm stroke

50mm stroke or less

Over 50mm stroke

ø50 or larger

Ħ.

ø80, ø100 over 50mm stroke to 200mm stroke

ø32 to ø63 over 100mm stroke ø80, ø100 over 200mm stroke

Parts list

i aii	.5 1131			
No.	Description	Material		Note
1	Body	Aluminum alloy	Hard	anodized
2	Piston	Aluminum alloy	Ch	romated
2	Diston rod	Stainless steel	ø12 to ø25	
3	FISION TOU	Carbon steel	ø32 to ø100	Hard chrome plated
4	Collor	Aluminum bearing alloy	ø12 to ø40	Clear anodized
-	Collar	Aluminum alloy casting	ø50 to ø100	Coated
5	Bushing	Lead bronze casting	ø50 to ø100	
6	Head onver		ø12 to ø63	Clear chromated
0	Head cover	Aluminum alloy	ø80 to ø100	Coated
7	Guide rod	Carbon steel	Hard ch	nrome plated
8	Plate	Carbon steel	Nick	kel plated
9	Plate mounting bolt	Carbon steel	Nick	kel plated
10	Snap ring	Carbon tool steel	Phosp	hate coated
11	Snap ring	Carbon tool steel	Phosp	hate coated

Replacement parts: Seal kits

Bore size (mm)	Order No.	Contents
12	MGP12-PS	
16	MGP16-PS	
20	MGP20-PS	Kits include items
25	MGP25-PS	21, 22, 23, and 24 from the table above.
32	MGP32-PS	

 \ast Seal kits are sets consisting of items 21 through 24 above, and can be ordered using the order number for each bore size.

Parts list

Description	Material	Not	e
Bumper A	Urethane		
Bumper B	Urethane		
Magnet	Synthetic rubber		
Plug (M-5P)	Brass	ø12, ø16	Nickel plated
Hexagon socket head taper plug	Carbon steel	ø20 to ø100	Nickel plated
Slide bearing	Lead bronze casting		
Felt	Felt		
Holder	Resin		
Ball bushing			
Spacer	Aluminum alloy		
Piston seal	NBR		
Rod seal	NBR		
Gasket A	NBR		
Gasket B	NBR		
	Description Bumper A Bumper B Magnet Plug (M-5P) Hexagon socket head taper plug Slide bearing Felt Holder Ball bushing Spacer Piston seal Rod seal Gasket A Gasket B	Description Material Bumper A Urethane Bumper B Urethane Magnet Synthetic rubber Plug (M-5P) Brass Hexagon socket head taper plug Carbon steel Slide bearing Lead bronze casting Felt Felt Holder Resin Ball bushing	DescriptionMaterialNotBumper AUrethaneBumper BUrethaneMagnetSynthetic rubberPlug (M-5P)Brassø12, ø16Hexagon socket head taper plugCarbon steelø20 to ø100Slide bearingLead bronze castingFeltFeltHolderResinBall bushingImage: SpacerRod sealNBRGasket ANBRGasket BNBR

Replacement parts: Seal kits

Bore size (mm)	Order no.	Contents
40	MGP40-PS	
50	MGP50-PS	Kita ingluda itama
63	MGP63-PS	Kits include items
80	MGP80-PS	21, 22, 23, and 24 from the table above.
100	MGP100-PS	

MGPL32 to 100

50mm stroke or less

14

Ø12 to Ø25/MGPM, MGPL

Bore size		Α		-		Е	
(mm)	50st or less	Over 50st to 100st	Over 100st	ЪВ	50st or less	Over 50st to 100st	Over 100st
12	42	60.5	85	8	0	18.5	43
16	46	64.5	95	10	0	18.5	49

MGPM (slide bearing)/Dimensions A, DB, E (mm)

Bore size		Α		DP		Е	
(mm)	50st or less	Over 50st to 200st	Over 200st	ЪВ	50st or less	Over 50st to 200st	Over 200st
20	53	84.5	122	12	0	31.5	69
25	53.5	85	122	16	0	31.5	68.5

MGPL (ball bushing)/Dimensions A, DB, E

Bore size	A			ПВ	E		
(mm)	30st or less	Over 30st to 100st	Over 100st	ЪВ	30st or less	Over 30st to 100st	Over 100st
12	43	55	85	6	1	13	43
16	49	65	95	8	3	19	49

MGPL (ball bushing)/Dimensions A, DB, E

	(., –	-, -			()
Bore size			Α		-		E		
(mm)	30st or less	Over 30st to 100st	Over 100st to 200st	Over 200st	υь	30st or less	Over 30st to 100st	Over 100st to 200st	Over 200st
20	63	80	104	122	10	10	27	51	69
25	69.5	85.5	104.5	122	13	16	32	51	68.5

Order Made Specifications

(mm)

(mm)

(mm)

Ø32 to Ø63/MGPM, MGPL

MGPM, MGPL Common dimensions

MGPM,	MG	PL	Co	mm	on c	dime	ensi	ons	5																				(r	mm)
Bore size (mm)	Sta	andar (m	rd stro nm)	oke	в	с	DA	FA	FB	G	GA	GB	GC	н	НА	J	к	L	мм	ML	NN	ΟΑ	ов	OL	Р		PA	РВ	PW	Q
32					59.5	37.5	16	12	10	48	12.5	9	12.5	112	M6	24	24	34	M8 x 1.25	5 20	M8 x 1.25	6.6	11	7.5	Rc	1/8	7	15	34	30
40	25	, 50,	175, 10)U, 200	66	44	16	12	10	54	14	10	14	120	M6	27	27	40	M8 x 1.25	5 20	M8 x 1.25	6.6	11	7.5	Rc	1/8	13	18	38	30
50	250	300	350	200	72	44	20	16	12	64	14	11	12	148	M8	32	32	46	M10 x 1.5	5 22	M10 x 1.5	8.6	14	9	Rc	1/4	9	21.5	47	40
63	200,	, 000,		400	77	49	20	16	12	78	16.5	13.5	16.5	162	M10	39	39	58	M10 x 1.5	5 22	M10 x 1.5	8.6	14	9	Rc	1/4	14	28	55	50
Bore size (mm)	R	s	т	U	VA	νв	25st or	less	Over 25s to 100st	t Ove	VA er 100st 200st	Over 20 to 300	00st C	iver 300st	25st	or less	Over 2 to 100	5st C	WB Iver 100st 0	Over 200st to 300st	Over 300st	x	ХА	хв	хс	XL	Ŷ	Y	YL	z
Bore size (mm) 32	R 96	s 44	T 110	U 78	VA 98	VB	25st or 24	less	Over 25s to 100st 48	t Ove to	VA er 100st 200st 24	Over 20 to 300 200) 00st C 0st C	iver 300st 300	25st	or less	Over 2 to 100 45	5st C	WB Ver 100st 0 to 200st 0 83	0ver 200st to 300st 121	Over 300st	x 42	XA	ХВ 4.5	хс 3	XL 6	Y M8 x	Y 1.25	YL 16	z 21
Bore size (mm) 32 40	R 96 104	S 44 44	T 110 118	U 78 86	VA 98 106	VB 63 72	25st or 24 24	less	Over 25s to 100st 48 48	V t Ove to 1	VA er 100st 200st 24 24	Over 20 to 300 200 200	Dost C Dost C	over 300st 300 300	25st	or less 33 34	Over 2 to 100 45 46	5st C	WB byer 100st 0 83 0 84 0	0ver 200st to 300st 121 122	Over 300st 171 172	X 42 50	XA 4 4	XB 4.5 4.5	XC 3 3	XL 6	Y M8 x M8 x	Y 1.25 1.25	YL 16 16	Z 21 22
Bore size (mm) 32 40 50	R 96 104 130	S 44 44 60	T 110 118 146	U 78 86 110	VA 98 106 130	VB 63 72 92	25st or 24 24 24	less	Over 25s to 100st 48 48 48 48	V t Ove to 1 1 1	VA er 100st 200st 24 24 24 24	Over 20 to 300 200 200 200	00st C 0st C 0	over 300st 300 300 300	25st 3 3	or less 33 34 36	Over 2 to 100 45 46 48	5st C	WB over 100st to 200st 0 83 84 86 86	0ver 200st to 300st 121 122 124	Over 300st 171 172 174	X 42 50 66	XA 4 4 5	XB 4.5 4.5 6	XC 3 3 4	XL 6 6 8	Y M8 x M8 x M10	Y 1.25 1.25 x 1.5	YL 16 16 20	z 21 22 24
Bore size (mm) 32 40 50 63	R 96 104 130 130	s 44 44 60 70	T 110 118 146 158	U 78 86 110 124	VA 98 106 130 142	VB 63 72 92 110	25st or 24 24 24 24 28		Over 25s to 100st 48 48 48 48 52	V t Ove 1 1 1 1 1	VA 200st 24 24 24 24 24 24 28	Over 20 to 300 200 200 200 200	00st C 0st C 0 0	over 300st 300 300 300 300 300	25st 3 3 3 3	or less 33 34 36 38	Over 2 to 100 45 46 48 50	5st C	WB Iver 100st 0 83 0 84 0 86 0	0ver 200st to 300st 121 122 124 124	Over 300st 171 172 174 174	X 42 50 66 80	XA 4 5 5	XB 4.5 4.5 6	XC 3 3 4 4	XL 6 6 8 8	Y M8 x M8 x M10 M10	Y 1.25 1.25 x 1.5 x 1.5	YL 16 16 20 20	z 21 22 24 24

MGPM (slide bearing)/Dimensions A, DB, E

Bore size		Α				Е	
(mm)	50st or less	Over 50st to 200st	Over 200st	ръ	50st or less	Over 50st to 200st	Over 200st
32	97	102	140	20	37.5	42.5	80.5
40	97	102	140	20	31	36	74
50	106.5	118	161	25	34.5	46	89
63	106.5	118	161	25	29.5	41	84

(mm)

Bore size			Α				E		
(mm)	50st or less	Over 50st to 100st	Over 100st to 200st	Over 200st	DB	50st or less	Over 50st to 100st	Over 100st to 200st	Over 200st
32	81	98	118	140	16	21.5	38.5	58.5	80.5
40	81	98	118	140	16	15	32	52	74
50	93	114	134	161	20	21	42	62	89
63	93	114	134	161	20	16	37	57	84

Ø80, Ø100/MGPM, MGPL

MGPM, MGPL Common dimensions

Bore size (mm)	St	anda (n	rd stro nm)	oke	в	с	DA	FA	FB	G	GA	GB	GC	н	на	J	JA	JB	к	L	ММ	М	. NN	OA	ов	РА	РВ	PW	Q	R
80	2	5, 50,	75, 10	0,	96.5	56.5	25	22	18	91.5	19	15.5	14.5	202	M12	45.5	38	7.5	46	54	M12 x 1.7	5 25	M12 x 1.7	5 10.6	17.5	14.5	25.5	74	52	174
100	250), 300	, 175, . , 350, ·	400	116	66	30	25	25	111.5	23	19	18	240	M14	55.5	45	10.5	56	62	M14 x 2.0	31	M14 x 2.0	12.5	20	17.5	32.5	89	64	210
Bore size	s	т	υ	VA	VB	05-1)ver 25st	W/	A 00st 0	ver 200s	tla		25-1	Ov	er 25st	W Over	B 100st (Over 20	0st L		x	YY	YL	z					
(11111)	75	100	156	100	140	25st or	ess i	to 100st	to 20	Öst i	0 300st	" Over	300st 2	25st or le	ess to	100st	to 20	j0st	to 300	st C	0ver 300st	00	110 v 1 75	24	20					
00	15	190	150	100	140	28		52	12	0	200	30	10	42		54	9.	2	120		1/6 1		VIIZ X 1.75	24	20					
100	90	236	188	210	166	48		72	14	8	220	32	20	35		47	8	5	121		171 1	24	M14 x 2.0	28	11					

(mm)

MGPM (slide bearing)/Dimensions A, DB, E

Bore size		Α		-		Е	
(mm)	50st or less	Over 50st to 200st	Over 200st	Ъ	50st or less	Over 50st to 200st	Over 200st
80	115	142	193	30	18.5	45.5	96.5
100	137	162	203	36	21	46	87

MGPL (ball bushing)/Dimensions A, DB, E

MGPL (ball bu	shing)/	/Dimens	sions A	۹, D	B, E			(mm)
Bore size			Α		пр		E		
(mm)	25st or less	Over 25st to 50st	Over 50st to 200st	Over 200st	υь	25st or less	Over 25st to 50st	Over 50st to 200st	Over 200st
80	109.5	130	160	193	25	13	33.5	63.5	96.5
100	121 147 180 203 30 5 31 64 87								

(mm)

Compact Guide Cylinder: With Air Cushion Series MGP ø16, ø20, ø25, ø32, ø40, ø50, ø63, ø80, ø100

How to Order

Applicable auto switches

					L	oad vo	ltage	Auto swit	ch model	Lead wi	re length	(m) Note 1)			
Туре	Special function	Electrical	Indicator	(output)	п	C	AC	Electrical er	ntry direction	0.5	3	5	Applica	ole load	Detailed specifications
		entry	ligin	(output)		0		Perpendicular	In-line	(Nil)	(L)	(Z)			
				3 wire	_	5V	_	—	Z76	•	•	_	IC circuit	—	
Reed switch	_	Grommet	Yes	2 wire	241/	12V	100V	_	Z73	•	•	•	—	Relay,	P. 59
			No	2 wire	240	5V 12V	100V or less	_	Z80	•	•	_	IC circuit	PLC	
				3 wire (NPN)		5V		Y69A	Y59A	•	•	0	IC		
	—			3 wire (PNP)		12V		Y7PV	Y7P	•	•	0	circuit		P. 60
				2 wire		12V		Y69B	Y59B	•	•	0	_		
Solid state	Diagnostic	Grommet	Ves	3 wire (NPN)	241/	5V		Y7NWV	Y7NW	•	•	0	IC	Relay,	
switch	indication (2 colour	Gronnier	163	3 wire (PNP)	240	12V		Y7PWV	Y7PW	•	•	0	circuit	PLC	P. 61
	indicator)					12V		Y7BWV	Y7BW	•	•	0			
	Water resistant (2 colour indicator)			2 wire				_	Y7BA	_	•	0	—		P. 62
	Magnetic field resistant (2 colour indicator)					_		_	Note 3) P5DW	_	•	•			P. 63

Note 1) Lead wire symbols 0.5m Nil (Example) Y69B 3m L Y69BL

3m L 5m Z

Note 2) Solid state auto switches marked with a "O" are produced upon receipt of order. Note 3) Type D-P5DW cannot be mounted on bore sizes of ø32 or less.

Y69BZ

Specifications

Action		Double acting					
Fluid		Air					
Proof pressure		1.5MPa					
Maximum operating pressure		1.0MPa					
Minimum operating pressure	ø16	0.15MPa					
Minimum operating pressure	ø20 to ø100	0.12MPa					
Ambient and fluid temperature		–10 to 60°C (with no freezing)					
Distan around	ø16 to ø63	50 to 500mm/s					
Piston speed	ø80, ø100	50 to 400mm/s					
Cushion	Air cushion at both ends (without bumper)						
Lubrication	Non-lube						
Stroke length tolerance	+1.5 0 mm						

Standard Strokes

Bore size (mm)	Standard stroke (mm)				
16 25, 50, 75, 100					
20 to 63	25, 50, 75, 100, 125, 150, 175, 200				
80, 100	50, 75, 100, 125, 150, 175, 200		N		

Manufacture of Intermediate Strokes

Modification method	Strokes provided in 1mm increments t stroke cylinder.	by changing the collar on a standard								
Part number	Indicate -XC19 at the end of the standard part number.									
Annlicable	ø16	26 to 99								
stroke	ø20 to ø63	26 to 199								
(mm)	ø80, ø100	51 to 199								
Example	Part no.: MGPM20–35A–XC19 A collar 15mm in width is installed in a MGPM20–50A. C dimension is 112mm									

Note 1) Intermediate strokes (in 1mm increments) with a special body are available by special order.

Auto switch mounting bracket part no. for D-P5DW

Bore size (mm)	Mounting bracket part no.	Notes
40, 50, 63, 80, 100	BMG1-040	Switch mounting bracket Hexagon socket head cap screw (M2.5 x $0.45 \times 8\ell$) 2 pcs. Hexagon socket head cap screw (M3 x $0.5 \times 16\ell$) 2 pcs. Spring washer (nominal size 3)

Theoretical Output

								OUT	(N) →		I (N)	(N)	Spec
Bore size	Rod	Operating	Piston area			Op	perating	g press	ure (MF	°a)) if i
(mm)	(mm)	direction	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	Cat
16	0	OUT	201	40	60	80	101	121	141	161	181	201	
10	0	IN	151	30	45	60	76	91	106	121	136	151	SI)
20	10	OUT	314	63	94	126	157	188	220	251	283	314	
20	10	IN	236	47	71	94	118	142	165	189	212	236	
25	12	OUT	491	98	147	196	246	295	344	393	442	491	
23	12	IN	378	76	113	151	189	227	265	302	340	378	
32	16	OUT	804	161	241	322	402	482	563	643	724	804	L L
52	10	IN	603	121	181	241	302	362	422	482	543	603	Ö
40	16	OUT	1257	251	377	503	629	754	880	1006	1131	1257	
40	10	IN	1056	211	317	422	528	634	739	845	950	1056	lito
50	20	OUT	1963	393	589	785	982	1178	1374	1570	1767	1963	l ne
50	20	IN	1649	330	495	660	825	990	1154	1319	1484	1649	ů j
63	20	OUT	3117	623	935	1247	1559	1870	2182	2494	2805	3117	
00	20	IN	2803	561	841	1121	1402	1682	1962	2242	2523	2803	
80	25	OUT	5027	1005	1508	2011	2514	3016	3519	4022	4524	5027	
00	20	IN	4536	907	1361	1814	2268	2722	3175	3629	4082	4536	
100	30	OUT	7854	1571	2356	3142	3927	4712	5498	6283	7069	7854	re
100	50	IN	7147	1429	2144	2859	3574	4288	5003	5718	6432	7147	Cal

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

∕@SMC

Order Made Specifications

19

Weights

Slide bearing: MGPM16 to 100

									(kg)			
Bore size		Standard stroke (mm)										
(mm)	Model	25	50	75	100	125	150	175	200			
16	MGPM16	0.51	0.69	0.78	0.91	—	—	—	—			
20	MGPM20	0.89	1.14	1.34	1.54	1.74	1.94	2.13	2.33			
25	MGPM25	1.23	1.60	1.87	2.14	2.41	2.68	2.95	3.23			
32	MGPM32	1.98	2.51	2.77	3.15	3.53	3.91	4.29	4.68			
40	MGPM40	2.34	2.91	3.21	3.64	4.06	4.49	4.92	5.34			
50	MGPM50	3.92	4.75	5.29	5.93	6.57	7.21	7.85	8.49			
63	MGPM63	4.94	5.89	6.54	7.29	8.05	8.81	9.56	10.32			
80	MGPM80	_	8.98	9.64	10.6	11.5	12.5	13.4	14.3			
100	MGPM100	_	14.2	15.1	16.5	17.8	19.1	20.5	21.8			

Ball bushing: MGPL16 to 100

T (N·m)

									(kg)				
Bore size	Madal	Standard stroke (mm)											
(mm)	woder	25	50	75	100	125	150	175	200				
16	MGPL16	0.56	0.66	0.78	0.89	—	—	—					
20	MGPL20	0.97	1.12	1.30	1.50	1.68	1.85	2.03	2.20				
25	MGPL25	1.34	1.54	1.78	2.05	2.28	2.51	2.74	2.97				
32	MGPL32	1.81	2.34	2.57	2.94	3.26	3.58	3.89	4.21				
40	MGPL40	2.15	2.73	3.01	3.42	3.78	4.14	4.50	4.86				
50	MGPL50	3.65	4.47	4.95	5.71	6.14	6.69	7.24	7.79				
63	MGPL63	4.66	5.60	6.20	7.07	7.61	8.28	8.95	9.61				
80	MGPL80	—	8.88	9.63	10.5	11.3	12.1	12.9	13.7				
100	MGPL100	_	13.7	14.9	16.0	17.2	18.4	19.6	20.8				

Allowable Rotational Torque of Plate (Air Cushion)

Bore size	Bearing				Stroke (mm)			
(mm)	type	25	50	75	100	125	150	175	200
16	MGPM	0.53	0.84	0.69	0.58			_	—
10	MGPL	1.27	0.86	0.65	0.52	_	—	_	—
20	MGPM	0.99	2.23	1.88	1.63	1.44	1.28	1.16	1.06
20	MGPL	2.66	1.94	1.52	1.57	1.34	1.17	1.03	0.93
0 E	MGPM	1.64	3.51	2.96	2.57	2.26	2.02	1.83	1.67
20	MGPL	4.08	3.02	2.38	2.41	2.05	1.78	1.58	1.41
22	MGPM	6.35	6.64	5.69	4.97	4.42	3.98	3.61	3.31
32	MGPL	5.95	5.89	5.11	6.99	6.34	5.79	5.33	4.93
40	MGPM	7.00	7.32	6.27	5.48	4.87	4.38	3.98	3.65
40	MGPL	6.55	6.49	5.62	7.70	6.98	6.38	5.87	5.43
50	MGPM	13.0	13.8	12.0	10.6	9.50	8.60	7.86	7.24
50	MGPL	9.17	11.2	9.8	12.8	11.6	10.7	9.80	9.10
62	MGPM	14.7	15.6	13.5	11.9	10.7	9.69	8.86	8.16
03	MGPL	10.2	12.5	11.0	14.3	13.0	11.9	11.0	10.2
90	MGPM	—	26.0	22.9	20.5	18.6	17.0	15.6	14.5
00	MGPL		25.2	22.7	20.6	18.9	17.3	16.0	14.8
100	MGPM	_	41.9	37.5	33.8	30.9	28.4	26.2	24.4
100	MGPL	—	41.7	37.9	34.6	31.8	29.3	27.2	25.3

Non-rotating Accuracy of Plate

For non-rotating accuracy θ without load, use a value no more than the values in the table as a guide.

Bore size	Non-rotatin	g accuracy θ				
(mm)	MGPM	MGPL				
16	±0.08°	±0.10°				
20	.0.07°	-0.00°				
25	±0.07	±0.09				
32	.0.06°	.0.080				
40	±0.00	±0.08				
50	-0.05°	-0.06°				
63	±0.05	±0.00				
80	.0.04°	.0.0E°				
100	±0.04	±0.05°				

Series MGP (With Air Cushion) **Model Selection**

Selecting Conditions

Selection Example 1 (Vertical Mounting)

Selecting conditions Mounting: Vertical Bearing type: Ball bushing Stroke: 75mm Maximum speed: 200mm/s

- Load weight: 7kg
- Eccentric distance:70mm

Find the point of intersection for the load weight of 7kg and the eccentric distance of 70mm on graph 5, based on vertical mounting, ball bushing, 75mm stroke, and the speed of 200mm/s. →MGPL25-75A is selected.

5 75mm stroke or less V = 200mm/s

Selection Example 2 (Horizontal Mounting)

Selecting conditions

- Mounting: Horizontal
- Bearing type: Slide bearing
- Distance between plate and load center of gravity: 40mm Maximum speed: 300mm/s
- Load weight: 8kg
- Stroke: 100mm

Find the point of intersection for the load weight of 8kg and stroke of 100mm on graph 17, based on horizontal mounting, slide bearing, the distance of 40mm between the plate and load center of gravity, and the speed of 300mm/s. →MGPM32-100A is selected.

$17 \ell = 50 \text{mm} \text{ V} = 400 \text{mm/s}$

∕⁄∂SMC

Vertical Mounting Slide Bearing

Operating pressure: 0.4MPa ---- Operating pressure: 0.5MPa or more

MGPM16 to 100

4 Over 25mm stroke V = 400mm/s

Vertical Mounting Ball Bushing

Series MGP

Operating pressure: 0.4MPa ---- Operating pressure: 0.5MPa or more

MGPL16 to 25

MGPL32 to 63

MGPL80, 100

Auto Switches

Vertical Mounting Ball Bushing

Operating pressure: 0.4MPa

MGPL16 to 25

MGPL32 to 63

MGPL80, 100

14 V = 400mm/s

Over 25mm stroke V = 400mm/s

Horizontal Mounting Slide Bearing

MGPM16 to 100

∕@SMC

Standard Type

With Air Cushion MGP

With End Lock

Heavy Duty Guide Rod Type MGPS

Order Made Specifications

Auto Switches

Precautions

200

100

200

100

Horizontal Mounting Ball Bushing

$\ell = 50 \text{ mm} \text{ V} = 200 \text{ m/s}$

Horizontal Mounting Ball Bushing

Series MGP

Operating Range when Used as Stopper

Bore Sizes ø16 to 25/MGPM16 to 25 (Slide bearing)

Bore Sizes ø32 to 100/MGPM32 to 100 (Slide bearing)

* When selecting a model with a longer *ℓ* dimension, be sure to choose a bore size which is sufficiently large.

∆Caution

Handling precautions

Note 1) When using as a stopper, select a model with a stroke of 50mm or less.

Note 2) Model MGPL (ball bushing) cannot be used as a stopper.

MGPM32 to 100 (Slide bearing)

Compact Guide Cylinder Series MGP With Air Cushion

Copper-free Series (Applicable to CRT Manufacturing Process)

To prevent the influence of copper ions or halogen ions during CRT manufacturing processes, copper and fluorine materials are not used as component parts. How to Order **Specifications** 20 MGP M Bore size Stroke A Applicable series MGPM MGPL Bearing type Slide bearing Ball bushing Bearing type With air cushion 16, 20, 25, 32, 40 Bore size (mm) 50, 63, 80, 100 M Slide bearing Ball bushing * Specifications and dimensions other than above are identical to the standard basic type. L **Copper-free specification**

Auto Switches/Proper Mounting Position for Stroke End Detection

For D-P5DW (* Cannot be mounted on bore sizes ø32 or less.)

• Tighten with a torque of 0.05 to 0.1N m. past the point at which tightening can be felt.

 Tighten M2.5 screws with a torque of about 0.3 to 0.5N·m, and M3 screws with a torque of about 0.5 to 0.7 N·m.

Hexagon wrench key 2.5

Hexagon socket head cap screw

(M3 x 16ℓ)

With End Lock

Auto switch

With Air Cushion MGP

Construction (With Air Cushion)

Series MGPM

MGPM16 to 25

ø16: 50mm stroke or larger

ø20, ø25: 50mm stroke or larger

Series MGPL

MGPL16 to 25

ø20, ø25: 100mm stroke or larger

MGPM32 to 100

Cushion valve section

MGPL32 to 100

ø32 to ø63: 50, 75mm stroke ø80, ø100: 50mm stroke or larger

_ ...

Part	ts list			
No.	Description	Material		Note
1	Body	Aluminum alloy	Harc	l anodized
2	Piston	Aluminum alloy	Ch	romated
2	Diston rod	Stainless steel	ø16 to ø25	
3	FISIONIOU	Carbon steel	ø32 to ø100	Hard chrome plated
1	Collor		ø16 to ø63	Clear anodized
	Collar	Aluminum alloy	ø80, ø100	Coated
5	Bushing	Lead bronze casting		
6	Hood covor		ø16 to ø25	Clear anodized
	r leau covei	Aluminum alloy	ø32 to ø100	Coated
7	Guide rod	Carbon steel	Hard cl	nrome plated
8	Plate	Carbon steel	Nic	kel plated
9	Plate mounting bolt	Carbon steel	Nic	kel plated
10	Snap ring	Carbon tool steel	Phosp	hate coated
11	Snap ring	Carbon tool steel	Phosp	hate coated
12	Magnet	Synthetic rubber		
12	Plug (M-5P)	Brass	ø16	Nickel plated
13	Hexagon socket head taper plug	Carbon steel	ø20 to ø100	Nickel plated
14	Slide bearing	Lead bronze casting		
15	Felt	Felt		
16	Holder	Resin		
17	Ball bushing			

Parts list

No.	Description	Material	Note
18	Spacer	Aluminum alloy	
19	Wear ring	Resin	
20	Cushion valve	Steel	
21	Gasket	NBR	
22	Snap ring	Carbon tool steel	Except ø16
23*	Piston seal	NBR	
24*	Rod seal	NBR	
25*	Cushion seal	Urethane	
26*	Gasket A	NBR	
27*	Gasket B	NBR	
28*	Gasket C	NBR	

Replacement parts: Seal kits

Bore size (mm)	Kit no.	Contents	Bore size (mm)	Kit no.	Contents
16	MGP16-A-PS	Kits include	50	MGP50-A-PS	Kits include
20	MGP20-A-PS	items	63	MGP63-A-PS	23, 24, 25
25	MGP25-A-PS	26, 27, 28	80	MGP80-A-PS	26, 27, 28 from the
32	MGP32-A-PS	trom the table	100	MGP100-A-PS	table above.
40	MGP40-A-PS	above.			

* Seal kits are sets consisting of items 23 through 28 above, and can be ordered using the kit number for each bore size.

Compact Guide Cylinder With Air Cushion

Ø16 to Ø25/MGPM, MGPL (With Air Cushion)

MGPM, MGPL Common dimensions

Standard stroke (mm)	в	с	сv	DA	FA	FB	G	GA	GB	н	на	J	к	L	мм	ML	NN	ΟΑ	ов	OL	Ρ	Р	A F	в	PW	Q
25, 50, 75, 100	71	58	—	8	8	5	30	11	8	64	M4	15	15	22	M5 x 0.8	12	M5 x 0.8	4.3	8	4.5	M5 x	0.8 4	0 1	0	19	16
25, 50, 75, 100,	78	62	1.5	10	10	6	36	10.5	8.5	83	M5	18	18	24	M5 x 0.8	13	M5 x 0.8	5.6	9.5	5.5	Rc 1	1/8 3	7.5 1	0.5	25	18
125, 150, 175, 200	78.5	62.5	1.5	12	10	6	42	11.5	9	93	M5	21	21	30	M6 x 1.0	15	M6 x 1.0	5.6	9.5	5.5	Rc 1	1/8 3	7.5 1	3.5	28.5	26
Standard stroke	_	_	_						N	/A				WB								,				
(mm)	к	S		U	VA	VB	75st	or less	100	to 17	5st i	200st	t 75s	t or les	s 100 to	175st	200st	X	X		хв	ŶŶ		Y		Ζ
25, 50, 75, 100	54	25	62	46	56	38	4	4		110		_		27	6	0	—	24	3	3 3	3.5	M5 x	0.8	10)	5
25, 50, 75, 100,	70	30	81	54	72	44	4	4		120		200		39	7	7	117	28	3	3 3	3.5	M6 x	1.0	12	2	17
125, 150, 175, 200	78	38	91	64	82	50	4	4		120		200		39	7	7	117	34	4	4	1.5	M6 x	1.0	12	2	17
	Standard stroke (mm) 25, 50, 75, 100 25, 50, 75, 100, 125, 150, 175, 200 Standard stroke (mm) 25, 50, 75, 100 25, 50, 75, 100 25, 50, 75, 100, 25, 50, 75, 100, 25, 50, 75, 100, 25, 50, 75, 100, 25, 50, 75, 100, 25, 50, 75, 100, 25, 50, 75, 100, 125, 150, 175, 200	Standard stroke (mm) B 25, 50, 75, 100 71 25, 50, 75, 100, 78 125, 150, 175, 200 78.5 Standard stroke (mm) R 25, 50, 75, 100 54 25, 50, 75, 100, 70 125, 150, 175, 200 78	Standard stroke (mm) B C 25, 50, 75, 100 71 58 25, 50, 75, 100, 78 62 125, 150, 175, 200 78.5 62.5 Standard stroke (mm) R S 25, 50, 75, 100, 54 25 25, 50, 75, 100, 54 25 25, 50, 75, 100, 54 30 125, 150, 175, 200 78 38	Standard stroke (mm) B C CV 25, 50, 75, 100 71 58 — 25, 50, 75, 100, 125, 150, 175, 200 78 62 1.5 325, 50, 75, 100, (mm) 78 62 1.5 Standard stroke (mm) R S T 25, 50, 75, 100 54 25 62 25, 50, 75, 100, 125, 150, 175, 200 70 30 81 125, 150, 175, 200 78 38 91	Standard stroke (mm) B C CV DA 25, 50, 75, 100 71 58 8 25, 50, 75, 100, 125, 150, 175, 200 78 62 1.5 10 325, 50, 75, 100, 125, 150, 175, 200 78 625 1.5 12 Standard stroke (mm) R S T U 25, 50, 75, 100 54 25 62 46 25, 50, 75, 100, 25, 50, 75, 100, 125, 150, 175, 200 78 38 91 64	Standard stroke (mm) B C CV DA FA 25, 50, 75, 100 71 58 8 8 25, 50, 75, 100 78 62 1.5 10 10 125, 150, 175, 200 78 62.5 1.5 12 10 Standard stroke (mm) R S T V VA 25, 50, 75, 100 54 25 62 46 56 25, 50, 75, 100 70 30 81 54 72 25, 50, 75, 100, 150, 175, 200 78 38 91 64 82	Standard stroke (mm) B C CV DA FA FB 25, 50, 75, 100 71 58 8 8 5 25, 50, 75, 100 78 62 1.5 10 10 6 125, 150, 175, 200 78 625 1.5 12 10 6 Standard stroke (mm) R S T V VA VB 25, 50, 75, 100 54 25 62 46 56 38 25, 50, 75, 100 54 25 62 46 54 34 25, 50, 75, 100 70 30 81 54 72 44 125, 150, 175, 200 78 38 91 64 82 50	Standard stroke (mm) B C CV DA FA FB G 25, 50, 75, 100 71 58 8 8 5 30 25, 50, 75, 100 78 62 1.5 10 10 6 36 25, 50, 75, 100 78 62.5 1.5 12 10 6 42 Standard stroke (mm) R R T H VA M 75. 25, 50, 75, 100 54 25 62 46 56 38 4 25, 50, 75, 100 54 25 62 46 56 38 4 25, 50, 75, 100 54 25 62 46 56 38 4 25, 50, 75, 100, 70 30 81 54 72 44 4 125, 150, 175, 200 78 38 91 64 82 50 4	Standard stroke (mm) B C CV DA FA FB G A 25, 50, 75, 100 71 58 8 8 5 30 11 25, 50, 75, 100 78 62 1.5 10 10 6 36 10.5 125, 150, 175, 200 78 62.5 1.5 12 10 6 42 1.5 Standard stroke (mm) R S 7 VA VA 7 7 1.5 25, 50, 75, 100 54 25 62 46 56 38 4 25, 50, 75, 100 54 25 62 46 56 38 4 25, 50, 75, 100, 70 30 81 54 72 44 4 125, 150, 175, 200 78 38 91 64 82 50 44	Standard stroke (mm) B C CV DA FA FB G GA FB 25, 50, 75, 100 71 58 8 8 5 30 11 8 25, 50, 75, 100 78 62 1.5 10 10 6 36 10.5 8.5 125, 150, 175, 200 78.5 62.5 1.5 12 10 6 42 11.5 9 Standard stroke (mm) R R 7 T VA VA	Standard stroke (mm) B C CV DA FA FB G GA GB H 25, 50, 75, 100 71 58 8 8 5 30 11 8 64 25, 50, 75, 100 78 62 1.5 10 10 6 36 10.5 8.3 125, 150, 175, 200 78 625 1.5 12 10 6 42 11.5 9 93 Standard stroke (mm) R R 7 7 12 10 6 42 1.5 9 93 Standard stroke (mm) R R R R R R R 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	Standard stroke (mm) B C CV DA FA FB G GA GB H HA 25, 50, 75, 100 71 58 8 8 5 30 11 8 64 M4 25, 50, 75, 100 78 62 1.5 10 10 6 36 10.5 8.5 83 M5 125, 50, 75, 100 78.5 62.5 1.5 12 10 6 42 1.5 9 93 M5 Standard stroke (mm) R R 7 M VA YA YA	Standard stroke (mm) B C CV DA FA FB G GA GB H HA J 25, 50, 75, 100 71 58 8 8 5 30 11 8 64 M4 15 25, 50, 75, 100 78 62 1.5 10 10 66 36 10.5 8.5 83 M5 18 25, 50, 75, 100 78 625 1.5 12 10 64 42 11.5 9 93 M5 21 Standard stroke (mm) R 25 62 46 56 38 44 101 105 100 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101	Standard stroke (mm) B C CV DA FA FB G GA GB H HA J K 25, 50, 75, 100 71 58 8 8 5 30 11 8 64 M4 15 15 25, 50, 75, 100 78 62 1.5 10 10 6 36 10.5 8.5 83 M5 18 18 125, 150, 175, 200 78.5 62.5 1.5 12 10 6 42 1.5 9 93 M5 21 21 Standard stroke (mm) R R 75 74 74 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78	Standard stroke (mm) B C CV DA FA FB G GA GB H HA J K L 25, 50, 75, 100 71 58 8 8 5 30 11 8 64 M4 15 15 22 25, 50, 75, 100 78 62 1.5 10 10 64 8.5 83 M5 18 18 24 125, 150, 175, 200 78.5 62.5 1.5 12 10 64 42 11.5 9 93 M5 12 20 Standard stroke (mm) R 25 62.5 1.5 12 10 64 42 11.5 9 93 M5 12 20 35 Standard stroke (mm) R 25 62 46 56 38 44 10 10 15 12 15 15 12 12 12 12 12	Standard stroke (mm) B C CV DA FA FB G GA GB HA J K L MM 25, 50, 75, 100 71 58 8 8 5 30 11 8 64 M4 15 15 22 M5 × 0.8 25, 50, 75, 100 78 62 1.5 10 10 6 36 10.5 8.5 83 M5 18 24 M5 × 0.8 125, 150, 175, 200 78.5 62.5 1.5 12 10 6 42 15.5 9 93 M5 21 30 M6 × 1.0 Standard stroke (mm) R R 7 M VA KA 42 1.5 9 93 M5 21 30 M6 × 1.0 Standard stroke (mm) R R T VA VA MA YA YA YA YA YA YA YA YA	Standard stroke (mm) B C CV DA FA FB G GA GB H HA J K L MM M 25, 50, 75, 100 71 58 8 8 5 30 11 8 64 M4 15 15 22 M5 x 0.8 12 25, 50, 75, 100 78 62 1.5 10 10 6 36 10.5 8.5 83 M5 18 18 24 M5 x 0.8 13 125, 150, 175, 200 78.5 6.55 1.5 12 10 6 42 1.5 9 3 M5 12 10 M6 x 1.0 15 Standard stroke (mm) R R T 10 16 42 1.5 9 3 M5 12 10 15 15 Standard stroke (mm) R R T M M M M M 1.5	Standard stroke (mm) B C CV DA FA FB G GA GB H HA J K L MM ML NN 25, 50, 75, 100 71 58 8 8 5 30 11 8 64 M4 15 15 22 M5 × 0.8 12 M5 × 0.8 25, 50, 75, 100, 125, 150, 175, 200 78 62 1.5 10 10 6 36 10.5 8.5 8.3 M5 18 24 M5 × 0.8 13 M5 × 0.8 25, 50, 75, 100, 125, 150, 175, 200 78. 6.5 1.5 10 10 6 42 1.5 9 93 M5 21 30 M6 × 1.0 15 M6 × 1.0 16 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <	Standard stroke (mm) B C CV DA FA FB G GA GB H HA J K L MM ML NN A 25, 50, 75, 100 71 58 8 8 5 30 11 8 64 M4 15 15 22 M5x.08 12 M5x.08 4.3 25, 50, 75, 100 78 62 1.5 10 10 6 36 4.5 8.3 M5 18 18 24 M5x.08 13 M5x.08 5.6 125, 50, 75, 100 78.5 6.5 1.5 12 10 6 42 1.5 9 3 M5 12 12 10 M5x.08 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Standard stroke (mm) B C CV DA FA FB G GA GB H HA J K L MM ML NN OA OA OA 25, 50, 75, 100 71 58 8 8 5 30 11 8 64 M4 15 12 MS 12 MS 4.3 2 25, 50, 75, 100 78 62 1.5 10 10 6 36 10.5 8.5 8.3 MS 18 24 MS <.08	Standard stroke (mm) B C CV DA FA FB G GA GB HA J K L MM ML NN OA OB OL 25, 50, 75, 100 71 58 8 8 5 30 11 8 64 M4 15 15 22 M5x 08 12 M5x 08 8.3 8.4 5.5 25, 50, 75, 100 78 62 1.5 10 10 6 36 15.9 8.3 M5 18 18 24 M5x 08 13 M5x 0.6 9.5 5.5 125, 150, 175, 100 78.5 6.5 1.5 10 6 42 1.5 9.5 3.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Standard stroke (mm) B C CV DA FA FB G GA GB H A J K L MM ML NN OA OB OL P 25, 50, 75, 100 71 58 8 8 5 30 11 8 64 M4 15 15 22 M5x.08 12 M5x.08 4.3 8.4 65 M5x 12 10 10 66 36 10.5 8.5 8.3 10 18 24 M5x.08 13 M5x.08 6.6 9.5 6.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 <t< td=""><td>Standard stroke (mm) B C CV DA FA FB G GA GB H HA J K L MM ML NN OA OB OL P P 25, 50, 75, 100 71 58 8 8 8 3 30 11 8 64 M4 15 15 22 M5 × 08 12 M5 × 08 4.0 8.0 8.0 8.0 4.0 10 10 10 6 30 10 8.0 8.0 8.0 18 18 24 M5 × 08 13 M5 × 08 4.0 9.0 9.0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10</td><td>Standard stroke (mm) B C VA FA FB G GA GB H HA J K L MM ML NN OA OB OL P PA PA PA 25, 50, 75, 100 71 58 8 8 5 30 11 8 64 M4 15 12 M5x.08 12 M5x.08 4.3 8.5 M5x.08 4.0 10 10 10 66 36 10.5 8.5 8.3 10.5 12 10 10 66 36 10.5 8.5 8.3 10.5 12 10 10 66 10.5 8.5 8.3 10.5 12 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5</td></t<> <td>Standard stroke (mm) B C CV PA FB G GA GB FA F</td> <td>Standard stroke (mm) B C CV DA FA FB G GA GA FA FA</td>	Standard stroke (mm) B C CV DA FA FB G GA GB H HA J K L MM ML NN OA OB OL P P 25, 50, 75, 100 71 58 8 8 8 3 30 11 8 64 M4 15 15 22 M5 × 08 12 M5 × 08 4.0 8.0 8.0 8.0 4.0 10 10 10 6 30 10 8.0 8.0 8.0 18 18 24 M5 × 08 13 M5 × 08 4.0 9.0 9.0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	Standard stroke (mm) B C VA FA FB G GA GB H HA J K L MM ML NN OA OB OL P PA PA PA 25, 50, 75, 100 71 58 8 8 5 30 11 8 64 M4 15 12 M5x.08 12 M5x.08 4.3 8.5 M5x.08 4.0 10 10 10 66 36 10.5 8.5 8.3 10.5 12 10 10 66 36 10.5 8.5 8.3 10.5 12 10 10 66 10.5 8.5 8.3 10.5 12 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	Standard stroke (mm) B C CV PA FB G GA GB FA F	Standard stroke (mm) B C CV DA FA FB G GA GA FA FA

∕@SMC

MGPM (slide bearing)/Dimensions A, DB, E (mm)

Bore size		Α		пп	E				
(mm)	25st	50st	75st or more	υв	25st	50st	75st or more		
16	71	89.5	71	10	0	18.5	0		
20	78	86.5	84.5	12	0	8.5	6.5		
25	78.5	87	85	16	0	8.5	6.5		

MGPL (ball bushing)/Dimensions A, DB, E

Bore size			Α		-	E					
(mm)	25st	50, 75st 100st 125st or more		υв	25st	50, 75st	100st	125st or more			
16	80 71 95 80		71	_	8	9	0	0	_		
20			99	104	10	17	2	21	26		
25	100.5 85.5		99.5 104.5		13	22	7	26	26		

Series MGP

31

(mm)

(mm)

Auto Switches

Precautions

Series MGP Ø32 to Ø63/MGPM, MGPL (With Air Cushion)

Bore size (mm)	Standard stroke (mm)	в	с	сv	DA	FA	FB	G	GA	GB	GC	н	НА	J	к	L	ММ	ML	NN	OA	ов	OL	Р	PA	РВ	PW	Q
32	05 50 75	84.5	62.5	1.5	16	12	10	48	12.5	9	12.5	112	M6	24	24	34	M8 x 1.25	20	M8 x 1.25	6.6	11	7.5	Rc 1/	3 32	15	34	30
40	25, 50, 75,	91	69	1.5	16	12	10	54	14	10	14	120	M6	27	27	40	M8 x 1.25	20	M8 x 1.25	6.6	11	7.5	Rc 1/	3 38	18	38	30
50	150 175 200	97	69	2.5	20	16	12	64	14	11	12	148	M8	32	32	46	M10 x 1.5	22	M10 x 1.5	8.6	14	9	Rc 1/-	4 34	21.5	47	40
63		102	74	2.5	20	16	12	78	16.5	13.5	16.5	162	M10	39	39	58	M10 x 1.5	22	M10 x 1.5	8.6	14	9	Rc 1/-	4 39	28	55	50
Bore size (mm)	Standard stroke	R	s	т	U	VA	VB	WA						25	WB					x	A XI	з хо	XL	Y	Y	YL	z
32	()	96	44	110	78	98	63	4	, тоос В	1.001	24		200	20,	45		83	12	1 4	2 4	4.	5 3	6	M8 x	1.25	16	21
40	25, 50, 75,	104	44	118	86	106	72	48	8	1	24	2	200		46		84	12	2 5) 4	4.	5 3	6	M8 x	1.25	16	22
50	150 175 200	130	60	146	110	130	92	48	В	1	24	2	200		48		86	12	4 6	5 5	6	4	8	M10 :	(1.5	20	24
63		130	70	158	124	142	110	52	2	1	28	2	200		50		88	12	4 8) 5	6	4	8	M10 :	(1.5	20	24

MGPM (slide bearing)/Dimensions A, DB, E (mm)

Е A Bore size DB 25st 50st 75st or more (mm) 25st 50st 75st or more 32 97 127 102 20 12.5 42.5 17.5 40 127 97 102 20 6 36 11 50 131.5 34.5 21 106.5 118 25 9.5 63 106.5 131.5 118 25 4.5 29.5 16

MGPL (ball bushing)/Dimensions A, DB, E

(mm) Е Bore size A DB (mm) 50st 75st 100st 125st or more 25st 50st 75st 100st 125st or more 25st 32 84.5 123 98 115.5 118 16 0 38.5 13.5 31 33.5 40 115.5 91 123 98 118 16 0 32 7 24.5 27 50 97 114 159 20 30.5 37 127.5 134 0 17 62 63 102 127.5 114 159 134 20 0 25.5 12 57 32

Ø80, Ø100/MGPM, MGPL (With Air Cushion)

Bore size (mm)	Standard stroke (mm)	в	с	DA	FA	FB	G	GA	GB	GC	н	НА	J	JA	JB	к	L	ММ	ML	NN	I	OA	ов	PA	РВ	PW
80	50, 75, 100, 125,	121.5	81.5	25	22	18	91.5	19	15.5	14.5	202	M12	45.5	38	7.5	46	54	M12 x 1.75	25	M12 x 1	.75	10.6	17.5	39.5	25.5	74
100	150, 175, 200	141	91	30	25	25	111.5	23	19	18	240	M14	55.5	45	10.5	56	62	M14 x 2.0	31	M14 x 2	2.0	12.5	20	42.5	32.5	89
Dere eize	Other shared attraction										W	Δ			WB											
Dore size	Standard stroke		-	~	Ŧ		1/4	VD				<u>~</u>					AAD			- v	•	~	VI			
(mm)	(mm)	Q	R	s	Т	U	VA	VB	50, 7	′5st	100 to 1	75st	200	st	50, 75	5st	100 to	175st 2	00st	X	١	ΥY	YL	Z		
(mm)	50, 75, 100, 125,	Q 52	R 174	S 75	Т 198	U 156	VA 180	VB 140	50, 7 52	'5st 2	100 to 1 12	75st 8	200	st)	50, 75 54	5st	100 to	175st 2	00st 28	X	M12	ΥΥ 2 x 1.75	YL 24	28	_	

MGPM (slide bearing)/Dimensions A, DB, E (mm)

Bore size	ļ	4	пр	E					
(mm)	50st	75st or more	υв	50st	75st or more				
80	167	142	30	45.5	20.5				
100	187	162	36	46	21				

MGPL (ball bushing)/Dimensions A, DB, E (mm)

Bore size	4	4	-	I	E
(mm)	50st	75st or more	υь	50st	75st or more
80	168.5	160	25	47	38.5
100	178.5	180	30	37.5	39

∕@SMC

Auto Switches

Precautions

Applicable auto switches

					L	oad vo	tage	Auto swit	tch model	Lead wi	re length	(m) Note 1)			D. 11	
Туре	Special function	Electrical	Indicator	(output)		C	AC	Electrical er	ntry direction	0.5	3	5	Applical	ble load	specifications	
		entry	iigin	(output)			1.0	Perpendicular	In-line	(Nil)	(L)	(Z)		icable load Detailed specifications it Relay, PLC P. 59 it itRelay, PLC P. 60 it PLC P. 61 P. 62P. 63	S S C	
				3 wire	-	5V	_	—	Z76	•	•	-	IC circuit	_		becif
Reed switch	_	Grommet	Yes	Quuine	0.01	12V	100V	-	Z73	•	•	•	_	Relay,	P. 59	icati
			No	2 wire	24V	5V 12V	100V or less	—	Z80	•	•	_	IC circuit	PLC		ions
				3 wire (NPN)		5V		Y69A	Y59A	•	•	0	IC			
	_			3 wire (PNP)		12V		Y7PV	Y7P	•	•	0	circuit		P. 60	
				2 wire		12V		Y69B	Y59B	•	•	0	_			Au
Solid state	Diagnostic	Grommet	Voc	3 wire (NPN)	241/	5V		Y7NWV	Y7NW	•	•	0	IC	Relay,		to S
switch	indication (2 colour	Giommet	165	3 wire (PNP)	240	12V		Y7PWV	Y7PW	•	•	0	circuit	PLĆ	P. 61	vitch
	indicator)					12V		Y7BWV	Y7BW	•	•	0				les
	Water resistant (2 colour indicator)			2 wire				_	Y7BA	_	•	0	_		P. 62	
	Magnetic field resistant (2 colour indicator)					_		—	P5DW	_	•	•			P. 63	-

Note 1) Lead wire symbols 0.5m Nil (Example) Y69B Y69BL

3m L 5m Z Y69BZ

Note 2) Solid state auto switches marked with a "O" are produced upon receipt of order.

Note 3) Type D-P5DW cannot be mounted on bore sizes of ø32 or less.

recautions

Series MGP

Specifications

Action	Double	e acting
Fluid	l l l l l l l l l l l l l l l l l l l	Nir
Proof pressure	1.5	MPa
Maximum operating pressure	1.0	MPa
Minimum operating pressure	0.15	MPa *
Ambient and fluid temperature	−10 to 60°C (w	<i>i</i> ith no freezing)
Distan an and	ø20 to ø63	50 to 500mm/s
Piston speed	ø80, ø100	50 to 400mm/s
Cushion	Rubber bump	er at both ends
Lubrication	Non	-lube
Stroke length tolerance	+1.5 0	mm

* 0.1MPa except for the lock unit.

Lock Specifications

Lock position				Rear, F	ront side			
Holding force	ø20	ø25	ø32	ø40	ø50	ø63	ø80	ø100
(max.) N	215	330	550	860	1340	2140	3450	5390
Backlash				2mm	or less			
Manual release			Non-	locking typ	e, Locking	g type		

Adjust switch positions for operation at both the stroke end and backlash (2mm) movement positions.

Standard Strokes

Bore size (mm)	Standard stroke (mm)
20, 25, 32, 40, 50, 63, 80, 100	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400

Manufacture of Intermediate Strokes

Modification method	Spacer installation type Spacers are installed in a standard stroke cylinder. Available in 5mm stroke increments
Part number	Refer to page 35 for standard part numbers and ordering procedure.
Applicable stroke (mm)	5 to 395
Example	Part no.: MGPM50–35–HN A spacer 15mm in width is installed in a MGPM50–50–HN. C dimension is 119mm.

Note 1) The minimum stroke for mounting auto switches is 10mm or more for two switches, and 5mm or more for one switch.

Note 2) Intermediate strokes (in 1mm increments) with a special body are available by special order.

Theoretical Output

							Г		л	-	IN T		
												(N)	
Bore size	Rod	Operating	Piston area		Operating pressure (MPa)								
(mm)	(mm)	direction	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	
20	10	OUT	314	63	94	126	157	188	220	251	283	314	
20	10	IN	236	47	71	94	118	142	165	189	212	236	
25	10	OUT	491	98	147	196	246	295	344	393	442	491	
25	12	IN	378	76	113	151	189	227	265	302	340	378	
22	16	OUT	804	161	241	322	402	482	563	643	724	804	
32	10	IN	603	121	181	241	302	362	422	482	543	603	
40	16	OUT	1257	251	377	503	629	754	880	1006	1131	1257	
40	10	IN	1056	211	317	422	528	634	739	845	950	1056	
50	20	OUT	1963	393	589	785	982	1178	1374	1570	1767	1963	
50	20	IN	1649	330	495	660	825	990	1154	1319	1484	1649	
63	20	OUT	3117	623	935	1247	1559	1870	2182	2494	2805	3117	
05	20	IN	2803	561	841	1121	1402	1682	1962	2242	2523	2803	
90	25	OUT	5027	1005	1508	2011	2514	3016	3519	4022	4524	5027	
00	20	IN	4536	907	1361	1814	2268	2722	3175	3629	4082	4536	
100	30	OUT	7854	1571	2356	3142	3927	4712	5498	6283	7069	7854	
100	30	IN	7147	1429	2144	2859	3574	4288	5003	5718	6432	7147	

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Auto switch mounting bracket part no. for D-P5DW

Bore size (mm)	Mounting bracket part no.	Notes
40, 50, 63, 80, 100	BMG1-040	Switch mounting bracket Hexagon socket head cap screw (M2.5 \times 0.45 \times 8 ℓ) 2 pcs. Hexagon socket head cap screw (M3 \times 0.5 \times 16 ℓ) 2 pcs. Spring washer (nominal size 3)

Weights

Slide bearing: MGPM20 to 100 (Basic weight)

Bore size	Madal		Standard stroke (mm)												
(mm)	woder	25	50	75	100	125	150	175	200	250	300	350	400		
20	MGPM20	0.86	1.12	1.32	1.52	1.71	1.91	2.11	2.31	2.78	3.18	3.57	3.97		
25	MGPM25	1.18	1.56	1.83	2.10	2.38	2.65	2.92	3.19	3.85	4.39	4.94	5.48		
32	MGPM32	1.92	2.32	2.70	3.09	3.47	3.85	4.23	4.61	5.56	6.32	7.09	7.85		
40	MGPM40	2.20	2.66	3.08	3.51	3.93	4.36	4.78	5.20	6.24	7.10	7.95	8.80		
50	MGPM50	3.73	4.46	5.10	5.74	6.38	7.02	7.66	8.30	9.91	11.2	12.5	13.8		
63	MGPM63	4.61	5.45	6.21	6.96	7.72	8.47	9.23	9.99	11.8	13.3	14.8	16.3		
80	MGPM80	7.88	8.70	9.49	10.3	11.2	12.0	12.8	13.9	15.5	17.2	18.8	20.5		
100	MGPM100	12.1	13.2	14.4	15.6	16.8	18.0	19.1	20.6	22.9	25.3	27.6	30.0] '	

Ball bushing: MGPL20 to 100 (Basic weight)

MGPM40	2.20	2.66	3.08	3.51	3.93	4.36	4.78	5.20	6.24	7.10	7.95	8.80	
MGPM50	3.73	4.46	5.10	5.74	6.38	7.02	7.66	8.30	9.91	11.2	12.5	13.8	5
MGPM63	4.61	5.45	6.21	6.96	7.72	8.47	9.23	9.99	11.8	13.3	14.8	16.3	Z₽
MGPM80	7.88	8.70	9.49	10.3	11.2	12.0	12.8	13.9	15.5	17.2	18.8	20.5	ดีวิ
MGPM100	12.1	13.2	14.4	15.6	16.8	18.0	19.1	20.6	22.9	25.3	27.6	30.0	Pü
ing: MGP	L20 to ⁻	100 (Ba	asic w	eight)								(kg)	hior
					ę	Standard st	troke (mm)						
Model	25	50	75	100	125	150	175	200	250	300	350	400	
MGPL20	0.93	1.10	1.27	1.48	1.65	1.83	2.00	2.17	2.55	2.90	3.25	3.60	
MGPL25	1.27	1.50	1.74	2.01	2.24	2.47	2.70	2.94	3.44	3.91	4.37	4.83	≤
MGPL32	1.74	2.19	2.51	2.88	3.20	3.51	3.83	4.15	4.84	5.47	6.10	6.73	ith
MGPL40	2.02	2.51	2.87	3.29	3.65	4.01	4.37	4.73	5.51	6.23	6.95	7.67	<u>≤</u> m
MGPL50	3.46	4.21	4.76	5.40	5.95	6.50	7.05	7.60	8.83	9.92	11.1	12.2	ାକ୍ଷଣ
MGPL63	4.33	5.20	5.86	6.62	7.28	7.95	8.61	9.27	10.7	12.1	13.4	14.7	្រុខ
MGPL80	8.05	8.87	9.66	10.5	11.4	12.2	13.0	14.1	15.7	17.4	19.0	20.7	Š
MGPL100	12.4	13.5	14.7	15.9	17.1	18.3	19.4	20.9	23.2	25.6	27.9	30.3	
	MGPM40 MGPM50 MGPM63 MGPM100 ing: MGP Model MGPL20 MGPL25 MGPL32 MGPL32 MGPL40 MGPL50 MGPL63 MGPL80 MGPL100	MGPM40 2.20 MGPM50 3.73 MGPM63 4.61 MGPM80 7.88 MGPM100 12.1 ing: MGPL20 to ' 1 Model 25 MGPL20 0.93 MGPL32 1.27 MGPL32 1.74 MGPL40 2.02 MGPL50 3.46 MGPL63 4.33 MGPL80 8.05 MGPL100 12.4	MGPM40 2.20 2.66 MGPM50 3.73 4.46 MGPM63 4.61 5.45 MGPM80 7.88 8.70 MGPM100 12.1 13.2 ing: MGPL20 to 100 (Backstress of the second	MGPM40 2.20 2.66 3.08 MGPM50 3.73 4.46 5.10 MGPM63 4.61 5.45 6.21 MGPM80 7.88 8.70 9.49 MGPM100 12.1 13.2 14.4 ing: MGPL20 to 100 (Basic works) 100 Model 25 50 75 MGPL20 0.93 1.10 1.27 MGPL32 1.74 2.19 2.51 MGPL40 2.02 2.51 2.87 MGPL50 3.46 4.21 4.76 MGPL63 4.33 5.20 5.86 MGPL80 8.05 8.87 9.66 MGPL100 12.4 13.5 14.7	MGPM40 2.20 2.66 3.08 3.51 MGPM50 3.73 4.46 5.10 5.74 MGPM63 4.61 5.45 6.21 6.96 MGPM80 7.88 8.70 9.49 10.3 MGPM100 12.1 13.2 14.4 15.6 ing: MGPL20 to 100 (Basic weight) Model 25 50 75 100 MGPL20 0.93 1.10 1.27 1.48 MGPL20 0.93 1.10 1.27 1.48 MGPL32 1.74 2.19 2.51 2.88 MGPL40 2.02 2.51 2.87 3.29 MGPL50 3.46 4.21 4.76 5.40 MGPL63 4.33 5.20 5.86 6.62 MGPL80 8.05 8.87 9.66 10.5 MGPL100 12.4 13.5 14.7 15.9	MGPM40 2.20 2.66 3.08 3.51 3.93 MGPM50 3.73 4.46 5.10 5.74 6.38 MGPM63 4.61 5.45 6.21 6.96 7.72 MGPM80 7.88 8.70 9.49 10.3 11.2 MGPM100 12.1 13.2 14.4 15.6 16.8 ing: MGPL20 to 100 (Basic weight) 100 125 Model 25 50 75 100 125 MGPL20 0.93 1.10 1.27 1.48 1.65 MGPL25 1.27 1.50 1.74 2.01 2.24 MGPL32 1.74 2.19 2.51 2.88 3.20 MGPL32 1.74 2.19 2.51 2.88 3.20 MGPL30 3.46 4.21 4.76 5.40 5.95 MGPL63 4.33 5.20 5.86 6.62 7.28 MGPL80 8.05 8.87 9.66	MGPM40 2.20 2.66 3.08 3.51 3.93 4.36 MGPM50 3.73 4.46 5.10 5.74 6.38 7.02 MGPM63 4.61 5.45 6.21 6.96 7.72 8.47 MGPM80 7.88 8.70 9.49 10.3 11.2 12.0 MGPM100 12.1 13.2 14.4 15.6 16.8 18.0 ing: MGPL20 to 100 (Basic weight) 125 150 150 150 150 Model 25 50 75 100 125 150 MGPL20 0.93 1.10 1.27 1.48 1.65 1.83 MGPL32 1.74 2.19 2.51 2.88 3.20 3.51 MGPL32 1.74 2.19 2.51 2.88 3.20 3.51 MGPL40 2.02 2.51 2.87 3.29 3.65 4.01 MGPL50 3.46 4.21 4.76 5.40	MGPM40 2.20 2.66 3.08 3.51 3.93 4.36 4.78 MGPM50 3.73 4.46 5.10 5.74 6.38 7.02 7.66 MGPM63 4.61 5.45 6.21 6.96 7.72 8.47 9.23 MGPM80 7.88 8.70 9.49 10.3 11.2 12.0 12.8 MGPM100 12.1 13.2 14.4 15.6 16.8 18.0 19.1 ing: MGPL20 to 100 (Basic weight) 125 150 175 Model 25 50 75 100 125 150 175 MGPL20 0.93 1.10 1.27 1.48 1.65 1.83 2.00 MGPL32 1.74 2.19 2.51 2.88 3.20 3.51 3.83 MGPL40 2.02 2.51 2.87 3.29 3.65 4.01 4.37 MGPL50 3.46 4.21 4.76 5.40 5.95	MGPM40 2.20 2.66 3.08 3.51 3.93 4.36 4.78 5.20 MGPM50 3.73 4.46 5.10 5.74 6.38 7.02 7.66 8.30 MGPM63 4.61 5.45 6.21 6.96 7.72 8.47 9.23 9.99 MGPM80 7.88 8.70 9.49 10.3 11.2 12.0 12.8 13.9 MGPM100 12.1 13.2 14.4 15.6 16.8 18.0 19.1 20.6 ing: MGPL20 to 100 (Basic weight) Standard state (mm) 20.6 Model 25 50 75 100 125 150 175 200 MGPL20 0.93 1.10 1.27 1.48 1.65 1.83 2.00 2.17 MGPL32 1.27 1.50 1.74 2.01 2.24 2.47 2.70 2.94 MGPL32 1.74 2.19 2.51 2.88 3.20 3.	MGPM40 2.20 2.66 3.08 3.51 3.93 4.36 4.78 5.20 6.24 MGPM50 3.73 4.46 5.10 5.74 6.38 7.02 7.66 8.30 9.91 MGPM63 4.61 5.45 6.21 6.96 7.72 8.47 9.23 9.99 11.8 MGPM80 7.88 8.70 9.49 10.3 11.2 12.0 12.8 13.9 15.5 MGPM100 12.1 13.2 14.4 15.6 16.8 18.0 19.1 20.6 22.9 ing: MGPL20 to 100 (Basic weight) Standard state (mm) 20.6 22.9 Model Z 50 75 100 125 150 175 200 250 MGPL20 0.93 1.10 1.27 1.48 1.65 1.83 2.00 2.17 2.55 MGPL32 1.74 2.19 2.51 2.88 3.20 3.51 3.83 4.1	MGPM40 2.20 2.66 3.08 3.51 3.93 4.36 4.78 5.20 6.24 7.10 MGPM50 3.73 4.46 5.10 5.74 6.38 7.02 7.66 8.30 9.91 11.2 MGPM63 4.61 5.45 6.21 6.96 7.72 8.47 9.23 9.99 11.8 13.3 MGPM80 7.88 8.70 9.49 10.3 11.2 12.0 12.8 13.9 15.5 17.2 MGPM100 12.1 13.2 14.4 15.6 16.8 18.0 19.1 20.6 22.9 25.3 ing: MGPL20 to 100 (Basic weight) Estimates 18.0 19.1 20.6 22.9 25.5 Model Estimates Estimates 18.0 19.1 20.6 22.9 25.3 Model Estimates Estimates 18.0 19.1 20.6 25.9 300 Model Estimates 1.27 1.48	MGPM40 2.20 2.66 3.08 3.51 3.93 4.36 4.78 5.20 6.24 7.10 7.95 MGPM50 3.73 4.46 5.10 5.74 6.38 7.02 7.66 8.30 9.91 11.2 12.5 MGPM63 4.61 5.45 6.21 6.96 7.72 8.47 9.23 9.99 11.8 13.3 14.8 MGPM80 7.88 8.70 9.49 10.3 11.2 12.0 12.8 13.9 15.5 17.2 18.8 MGPM100 12.1 13.2 14.4 15.6 16.8 18.0 19.1 20.6 22.9 25.3 27.6 Ing: MGPL20 to 100 (B=sic weight) Ing 10.3 11.2 15.0 175 200 250 300 350 MGPL20 0.93 1.10 1.27 1.48 1.65 1.83 2.00 2.17 2.55 2.90 3.25 MGPL32 1.74 2.19	MGPM40 2.20 2.66 3.08 3.51 3.93 4.36 4.78 5.20 6.24 7.10 7.95 8.80 MGPM50 3.73 4.46 5.10 5.74 6.38 7.02 7.66 8.30 9.91 11.2 12.5 13.8 MGPM63 4.61 5.45 6.21 6.96 7.72 8.47 9.23 9.99 11.8 13.3 14.8 16.3 MGPM80 7.88 8.70 9.49 10.3 11.2 12.0 12.8 13.9 15.5 17.2 18.8 20.5 MGPM100 12.1 13.2 14.4 15.6 16.8 18.0 19.1 20.6 22.9 25.3 27.6 30.0 ing: MGPL20 to JOO (Basic weight) 14.4 15.6 16.8 18.0 19.1 20.6 22.9 25.3 27.6 30.0 Mdel 5.5 5.0 75 100 125 150 175 200 250

Lock unit additional weight

	With re	ear lock	With front lock			
Bore size (mm)	HN	HL	RN	RL		
20	0.05	0.07	0.05	0.06		
25	0.06	0.07	0.05	0.07		
32	0.09	0.10	0.09	0.10		
40	0.15	0.18	0.14	0.18		
50	0.24	0.27	0.23	0.27		

				(kg)						
	With re	ar lock	With front lock							
Bore size (mm)	HN	HL	RN	RL						
63	0.36	0.40	0.35	0.39						
80	0.90	0.97	1.03	1.10						
100 1.52 1.60 1.60 1.68										
Coloulation (ava										

Calculation (example) MGPM50-100-HN • Basic weight + Lock unit additional weight

• 5.74 + 0.24 = 5.99kg

Allowable Rotational Torque of Plate

Bore size (mm) 20 25 32 32 40 50 63 80 100	Bearing		Stroke (mm)											
(mm)	type	25	50	75	100	125	150	175	200	250	300	350	400	
20	MGPM	0.99	0.75	1.88	1.63	1.44	1.28	1.16	1.06	0.90	0.78	0.69	0.62	
20	MGPL	2.66	1.94	1.52	1.25	1.34	1.17	1.03	0.93	0.76	0.65	0.56	0.49	
25	MGPM	1.64	1.25	2.96	2.57	2.26	2.02	1.83	1.67	1.42	1.24	1.09	0.98	
25	MGPL	4.08	3.02	2.38	1.97	2.05	1.78	1.58	1.41	1.16	0.98	0.85	0.74	
22	MGPM	6.35	5.13	5.69	4.97	4.42	3.98	3.61	3.31	2.84	2.48	2.20	1.98	
32	MGPL	5.95	4.89	5.11	4.51	6.34	5.79	5.33	4.93	4.29	3.78	3.38	3.04	
40	MGPM	7.00	5.66	6.27	5.48	4.87	4.38	5.98	3.65	3.13	2.74	2.43	2.19	
40	MGPL	6.55	5.39	5.62	4.96	6.98	6.38	5.87	5.43	4.72	4.16	3.71	3.35	
50	MGPM	13.0	10.8	12.0	10.6	9.50	8.60	7.86	7.24	6.24	5.49	4.90	4.43	
50	MGPL	9.17	7.62	9.83	8.74	11.6	10.7	9.83	9.12	7.95	7.02	6.26	5.63	
~	MGPM	14.7	12.1	13.5	11.9	10.7	9.69	8.86	8.16	7.04	6.19	5.52	4.99	
63	MGPL	10.2	8.48	11.0	9.74	13.0	11.9	11.0	10.2	8.84	7.80	6.94	6.24	
	MGPM	21.9	18.6	22.9	20.5	18.6	17.0	15.6	14.5	12.6	11.2	10.0	9.11	
80	MGPL	15.1	23.3	22.7	20.6	18.9	17.3	16.0	14.8	12.9	11.3	10.0	8.94	
100	MGPM	38.8	33.5	37.5	33.8	30.9	28.4	26.2	24.4	21.4	19.1	17.2	15.7	
100	MGPL	27.1	30.6	37.9	34.6	31.8	29.3	27.2	25.3	22.1	19.5	17.3	15.5	

Model selection is the same as MGP/Standard.

Refer to page 4.

T (N·m)

Non-rotating Accuracy of Plate

For non-rotating accuracy θ without load, use a value no more than the values in the table as a guide.

Bore size	Non-rotatin	g accuracy θ	ľ
(mm)	MGPM	MGPL	
20	· 0.07°	.0.00°	
25	±0.07	±0.09	
32	+0.06°	+0.08°	
40	±0.00	±0.00	
50	+0.05°	+0.06°	
63	±0.00	±0.00	
80	+0.04°	+0.05°	
100	±0.04	±0.00	+

Order Made Specifications

Heavy Duty Guide Rod Type MGPS

(kg)

∕⁄@SMC

Auto Switches/Proper Mounting Position for Stroke End Detection

With front lock

Proper mounting position (mm)

Bore size (mm)	Α	В
20	47.5	1.5
25	35.5	1.5
32	32.5	5
40	38.5	5.5
50	38.5	4.5
63	42	7
80	63	18.5
100	67.5	23.5

 Minimum mountable strokes for auto switch are 10mm or more for two switches, and 5mm or more for one switch.

switch are 10mm or more for two switches and 5mm or more for one switch. For D-P5DW (* Cannot be mounted on bore sizes Ø32 or less.) Ø40 to Ø63

ø80, ø100

€

Ŧ

For 25mm stroke * For bore sizes ø40 through 63 with two switches, one switch is mounted on each side.

		(mm)
Bore size (mm)	Hs	Ht
40	44.5	_
50	50	—
63	57	_
80	60.7	84.4
100	70.8	96.1

 Minimum mountable strokes for auto switch are 10mm or more for two switches, and 5mm or more for one switch.

Auto Switch Mounting

Auto switch mounting tool

 When tightening the auto switch mounting screw (included with auto switch), use a watchmakers screw driver with a handle about 5 to 6mm in diameter

Tightening torque

• Tighten with a torque of 0.05 to 0.1N·m. As a rule, it should be turned about 90° past the point at which tightening can be felt.

When mounting an auto switch on the side with the end lock, insert the auto switch from the rod side for the rear lock, and from the head side for the front lock.

Flat head watchmakers screw driver

Switch mounting screw (M2.5 x 4ℓ) (included with auto switch) Auto switch

For D-P5DW

▲ Caution

Auto switch mounting tool

• When tightening hexagon socket head cap screws of the auto switch, use hexagon wrench key 2 or 2.5 with the appropriate screws.

Tightening torque

 \bullet Tighten M2.5 screws with a torque of about 0.3 to 0.5N·m, and M3 screws with a torque of about 0.5 to 0.7 N·m.

Series MGPL

Construction

1) 19 1)

<u>3</u>9

(40)

Locking type

35,37

Non-locking type (Rear side lock)

ø20 to ø63

ø80, ø100

Parts list

No.	Description	Mat	erial	Note
1	Body	Aluminu	ım alloy	Hard anodized
2	Piston	Aluminu	ım alloy	Chromated
~	Distan rad	Stainless steel	ø20, ø25	Hard chrome plated with front end lock only
3	PISION TOO	Carbon steel	ø32 to ø100	Hard chrome plated
4	Collar	Aluminu	ım alloy	Clear anodized
5	Bushing	Lead bron	ze casting	
6	Head cover	Aluminu	ım alloy	Colorless chromated
7	Guide rod	Carbo	n steel	Hard chrome plated
8	Plate	Carbo	n steel	Nickel plated
9	Plate mounting bolt	Carbo	n steel	Nickel plated
10	Snap ring	Carbon t	ool steel	Phosphate coated
11	Snap ring	Carbon t	ool steel	Phosphate coated
12	Bumper A	Uret	nane	
13	Bumper B	Uret	nane	
14	Magnet	Synthetic	c rubber	
15	Hexagon socket head taper plug	Carbo	n steel	Nickel plated
16	Slide bearing	Lead bron	ze casting	
17	Felt	F€	elt	
18	Holder	Re	sin	
19	Ball bushing			
20	Spacer	Aluminu	im alloy	
21*	Piston seal	NE	BR	

Replacement parts: Seal kits

Bore size (mm)	Kit No.	Contents
20	MGP20-B-PS	
25	MGP25-B-PS	Kits include items
32	MGP32-B-PS	21, 22, 23, 24, 32, 33, 41 and 42
40	MGP40-B-PS	from the table above.
50	MGP50-B-PS	

* Seal kits are sets consisting of items 21 through 24, 32, 33, 41 and 42 above, and can be ordered using the kit number for each bore size.

Parts list

No.	Description	Material	Note
22*	Rod seal	NBR	
23*	Gasket A	NBR	
24*	Gasket B	NBR	
25	Piston gasket	NBR	ø32 to ø100 only
26	Lock bolt	Carbon steel	Zinc chromated
27	Lock holder	Brass	Electroless nickel plated
28	Lock piston	Carbon steel	Nickel plated
29	Lock spring	Stainless steel	
30	Seal retainer	Carbon steel	Zinc chromated (ø80, ø100 only)
31	Bumper	Urethane	
32*	Hexagon socket head cap screw	Carbon steel	Black zinc chromated
33*	Hexagon socket head cap screw	Carbon steel	Nickel plated (ø50, ø63 only)
34	Cap A	Die-cast aluminum	Black coated
35	Cap B	Carbon steel	SQ treated
36	Rubber cap	Synthetic rubber	
37	M/O knob	Die-cast zinc	Black coated
38	M/O bolt	Alloy steel	Black zinc chromated
39	M/O spring	Steel wire	Chromated
40	Stopper ring	Carbon steel	Chromated
41*	Lock piston seal	NBR	
42*	Lock holder gasket	NBR	

Replacement parts: Seal kits

Bore size (mm)	Kit no.	Contents
63	MGP63-B-PS	Kits include items
80	MGP80-B-PS	21, 22, 23, 24, 32, 33, 41 and 42
100	MGP100-B-PS	from the table above.

* Items 32 and 33 are not included for bores sizes 80 and 100.

Series MGP Dimensions/Ø20, Ø25

Refer to "Manufacture of Intermediate Strokes" on page 36 for intermediate strokes.

																		(mm)
Bore size (mm)	Standard stroke (mm)	в	с	DA	G	GA	GB	н	J	к	L	мм	ML	NN	РВ	PW	Ø	R
20	25, 50, 75, 100, 125, 150, 175	78	62	10	36	10.5	8.5	83	18	18	24	M5 x 0.8	13	M5 x 0.8	10.5	25	18	70
25	200, 250, 300, 350, 400	78.5	62.5	12	42	11.5	9	93	21	21	30	M6 x 1.0	15	M6 x 1.0	13.5	28.5	26	78

																(mm)
Bore size	•	-					N	/A			W	'B		v	~	VD
Bore size (mm) S 20 30 25 38	Т	U	VA	VB	75st or less	Over 75st to 175st	Over 175st to 250st	Over 250st	75st or less	Over 75st to 175st	Over 175st to 250st	Over 250st	X	XA	XB	
20	30	81	54	72	44	44	120	200	300	39	77	117	167	28	3	3.5
25	38	91	64	82	50	44	120	200	300	39	77	117	167	34	4	4.5

End lock mechanism dimensions (mm)

Bore size (mm)	DL	DM	HR	HN
20	21	19	10.5	22
25	26.5	16	8	19.5

MGPM (slide bearing)/Dimensions A, DB, E (mm)

Bore size		Α			E					
30re size 75/ 20 75/ 25 MGPL (Bore size (mm) 20 20	75st or less	Over 75st to 175st	Over 175st	DB	75st or less	Over 75st to 175st	Over 175st			
20	78	84.5	122	12	0	6.5	44			
25	78.5	85	122	16	0	6.5	43.5			
MGPL	(ball b	ushing)/Dime	nsions	s A, DB	, E	(mm)			
Bore size		Α		DB		E				
e size mm) 75st 20 7 25 AGPL (Bore size (mm) 20	25st or less	Over 25st to 175st	Over 175st	DB	25st or less	Over 25st to 175st	Over 175st			
20	80	104	122	10	2	26	44			
25	85.5	104.5	122	13	7	26	43.5			

Series MGP

Dimensions/Ø32 to Ø63

∕⁄@SMC

Series MGP Dimensions/Ø80, Ø100

																	(mm)	
Bore size (mm)	Standard stroke (mm)	в	С	DA	FA	FB	G	GA	GB	GC	н	НА	J	JA	JB	к	L	
80	25, 50, 75, 100, 125, 150, 175	146.5	106.5	25	22	18	91.5	19	15.5	14.5	202	M12	45.5	38	7.5	46	54	
100	200, 250, 300, 350, 400	166	116	30	25	25	111.5	23	19	18	240	M14	55.5	45	10.5	56	62	

Bore size					WA														
(mm)		IVIL	ININ	UA	UB	PA	РВ	PW	Q	ĸ	5	1	U	VA	VB	50st or less	Over 50st to 150st	Over 150st to 250st	Over 250st
80	M12 x 1.75	25	M12 x 1.75	10.6	17.5	64.5	25.5	74	52	174	75	198	156	180	140	52	128	200	300
100	M14 x 2.0	31	M14 x 2.0	12.5	20	67.5	32.5	89	64	210	90	236	188	210	166	72	148	220	320

								(mm)
Bore size (mm)		N	/В		v	vv	VI	7
	50st or less	Over 50st to 150st	Over 150st to 250st	Over 250st	X	11	۴L	2
80	54	92	128	178	100	M12 x 1.75	24	28
100	47	85	121	171	124	M14 x 2.0	28	11

End lock mechanism dimensions (mm)											
Bore size (mm)	DL	DM	HR	HN							
80	45.5	40.5	24	38.5							
100	49	43.5	26.5	41							

MGPM (s	lide bearing)/Dimensions/A, DB, E	(mm)

Bore size (mm)	A	4	DD	E			
	150st or less	Over 150st	ЪВ	150st or less	Over 150st		
80	146.5	193	30	0	46.5		
100	166	203	36	0	37		

MGPL (ball bushing)/Dimensions A, DB, E (mm)

Bore size	A	4	DD	E			
(mm)	150st or less	Over 150st	DB	150st or less	Over 150st		
80	160	193	25	13.5	46.5		
100	180	203	30	14	37		

Compact Guide Cylinder: Heavy Duty Guide Rod Type Series MGPS

How to Order

Applicable auto switches

					L	oad vo	ltage	Auto swite	ch model	Lead wi	re length	(m) Note 1)				-					
Туре	Special function	Electrical	Indicator	Wiring		ic i	10	Electrical en	try direction	0.5	3	5	Applica	ble load	Detailed	y p					
		entry	lignt	(output)			AC	Perpendicular	In-line	(Nil)	(L)	(Z)			opeditionit	G.					
	_			3 wire	_	5V	_	-	Z76	•	•	_	IC circuit	_							
Reed switch		Grommet	Yes	Quuine	0.01/	12V	100V	_	Z73	•	•	•	_	Relay,	P. 59	Spe					
			No	2 wire	24V	5V 12V	100V or less	_	Z80	•	•	_	IC circuit	PLC		cifica					
_			3 wire (NPN)		5V		Y69A	Y59A	•	•	0	IC			ation						
	_	-		3 wire (PNP)	241/	12V		Y7PV	Y7P	•	•	0	circuit		P. 60	N.					
				2 wire		12V 5V 12V —		Y69B	Y59B	•	•	0	_								
Solid state	Diagnostic		Voc	3 wire (NPN)			_	5V —	Y7NWV	Y7NW	•	•	0	IC	Relav.		A				
switch	indication (2 colour	Giommet	165	3 wire (PNP)	240				12V	, — ,	12V —	12V	2V	_	Y7PWV	7PWV Y7PW		•	0	circuit	PLC
	indicator)						121/	12\/			Y7BWV	Y7BW	•	•	0				Swite		
((Water resistant (2 colour indicator)			2 wire				_	Y7BA	-	•	0	—		P. 62	ches					
	Magnetic field resistant (2 colour indicator)]				-		_	P5DW	-	•	•			P. 63						
Note 1) Lead	wire symbols 0.5m 3m	Nil (Exa	ample) Y6 Y6	9B 9BI		-				•											

∕@SMC

3m L 5m Z

Note 2) Solid state auto switches marked with a "O" are produced upon receipt of order.

Y69BZ

Precautions

Standard Type MGP

Heavy Duty Guide

Series MGPS

Specifications

Action	Double acting
Fluid	Air
Proof pressure	1.5MPa
Maximum operating pressure	1.0MPa
Minimum operating pressure	0.1MPa
Ambient and fluid temperature	-10 to 60°C (with no freezing)
Piston speed	50 to 400mm/s
Cushion	Rubber bumper at both ends
Lubrication	Non-lube
Stroke length tolerance	^{+1.5} mm

Standard Strokes

Bore size (mm)	Standard stroke (mm)
50, 80	25, 50, 75, 100, 125, 150, 175, 200

Manufacture of Intermediate Strokes

Modification method	Spacer installation type Spacers are installed in a standard stroke cylinder. Available in 5mm stroke increments
Part number	Refer to page 43 for standard part numbers and ordering procedure.
Applicable stroke (mm)	5 to 195
Example	Part no.: MGPS50—35 A spacer 15mm in width is installed in a MGPS50—50 . C dimension is 94mm.

Note 1) The minimum stroke for mounting auto switches is 10mm or more for two switches, and 5mm or more for one switch. Note 2) Intermediate strokes (in 1mm increments) with a special body are available by special order.

Theoretical Output

							٦ .		-					
											(N)			
Rod	Operating	Piston		Operating pressure (MPa)										
(mm)	direction	(mm ²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0			
20	00	OUT	1963	393	589	785	982	1178	1374	1571	1767	1963		
	IN	1649	330	495	660	825	990	1155	1319	1484	1649			
25	OUT	5027	1005	1508	2011	2513	3016	3519	4021	4524	5027			
20	IN	4536	907	1361	1814	2268	2721	3175	3629	4082	4536			
	Rod size (mm) 20 25	Rod size direction20OUT IN25OUT IN	Rod size (mm) Operating direction Piston area (mm²) 20 OUT 1963 IN 1649 25 OUT 5027 IN 4536	Rod size (mm) Operating direction Piscn area (mm²) I 20 OUT 1963 393 20 IN 1649 330 25 OUT 5027 1005	Rod size (incr) Operating direction Piston area (mm²)	Operating direction Piston area (mm²) 0.2 0.3 0.4 20 OUT 1963 393 589 785 1N 1649 330 495 660 25 OUT 5027 1005 1508 2011	Operating direction Piston area (mm²) 0.2 0.3 0.4 0.5 20 OUT 1963 393 589 785 982 1N 1649 330 495 660 825 25 OUT 5027 1005 1508 2011 2513	Operating direction Piston area (mm²) 0.2 0.3 0.4 0.5 0.6 20 OUT 1963 393 589 785 982 1178 20 OUT 1649 330 495 660 825 990 25 OUT 5027 1005 1508 2011 2513 3016	Operating (mm) Piston area (mm2) 0.2 0.3 0.4 0.5 0.6 0.7 20 OUT 1963 393 589 785 982 1178 1374 20 OUT 1649 330 495 660 825 990 1155 25 OUT 5027 1005 1508 2011 2513 3016 3519	Note Note <th< th=""><th>No No No Size (mm) Operating direction Piston area (mm) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 20 OUT 1963 393 589 785 982 1178 1374 1571 1767 20 OUT 1649 330 495 660 825 990 1155 1319 1484 25 OUT 5027 1005 1508 2011 2513 3016 3519 4021 4524 IN 4536 907 1361 1814 2268 2721 3175 3629 4082</th></th<>	No No No Size (mm) Operating direction Piston area (mm) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 20 OUT 1963 393 589 785 982 1178 1374 1571 1767 20 OUT 1649 330 495 660 825 990 1155 1319 1484 25 OUT 5027 1005 1508 2011 2513 3016 3519 4021 4524 IN 4536 907 1361 1814 2268 2721 3175 3629 4082			

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Weights

									(kg)				
Bore size (mm)	Model	Standard stroke (mm)											
	WOUEI	25	50	75	100	125	150	175	200				
50	MGPS50	3.90	4.68	5.74	6.52	7.30	8.08	8.86	9.64				
80	MGPS80	9.21	10.7	13.0	14.5	15.9	17.9	18.9	20.3				

Allowable Rotational Torque of Plate

Notes Switch mounting bracket

Hexagon socket head cap screw $(M2.5 \times 0.45 \times 8\ell) 2 \text{ pcs.}$

Hexagon socket head cap screw (M3 x $0.5 \times 16\ell$) 2 pcs. Spring washer (nominal size 3)

Auto switch mounting bracket part no. for D-P5DW

Mounting bracket part no.

BMG1-040

Bore size (mm)

50, 80

									T (N·m)
Bore size	Model	Standard stroke (mm)							
(mm)		25	50	75	100	125	150	175	200
50	MGPS50	15	12	16	15	13	12	11	9.8
80	MGPS80	49	41	51	45	41	38	35	32

Non-rotating Accuracy of Plate

For non-rotating accuracy θ without load, use a value no more than the values in the table as a guide.

INI

Bore size (mm)	Model	Non-rotating accuracy θ
50	MGPS50	±0.05°
80	MGPS80	±0.04°

Series MGPS **Model Selection**

Selecting Conditions

∕@ SMC

Selection Example 1 (Vertical Mounting)

Selecting conditions Mounting: Vertical Stroke: 50mm Maximum speed: 200mm/s Load weight: 100kg Eccentric distance: 100mm

Find the point of intersection for the load weight of 100kg and the eccentric distance of 100mm on graph 🚺, based on vertical mounting, 50mm stroke, and the speed of 200mm/s. →MGPS80-50 is selected.

Selection Example 2 (Horizontal Mounting)

Selecting conditions

Mounting: Horizontal

Distance between plate and load center of gravity: 50mm Maximum speed: 200mm/s

- Load weight: 30kg
- Stroke: 100mm

Find the point of intersection for the load weight of 30kg and stroke of 100mm on graph 5, based on horizontal mounting, the distance of 50mm between the plate and load center of gravity, and the speed of 200mm/s.

→MGPS80-100 is selected.

Series MGPS

Vertical Mounting Slide Bearing

Operating pressure: 0.4MPa

MGPS50, 80

4 Over 50mm stroke V = 400mm/s

Horizontal Mounting Slide Bearing

MGPS50, 80

∕@SMC

47

Series MGPS

Operating Range when Used as Stopper

Handling precautions

Note) When using as a stopper, select a model with a stroke of 50mm or less.

Standard Type MGP

Auto Switches

Auto Switches/Proper Mounting Position for Stroke End Detection

(mm)

Proper mounting position

		, ,
Bore size (mm)	Α	В
50	7.5	11.5
80	13	37

Note) Minimum mountable strokes for auto switch are 10mm or more for two switches, and 5mm or more for one switch.

ø**80**

6.5

switches, one switch is mounted on each side.

Auto Switch Mounting

Auto switch mounting tool

• When tightening the auto switch mounting screw (included with auto switch), use a watchmakers screw driver with a handle about 5 to 6mm in diameter.

Tightening torque

• Tighten with a torque of 0.05 to 0.1N m. As a rule, it should be turned about 90° past the point at which tightening can be felt.

For D-P5DW A Caution

Auto switch mounting tool

• When tightening hexagon socket head cap screws of the auto switch, use hexagon wrench key 2 or 2.5 with the appropriate screws.

Tightening torque

• Tighten M2.5 screws with a torque of about 0.3 to 0.5N·m, and M3 screws with a torque of about 0.5 to 0.7N·m.

Series MGPS

Construction

Over 50mm stroke

50mm stroke or less

Parts list

No.	Description	Material		Note	
1	Body	Aluminum alloy	Hard anodized		
2	Piston	Aluminum alloy		Chro	omated
3	Piston rod	Carbon steel	Hard chrome plated		
4	Collar	Aluminum alloy casting	Coated		
5	Bushing	Lead bronze casting			
6	Llood cover		ø50) Colorless chromated	
0	Head cover	Aluminum alloy	ø80	Coated	
7	Guide rod	Carbon steel	Hard chrome plated		
8	Plate	Carbon steel	Nickel plated		el plated
9	Plate mounting bolt A	Carbon steel	Nickel plated For pist		For piston rod
10	Plate mounting bolt B	Carbon steel	Nickel	plated	For guide rod

Replacement parts: Seal kits

Bore size (mm) Kit no.		Contents			
50	MGP50-PS	Kits include items			
80	MGP80-PS	17, 18, 19 and 20 from the table above.			

 \ast Seal kits are sets consisting of items 17 through 20 above, and can be ordered using the kit number for each bore size.

Parts list

No.	Description	Material	Note
11	Snap ring	Carbon tool steel	Phosphate coated
12	Bumper A	Urethane	
13	Bumper B	Urethane	
14	Magnet	Synthetic rubber	
15	Hexagon socket head taper plug	Carbon steel	Nickel plated
16	Slide bearing	Lead bronze casting	
17*	Piston seal	NBR	
18*	Rod seal	NBR	
19*	Gasket A	NBR	
20*	Gasket B	NBR	

Compact Guide Cylinder Compact Guide Cylinder Heavy Duty Guide Rod Type Series MGPS

WA WB Bore size Standard stroke s υ VB XA т VA Х ΧВ (mm) (mm) 25st 50, 75, 100st Over 100st 25st 50, 75, 100st Over 100st 50 156 116 140 100 50 24 124 48 86 68 5 6 25, 50, 75, 100, 48 36 80 125, 150, 175, 200 65 228 170 214 138 28 52 128 42 54 92 100 6 7 B Standard stroke

(mm)	(mm)	ΥY	YL	z	
50	25, 50, 75, 100,	M12 x 1.75	24	24	
80	125, 150, 175, 200	M14 x 2	28	28	
					-

хс

4

5

XL

8

10

Precautions

Contact SMC for detailed specifications and lead times, and for applications of cylinders with air cushion, heavy duty guide rod type, and lock type.

	Symbol	
1	Intermediate stroke (special body type)	-XB10
2	With air cushion/Intermediate stroke (spacer installed type)	-XC19
3	Heat resistant cylinder	-XB6
4	Low speed cylinder	-XB13
5	Fluoro rubber seal	-XC22

	Symbol	
6	With heavy duty scraper	-XC4
\bigcirc	With coil scraper	-XC35
8	Adjustable stroke cylinder/Adjustable extension type	-XC8
9	Adjustable stroke cylinder/Adjustable retraction type	-XC9
10	Stainless steel used for piston rod, plate, etc.	-XC6

Intermediate Strokes (Special Body Type)

When using an intermediate stroke, the overall length of the cylinder can be shortened by using a special body without the installation of spacers.

Stroke ranges

Bore size (mm)	Stroke range (mm)
12, 16	10 to 250
20, 25	20 to 400
32, 40, 50, 63, 80, 100	25 to 400

* Specifications other than the stroke range are the same as standard products.

(mm)

(mm)

Dimensions

MGPM, MGPL-XB10/Dimensions WA, WB

			<i></i> , 								(11111)
Bore size Standard stroke			WA				WB				
(mm)	(mm)	10 to 39st	40 to 1	00st 101	to 200st	201 to 250st	10 to 39st	40 to 1	00st 10	1 to 200st	201 to 250st
12	10 to 250	20	40)	110	200	15	25		60	105
16	10 10 250	24	44		110	200	17	27		60	105
Bore size	Standard stroke			WA					WB		
(mm)	(mm)	20 to 39st	40 to 124st	125 to 200st	201 to 300st	301 to 400st	20 to 39st	40 to 124st	125 to 200st	201 to 300s	: 301 to 400st
20	00.1- 100	24	44	120	200	300	29	39	77	117	167
25	20 to 400	24	44	120	200	300	29	39	77	117	167
			•			•			•		•
Bore size	Standard stroke	WA			WB						
(mm)	(mm)	25 to 49st	50 to 124st	125 to 200st	201 to 300st	301 to 400st	25 to 49st	50 to 124st	125 to 200st	201 to 300st	301 to 400st
32		24	48	124	200	300	33	45	83	121	171
40		24	48	124	200	300	34	46	84	122	172
50	05 4. 400	24	48	124	200	300	36	48	86	124	174
63	25 to 400	28	52	128	200	300	38	50	88	124	174
80	1	28	52	128	200	300	42	54	92	128	178
100]	48	72	148	220	320	35	47	85	121	171

(mm)

MGPM (slide bearing)/Dimensions A, E

Bore size		A		E			
(mm)	10 to 74st	75 to 100st	101 to 250st	10 to 74st	75 to 100st	101 to 250st	
12	42	60.5	85	0	18.5	43	
16	46	64.5	95	0	18.5	49	

Bore size	Α			E		
(mm)	20 to 74st	75 to 200st	201 to 400st	20 to 74st	75 to 200st	201 to 400st
20	53	84.5	122	0	31.5	69
25	53.5	85	122	0	31.5	68.5
		-				

Bore size		A			E	
(mm)	25 to 74st	75 to 200st	201 to 400st	25 to 74st	75 to 200st	201 to 400st
32	97	102	140	37.5	42.5	80.5
40	97	102	140	31	36	74
50	106.5	118	161	34.5	46	89
63	106.5	118	161	29.5	41	84
80	115	142	193	18.5	45.5	96.5
100	137	162	203	21	46	87

* Dimensions other than those in the above tables are the same as standard products.

MGPL (ball bushing)/Dimensions A, E

Bore size		A			E		
(mm)	10 to 39st	40 to 100st	101 to 250st	10 to 39st	40 to 100st	101 to 250st	
12	43	55	85	1	13	43	
16	49	65	95	3	19	49	

Bore size			4			I	E	
(mm)	20 to 39st	40 to 124st	125 to 200st	201 to 400st	20 to 39st	40 to 124st	125 to 200st	201 to 400st
20	63	80	104	122	10	27	51	69
25	69.5	85.5	104.5	122	16	32	51	68.5
Bore size			4					
(mm)	25 to 74st	75 to 124st	125 to 200st	201 to 400st	25 to 74st	75 to 124st	125 to 200st	201 to 400st
32	81	98	118	140	21.5	38.5	58.5	80.5
40	81	98	118	140	15	32	52	74
50	93	114	134	161	21	42	62	89
63	93	114	134	161	16	37	57	84
Bore size			4			I	Ξ	
(mm)	25 to 49st	50 to 74st	75 to 200st	201 to 400st	25 to 49st	50 to 74st	75 to 200st	201 to 400st
80	109.5	130	160	193	13	33.5	63.5	96.5
100	121	147	180	203	5	31	64	87

Contact SMC for detailed specifications and lead times, and for applications of cylinders with air cushion, heavy duty guide rod type, and lock type.

2 With Air Cushion/Intermediate Strokes (Spacer Installed Type)

With air cushion/Intermediate stroke

The collar of of the standard stroke cylinder is changed to accommodate intermediate strokes in 1mm increments.

(Intermediate strokes (in 1mm increments) with a special body are available by special order.

3	Heat	Resistant	Cylinder

Cylinder with modified seal and grease materials to make possible high temperature operation up to an ambient temperature of 150° C.

Bore size (mm)	Stroke range (mm)		
ø16	26 to 99		
ø20 to ø63	26 to 199		
ø80, ø100	51 to 199		

* Specifications and dimensions are the same as the standard products with air cushion.

-XB6

MGPM

Slide bearing

12, 16, 20, 25, 32, 40, 50, 63, 80, 100

-10 to 150°C

Fluoro rubber

Heat resistant grease

None

Not applicable

(C19

With End L

With Air Cushion

MGH

Standard Type MGP

ock
Не

-XB13

4 Low Speed Cylinder

Operates smoothly, without sticking and slipping, at drive speeds as low as 5 to 50mm/s.

Specifications

Specifications

Bearing type

Seal material

Grease

Cushion

Auto switch

Applicable series

Cylinder bore size (mm) Ambient temperature range

Applicable series	MGPM, MGPL
Bearing type	Slide bearing, Ball bushing
Cylinder bore size (mm)	12, 16, 20, 25, 32, 40, 50, 63, 80, 100
Piston speed	5 to 50mm/s
Cushion	Rubber bumper

* Dimensions are the same as standard products.

* 1. Dimensions are the same as standard products.
* 2. Refer to page 56 for allowable kinetic energy.

Order Made Specifications

5 Fluoro Rubber Seals

Seals are changed to a fluoro rubber material which has outstanding resistance to chemicals.

Specifications

Applicable series	MGPM		
Bearing type	Slide bearing		
Cylinder bore size (mm)	12, 16, 20, 25, 32, 40, 50, 63, 80, 100		
Cushion	None		
Auto switch	Mountable		

 \ast 1. Dimensions are the same as standard products.

* 2. Refer to page 56 for allowable kinetic energy.

Contact SMC for detailed specifications and lead times, and for applications of cylinders with air cushion, heavy duty guide rod type, and lock type.

With a heavy duty scraper used for the piston rod and guide rod sections, this specification is ideal for cylinders used in a dusty environment, or in environments where there is contact with earth and sand, such as molding machines, construction equipment, and industrial vehicles, etc.

Furthermore, depending on the mounting orientation, the scraper on the plate side only (-XC4) or the double side scraper (-XC4W) can be selected.

With Coil Scraper 7

Removes frost, welding spatter, and machining chips from the piston rod and the guide rod, and protects the seals.

Furthermore, depending on the mounting orientation, the scraper on the plate side only (-XC35) or the double side scraper (-XC35W) can be selected.

With Heavy Duty Scraper/With Coil Scraper Common Dimensions

MGPM, MGPL

Commo	n dime	ensions	; (mm)

(mm)	В	FB	FT
20	63	16	5
25	63.5	16	5
32	69.5	20	6
40	76	20	6
50	82	22	6
63	87	22	6
80	106.5	28	6
100	126	35	9

With double side scrapers Dimensions AW, EW, MT, DS (mm								
Bore size	A 14/		NAT	DS	S *			
(mm)	AW	Evv		MGPM	MGPL			
20	74	6	6	17	15			
25	74.5	6	7	21	19			
32	82.5	7	8.5	26	21			
40	89	7	9	26	21			
50	95	7	11	31	26			
63	100	7	11	31	26			
80	120.5	8	14	36	31			
100	143	8	16	44	36			

* By-pass port size for guide rod with bottom mount

MGPM (slide bearing)/Dimensions A, E, HT

Bore size		Α			Е		HT		
(mm)	50st or less	Over 50st to 200st	Over 200st	50st or less	Over 50st to 200st	Over 200st	XC4	XC35	
20	63	94.5	132	0	31.5	69	80	80	
25	63.5	95	132	0	31.5	68.5	93	93	
32	97	112	150	27.5	42.5	80.5	113	110	
40	97	112	150	21	36	74	121	118	
50	106.5	128	171	24.5	46	89	153	146	
63	106.5	128	171	19.5	41	84	167	160	
80	125	152	203	18.5	45.5	96.5	205	200	
100	147	172	213	21	46	87	244	238	

Specifications

	•						
Applicable se	eries	MGPM, MGPL					
Bearing type		Slide bearing, Ball bushing					
Cylinder bore size (mm)		20, 25, 32, 40, 50, 63, 80, 100					
Minimum	Single side	0.12MPa					
operating pressure	Double side	0.14MPa					

* Refer to the tables below for dimensions.

Specifications

Applicable s	eries	MGPM			
Bearing type		Slide bearing			
Cylinder bore size (mm)		20, 25, 32, 40, 50, 63, 80, 100			
Minimum	Single side	0.12MPa			
operating pressure	Double side	0.14MPa			

* Refer to the tables below for dimensions.

For cylinder with double side scraper

MGPI ((ball	bushing	/Dimens	sions	Δ	F	нт	
	(Dan	Dusining			Γ,	∟,		

MGPL (ball bushing)/Dimensions A, E, HT										
Bore size		ŀ	4							
(mm)	30st or less	Over 30st to 100st	Over 100st to 200st	Over 200st	30st or less	Over 30st to 100st	Over 100st to 200st	Over 200st	ні	
20	73	90	114	132	10	27	51	69	80	
25	79.5	95.5	114.5	132	16	32	51	68.5	93	

Bore size		-	4		E				
(mm)	50st or less	Over 50st to 100st	Over 100st to 200st	Over 200st	50st or less	Over 50st to 100st	Over 100st to 200st	Over 200st	пі
32	91	108	128	150	21.5	38.5	58.5	80.5	110
40	91	108	128	150	15	32	52	74	118
50	103	124	144	171	21	42	62	89	146
63	103	124	144	171	16	37	57	84	160

Bore size		4	4		E				
(mm)	25st or less	Over 25st to 50st	Over 50st to 200st	Over 200st	25st or less	Over 25st to 50st	Over 50st to 200st	Over 200st	ні
80	119.5	140	170	203	13	33.5	63.5	96.5	201
100	131	157	190	213	5	31	64	87	238

(mm)

Contact SMC for detailed specifications and lead times, and for applications of cylinders with air cushion, heavy duty guide rod type, and lock type.

8 Adjustable Stroke Cylinder/Adjustable Extension Type

The extended stroke of the cylinder can be adjusted 0 to 10mm or 0 to 25mm from the full stroke.

Install a stroke adjustment mechanism at the head side to adjust the extended stroke.

S	р	e	C	if	ic	a	ti	0	n	S

Applicable series		MGPM, MGPL			
Bearing type		Slide bearing, Ball bushing			
Cylinder bore size	e (mm)	12, 16, 20, 25, 32, 40, 50, 63, 80, 100			
Distant speed	ø12 to ø32	50 to 300mm/s			
r istori speed	ø40 to ø100	50 to 400mm/s			
Stroke adjustment	A	10mm			
Stroke adjustment	В	25mm			

MGPM, MGPL Common dimensions

Bore size (mm)	MA	MB	мс	MD	мн	ML	MP	МТ
12	28	16	14	M5 x 0.8	22	9	3	5
16	29	19	14	M5 x 0.8	22	9	3	5
20	34	30	22	M8 x 1.25	30	12.5	3	8
25	40	30	22	M8 x 1.25	30	12.5	3	8
32	52	38	27	M14 x 1.5	37	16	4	8
40	60	38	27	M14 x 1.5	37	16	4	8
50	68	50	36	M18 x 1.5	47	20	4	9
63	84	50	36	M18 x 1.5	47	20	4	9
80	114	50	46	M22 x 1.5	58	28	4	12
100	140	65	46	M22 x 1.5	62	28	4	16

9 Adjustable Stroke Cylinder/Adjustable Retraction Type

With an adjustment bolt, the retracted stroke of the cylinder can be adjusted 0 to 10mm or 0 to 25mm from the full stroke. (After the stroke adjustment, only the rod side is equipped with a rubber bumper.)

Specifications

Applicable series		MGPM, MGPL		
Bearing type		Slide bearing, Ball bushing		
Cylinder bore size	e (mm)	12, 16, 20, 25, 32, 40, 50, 63, 80, 100		
Distan anod	ø12 to ø32	50 to 300mm/s		
Fision speed	ø40 to ø100	50 to 400mm/s		
Cushion	Rod side	Rubber bumper		
Cushion	Head side	None		
Stroke adjustment	A	10mm		
Stroke adjustment	В	25mm		

* Refer to page 56 for the allowable kinetic energy on the retracted side.

MGPM, MGPL Common dimensions (mm)

Bore size (mm)	ВМ	MA	МВ	мс	мн
12	M5 x 0.8	5	8	12.5	19
16	M6 x 1.0	5	10	11.5	19
20	M8 x 1.25	6.5	13	16	27
25	M8 x 1.25	6.5	13	16	26.5
32	M8 x 1.25	6.5	19	21	26.5
40	M12 x 1.5	9	27	30	33
50	M12 x 1.5	9	30	34	32.5
63	M16 x 1.5	10	36	40	37
80	M20 x 1.5	15	41	46	53.5
100	M24 x 1.5	18	46	52	57.5

Standard Type MGP

XC8

(mm)

-XC9

Contact SMC for detailed specifications and lead times, and for applications of cylinders with air cushion, heavy duty guide rod type, and lock type.

🗥 Allowable Kinetic Energy for Order Made Specifications (without Bumper)

Some of the order made specification cylinders have a construction without internal bumpers. For the following order made products, refer to the graph for their overall load weight (load weight + weight of the moving parts of the cylinder) and piston speed at the stroke end.

Applicable order made products: Heat resistant cylinder (-XB6) Adjustable stroke cylinder/Adjustable retraction type (-XC9) Fluoro rubber seals (-XC22)

Contact SMC for detailed specifications and lead times, and for applications of cylinders with air cushion, heavy duty guide rod type, and lock type.

		Bore size				
12	12mm	40	40mm			
16	16mm	50	50mm			
20	20mm	63	63mm			
25	25mm	80	80mm			
32	32mm	100	100mm			

3m L

5m Z

Y69BL

Y69BZ

Nil Without auto switch (built-in magnet cylinder) * Refer to the table below for auto switch model numbers.

Cylinder stroke (mm) Refer to the standard stroke table.

Applicable auto switches

					L	.oad vo	ltage	Auto swite	ch model	Lead	wire leng	th (m)			
Туре	Special function	Electrical	Indicator	(output)			10	Electrical en	try direction	0.5	3	5	Applicat	ole load	
		entry	ligin	(output)			AC	Perpendicular	In-line	(Nil)	(L)	(Z)			
			Vaa	3 wire	_	5V	—	—	Z76	•	•	_	IC circuit	_	
Reed	_	Grommet	res	Quuino	241/	12V	100V	—	Z73	•	•	•	—	Relay,	
SWITCH			No	2 wire	240	5V, 12V	100V or less	_	Z80	•	•		IC circuit	PLC	
	_			3 wire (NPN)		5V		Y69A	Y59A	•	•	0	IC circuit		
				3 wire (PNP)		12V		Y7PV	Y7P	•	•	0	IC circuit		
				2 wire		12V		Y69B	Y59B	۲	۲	0	—		
Colid state	Diagnostic			3 wire (NPN)		5V		Y7NWV	Y7NW	۲	•	0	IC circuit	Relay,	
switch	indication	Grommet	Yes	3 wire (PNP)	24V	12V		Y7PWV	Y7PW	٠	•	0		PLC	
ownon	(2 color indicator)							Y7BWV	Y7BW	•	•	0			
	(2 color indicator)			2 wire		121/		_	Y7BAL	—	•	0			
	Magnetic field resistant (2 color indicator)			2 1110		120			P5DW	_	•	•	_		

Note 3) Type P5DW is applicable only to bore sizes ø40 to ø100.

For a 25mm stroke, only one switch is mounted.

∕⊘SMC

Order Made

57

Contact SMC for detailed specifications and lead times, and for applications of cylinders with air cushion, heavy duty guide rod type, and lock type.

Specifications

Action			Double acting
Fluid			Air
Maximum op	eratin	g pressure	1.0MPa
Proof Pressu	re		1.5MPa
Minimum	Note 1)	ø12, ø16	0.12MPa
operating pre	ssure	ø20 to ø100	0.10MPa
Ambient and	fluid te	emperature	-10 to 60°C
Piston speed	Note 2)		Refer to the graphs on the right.
O vel l'est	Ext	ended end	Shock absorber
Cusnion	Ret	racted end	Rubber cushion
Bearing type			Slide bearing, Ball bushing

Note 1) Excluding the cushion stroke generated by the shock absorber. Note 2) Operate at a piston speed that does not exceed the cylinder's allowable kinetic energy.

Standard Strokes

Model	Standard stroke (mm)
мар м 12	10, 20, 30, 40, 50, 75, 100, 125, 150, 175
^{MGP} ∟ 16	200, 250
MCD M 20	20, 30, 40, 50, 75, 100, 125, 150, 175, 200
^{MGP} ∟ 25	250, 300, 350, 400
32	
40	
мор м 50	25, 50, 75, 100, 125, 150, 175, 200, 250
^{MGP} ∟ 63	300, 350, 400
80	
100	

Note 1) Intermediate strokes (in 5mm increments) are produced by installing spacers of 5, 10, 15 and 20mm widths.

The overall length (A + stroke x 2) and the guide rod length (E + stroke) shown in the dimensions section do not include the spacer widths. Contact SMC when a special intermediate stroke body is needed.

Extension Adjustment Mechanism Specifications

Bore size (mm)	12, 16	20, 25	32, 40	50, 63	80, 100
Shock absorber model	RB0806	RB1007	RB1411	RB2015	RB2725
Max. absorbed energy (J)	2.94	5.88	19.6	58.8	147
Stroke adjustment range (mm)	0 to	–15	0 to	0 to -30	

Allowable Kinetic Energy

Operate with a load weight and maximum speed within the ranges shown in the graph below.

Retraction stroke end (rubber bumper)

Specific Product Precautions

Be sure to read before handling. Consult SMC when outside the specifications.

Mounting

MWarning

Do not put hands or fingers, etc., near the cylinder during operation.

If fingers, etc., are caught in the space between the shock absorber and body, human injury and damage to nearby equipment may occur. Implement protective measures such as mounting of protective covers as needed.

As a rule, do not bottom mount the cylinder.

Mounting space is limited at the bottom of the cylinder due to the guide rod and end plate. Use the top or side mount method to mount the cylinder.

Adjustment

A Caution

1. Adjusting screw adjustment (stroke adjustment)

To make a stroke adjustment, loosen only hexagon nut 1 and rotate the adjusting screw. After adjusting, lock the adjustment with hexagon nut 1. To put the end of the adjusting screw in direct contact with the stopper bracket, fix the adjusting screw at a position where its end protrudes from the end plate. (Refer to the figure on the top right.)

2. Shock absorber replacement

Loosen hexagon nut 2, then rotate the shock absorber counter clockwise and remove it. When mounting a new shock absorber, the end of the adjusting screw must protrude approximately 0.5mm from the shock absorber. (Refer to the figure on the right.)

58

Contact SMC for detailed specifications and lead times, and for applications of cylinders with air cushion, heavy duty guide rod type, and lock type.

Dimensions/Ø12 to Ø63

∕@SMC

			WA					WB		
Bore size (mm)	30 stroke or less	Over 30 stroke to	Over 100 stroke to	Over 200 stroke to	Over 300 stroke	30 stroke	Over 30 stroke to	Over 100 stroke to	Over 200 stroke to	Over 300 stroke
		100 stroke	200 stroke	300 stroke	000 01/010		100 stroke	200 stroke	300 stroke	
12	20	40	110	200	-	15	25	60	105	-
16	24	44	110	200	-	17	27	60	105	-
20	24	44	120	200	300	29	39	77	117	167
25	24	44	120	200	300	29	39	77	117	167

IVIGE	32 10	03/11	A, VV	ווע ס	nens	10115				(mm)		
			WA			WB						
Bore size (mm)	25 stroke or less	Over 25 stroke to 100 stroke	Over 100 stroke to 200 stroke	Over 200 stroke to 300 stroke	Over 300 stroke	25 stroke or less	Over 25 stroke to 100 stroke	Over 100 stroke to 200 stroke	Over 200 stroke to 300 stroke	Over 300 stroke		
32	24	48	124	200	300	33	45	83	121	171		
40	24	48	124	200	300	34	46	84	122	172		
50	24	48	124	200	300	36	48	86	124	174		
63	28	52	128	200	300	38	50	88	124	174		

59

MGP

Contact SMC for detailed specifications and lead times, and for applications of cylinders with air cushion, heavy duty guide rod type, and lock type.

Dimensions/Ø80, Ø100

																										. /
															WA					WB						
Bore size (mm)	ов	PA	PB	PW	Q	R	RA	S	т	U	VA	VB	25 stroke	Over 25 stroke to 100 stroke	Over 100 stroke to 200 stroke	Over 200 stroke to 300 stroke	Over 300 stroke	25 stroke	Over 25 stroke to 100 stroke	Over 100 stroke to 200 stroke	Over 200 stroke to 300 stroke	Over 300 stroke	x	ΥY	YL	Z
80	17.5	14.5	25.5	74	52	174	77	75	198	156	180	140	28	52	128	200	300	42	54	92	128	178	100	M12 x 1.75	24	28
100	20	17.5	32.5	89	64	210	74	90	236	188	210	166	48	72	148	220	320	35	47	85	121	171	124	M14 x 2.0	28	11

Series MGP **Auto Switch Common Specifications**

Auto Switch Common Specifications

Туре	Reed switch	Solid state switch					
Leakage current	None	3 wire: 100µA or less, 2 wire: 0.8mA or less					
Operating time	1.2ms	1ms or less					
Impact resistance	300m/s ²	1000m/s²					
Insulation resistance	50MΩ or more at 500VDC (between lead wire and case)					
Withstand voltage	1500VAC for 1 min. (between lead wire and case) 1000VAC for 1 min. (between lead wire and ca						
Ambient temperature	-10 to 60°C						
Enclosure	IEC529 standard IP67, JISC	C0920 watertight construction					

∕⁄@SMC

Lead Wire Length

Lead wire length indication

Note 1) Lead wire length Z: 5m applicable auto switch Reed: D-Z73

Solid state: All types are produced upon receipt of order (standard availability).

Auto Switch Hysteresis

Hysteresis is the distance from the position at which piston movement activates an auto switch to the position at which reverse movement turns the switch OFF. This hysteresis is included in part of the operating range (one side).

Contact Protection Boxes/CD-P11, CD-P12

D-Z7 and D-Z8 type switches do not have internal contact protection circuits

- 1. The operating load is an induction load.
- 2. The length of wiring to the load is 5m or more.

3. The load voltage is 100VAC.

A contact protection box should be used in any of the above situations.

Contact protection box specifications

Part no.	CD-	CD-P12						
Load voltage	100VAC or less	200VAC	24VDC					
Maximum load current	25mA	12.5mA	50mA					
Lead wire length Switch connection side 0.5m								

oad connection side 0.5m

Contact protection box internal circuits Lead wire colors inside [] are those prior to conformity with IEC standards.

Contact protection box dimensions

Contact Protection Box Connection

To connect a switch unit to a contact protection box, connect the lead wire from the side of the contact protection box marked SWITCH to the lead wire coming out of the switch unit.

Furthermore, the switch unit should be kept as close as possible to the contact protection box, with a lead wire length of no more than 1 meter between them.

Precautions

Series MGP **Auto Switch Connections** and Examples

Basic Wiring

Lead wire colours inside [] are those prior to conformity with IEC standards.

2 wire with 2 switch AND connection

[White]

Blue [Black]

When two switches are connected in series, a load may malfunction because the load voltage will decline when in the ON state. The indicator lights will light up if both of the switches are in the ON state.

Load voltage at ON = $\frac{Power supply}{voltage} - \frac{Internal}{voltage}$ x 2 pcs. = 24V - 4V x 2 pcs. = 16 V Example: Power supply is 24VDC

Internal voltage drop in switch is 4V

[Red] Black Switch 2 [White] Blue [Black]

The indicator lights will light up when both switches are turned ON.

2 wire with 2 switch OR connection

<Solid state> When two switches are connected in \oplus parallel, malfunction may occur because the load voltage will increase when in the OFF state.

Blue

[Black]

<Reed switch>

[White

Because there is no current leakage, the load voltage will not increase when turned OFF. However, depending on the number of switches in the ON state, the indicator lights may sometimes dim or not light up, because of dispersion and reduction of the current flowing to the switches.

Load voltage at OFF = $\frac{\text{Leakage}}{\text{current}} \times 2 \text{ pcs. } \times \frac{\text{Load}}{\text{impedance}}$

₿SMC

Reed Switches/Direct Mount Type D-Z73/Z76/Z80

Internal circuits

Lead wire colours inside [] are those prior to conformity with IEC standards.

Note) 1. The load is an induction load.

2. The lead wire length to the load is 5m or more. 3. The load voltage is 100VAC.

Use a contact protection box in any of the above situations, as the life of the contacts may otherwise be reduced. (Refer to page 57 for detailed specifications of the contact protection boxes.)

Auto Switch Specifications

With indicator light

Auto switch part no.	D-	D-Z76								
Electrical entry direction										
Applicable load	Relay,	IC circuit								
Load voltage	24VDC	4 to 8VDC								
Maximum load current or current range	5 to 40mA	20mA								
Contact protection circuit										
Internal voltage drop	2.4V or less (to 20mA	0.8V or less								
Indicator light		Red LED lights up when ON								

Without indicator light

Auto switch part no.		D-Z80								
Electrical entry direction		In-line								
Applicable load	Relay, PLC, IC circuit									
Load voltage	24V _{DC} or less	48V ^{AC} _{DC}	100V ^{AC} _{DC}							
Maximum load current	50mA 40mA 20mA									
Contact protection circuit	None									
Internal resistance	1Ω or le	ss (including lead wire leng	th of 3m)							

 Lead wire – - Oil resistant heavy duty vinyl cord, ø3.4,

0.2mm², 2 wire (Brown, Blue [Red, Black]), 3 wire (Brown, Black, Blue [Red, White, Black]), 0.5m (D-Z73 only ø2.7, 0.18mm², 2 wire)

Note) Refer to page 57 for auto switch common specifications and lead wire lengths.

Weights

		Unit: g
Model	Lead wire length 0.5m	Lead wire length 3m
D-Z73	9	49
D-Z76	10	55
D-Z80	9	49

Note) This is a standard including hysteresis, and is not guaranteed. There may be large variations depending on the surrounding environment (variations on the order of ±30%).

100

12

Solid State Switches/Direct Mount Type D-Y59[§]/D-Y69[§]/D-Y7P(V)

Auto Switch Specifications

0-Y5, D-Y6, D-Y7P, D-Y7PV (with indicator light)							
Auto switch part no.	D-Y59A	D-Y69A	D-Y7P	D-Y7PV	D-Y59B	D-Y69B	
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular	
Wiring type		3 \	vire		2 v	vire	
Output type	NF	PN	Р	NP		_	
Applicable load		IC circuit, I	Relay, PLC		24VDC Relay, PLC		
Power supply voltage	5,	12, 24VDC	(4.5 to 28VD	C)	-		
Current consumption		10mA	or less		-		
Load voltage	28VDC	or less		_	24VDC (10 to 28VDC)		
Load current	40mA	40mA or less 80mA or less				40mA	
Internal voltage drop	1.5V or less (0.8V or less at 10mA load current) 0.8V or less		4V o	r less			
Leakage current	100μA or less at 24VDC				0.8mA or le	ss at 24VDC	
Indicator light	Red LED lights up when ON						

Lead wire — Oil resistant, flexible heavy duty vinyl cord, ø3.4, 0.15mm², 2 wire (Brown, Blue [Red, Black]), 3 wire (Brown, Black, Blue [Red, White, Black]), 0.5m

Note) Refer to page 57 for auto switch common specifications and lead wire lengths.

Weights

		Unit: g				
Model	Lead wire length					
	0.5m	3m				
D-Y59A, Y69A, Y7P	10	53				
D-Y59B, Y69B, Y7PV	9	50				

Dimensions

Bore size					Bore siz	ze (mm)				
Operating range	12	16	20	25	32	40	50	63	80	100
Operating range <i>ℓ</i> (mm)	5.5	7.5	7.5	7	6.5	6	7	8	9.5	10

Note) This is a standard including hysteresis, and is not guaranteed. There may be large variations depending on the surrounding environment (variations on the order of $\pm 30\%$).

Lead wire colours inside [] are those prior to conformity with IEC standards.

2 Colour Indication Solid State Switches Direct Mount Type D-Y7NW(V)/Y7PW(V)/D-Y7BW(V)

Wiring t Output Applica Power s

Internal circuits

Lead wire colours inside [] are those prior to conformity with IEC standards.

Auto Switch Specifications

D-Y7 W, D-Y7 WV (with indicator light)

Auto switch part no.	D-Y7NW	D-Y7NWV	D-Y7PW	D-Y7PWV	D-Y7BW	D-Y7BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type		3 v	vire		2 ۱	vire
Output type	N	۶N	Р	NP		_
Applicable load		IC circuit, I	Relay, PLC		24VDC r	elay, PLC
Power supply voltage	5,	5, 12, 24VDC (4.5 to 28VDC)				_
Current consumption		10mA or less				_
Load voltage	28VDC	or less		_	24VDC (10 to 28VDC)	
Load current	40mA	or less	80mA	or less	5 to 40mA	
Internal voltage drop	1.5V ((0.8V or 10mA loa	1.5V or less).8V or less at 0.8V or less nA load current)		4V or less		
Leakage current	100μA or less at 24VDC				0.8mA or le	ss at 24VDC
Indicator light	Actuated position					

Lead wire — Oil resistant, flexible heavy duty vinyl cord, ø3.4, 0.15mm²

3 wire (Brown, Black, Blue [Red, White, Black]), 2 wire (Brown, Blue [Red, Black]), 0.5m Note) Refer to page 57 for auto switch common specifications and lead wire lengths.

Weights

		Unit: g				
Model	Lead wire length					
	0.5m	3m				
D-Y7N, Y7P	10	53				
D-Y7B	9	50				

Dimensions

Bore size		Bore size (mm)								
Operating range	12	16	20	25	32	40	50	63	80	100
Operating range ℓ (mm)	5.5	7.5	7.5	7	6.5	6	7	8	9.5	10

Note) This is a standard including hysteresis, and is not guaranteed. There may be large variations depending on the surrounding environment (variations on the order of ±30%).

Water Resistant 2 Colour Indication Solid State Switches/Direct Mount Type D-Y7BAL

Water (coolant) resistant type

Auto Switch Specifications

D V7BAL (with indicator light)

Auto switch model no.	D-Y7BAL					
Electrical entry direction	In-line					
Wiring type	2 wire					
Applicable load	24VDC relay, PLC					
Load voltage	24VDC (10 to 28VDC)					
Load current	5 to 40mA					
Internal voltage drop	4V or less					
Leakage current	1mA or less at 24VDC					
Indicator light	Actuated position Red LED lights up Optimum operating position Green LED lights up					

• Lead wire — Oil resistant, flexible heavy duty vinyl cord, ø3.4, 0.15mm², 2 wire (Brown, Blue [Red, Black]), 3m Note) Refer to page 57 for auto switch common specifications and lead wire lengths.

Weights

	Unit: g
Model	Lead wire length
	3m
D-Y7BAL	51

Operating Precautions

A Caution

1. Contact SMC if a solution other than water is to be used.

Internal circuits

Lead wire colours inside [] are those prior to conformity with IEC standards.

Dimensions

Bore size	Bore size (mm)									
Operating range	12	16	20	25	32	40	50	63	80	100
Operating range ℓ (mm)	3.5	5	5	5	6	6	6	6	6	6.5

Note) This is a standard including hysteresis, and is not guaranteed. There may be large variations depending on the surrounding environment (variations on the order of $\pm 30\%$).

Magnetic Field Resistant 2 Colour Indication Solid State Switches/Rail Mount Type D-P5DWL

Grommet

Operational in an environment with magnetic field disturbance (AC magnetic field).

Handling Precautions

Cannot be used with DC inverter welder (includes rectifying type), arc welder, or

> OUT (±) Brown [Red] POUT (∓)

Blue [Black]

OFF

Optimum operating position

For use with single-phase AC welder.

Auto Switch Internal Circuit Lead wire colours inside [] are those prior to conformity with IEC standards.

Indicator light/Display method

Green

Red

ON

Indicato Red

Main tich circ

Operating range

condenser type welder.

Auto Switch Specifications

D-P5DW (with indicator ligh	it)	
Auto switch part no.	D-P5DWL	
Wiring type	2 wire (non-polar)	
Applicable load	24VDC relay, PLC	
Load voltage	24VDC (20 to 28VDC)	
Load current	6 to 40mA or less	2
Internal voltage drop	5V or less	G
Leakage current	1mA or less at 24VDC	τ
Operating time	40ms or less	
Indicator light	Actuated positionRed LED lights up Optimum operating position Green LED lights up	

• Lead wire — Oil resistant, heavy duty vinyl cord, ø6, 0.5mm², 2 wire (Brown, Blue [Red, Black]), 3m Note) Refer to page 57 for auto switch common specifications and lead wire lengths.

Magnetic Field Resistance

When the AC welding current is 16000A or less, the operational distance between the welding conductor (welding gun or cable) and the cylinder or auto switch is 0mm. Consult SMC when exceeding 16000A.

Auto Switch Weights

		Unit: g				
Model	Lead wire length					
	3m	5m				
D-P5DWL	150	240				

Dimensions

Bore size	Bore size (mm)				
Operating range	40	50	63	80	100
Operating range <i>ℓ</i> (mm)	4.1	3.9	4.8	4.2	4.2

Note) This is a standard including hysteresis, and is not guaranteed. There may be large variations depending on the surrounding environment (variations on the order of ±30%).

Series MGP Safety Instructions

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by a label of **"Caution"**, **"Warning"** or **"Danger"**. To ensure safety, be sure to observe ISO 4414 Note 1), JIS B 8370 Note 2) and other safety practices.

Note 1) ISO 4414: Pneumatic fluid power – Recommendations for the application of equipment to transmission and control systems

Note 2) JIS B 8370: General Rules for Pneumatic Equipment

Warning

1. The compatibility of pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications.

Since the products specified here are used in various operating conditions, their compatibility for the specific pneumatic system must be based on specifications or after analysis and/or tests to meet your specific requirements.

2. Only trained personnel should operate pneumatically operated machinery and equipment.

Compressed air can be dangerous if handled incorrectly. Assembly, handling or repair of pneumatic systems should be performed by trained and experienced operators.

- Do not service machinery/equipment or attempt to remove components until safety is confirmed.
- 1. Inspection and maintenance of machinery/equipment should only be performed after confirmation of safe locked-out control positions.
- 2. When equipment is to be removed, confirm the safety process as mentioned above. Cut the supply pressure for this equipment and exhaust all residual compressed air in the system.
- 3. Before machinery/equipment is restarted, take measures to prevent shooting-out of cylinder piston rod, etc. (Bleed air into the system gradually to create back pressure.)

4. Contact SMC if the product is to be used in any of the following conditions:

- 1. Conditions and environments beyond the given specifications, or if product is used outdoors.
- 2. Installation on equipment in conjunction with atomic energy, railway, air navigation, vehicles, medical equipment, food and beverages, recreation equipment, emergency stop circuits, press applications, or safety equipment.
- 3. An application which has the possibility of having negative effects on people, property, or animals, requiring special safety analysis.

With End Lock

Series MGP Actuator Precautions 1 Be sure to read before handling.

Design

AWarning

1. There is a danger of sudden action by air cylinders if sliding parts of machinery are twisted, etc., and changes in forces occur.

In such cases, human injury may occur; e.g., by catching hands or feet in the machinery, or damage to the machinery itself may occur. Therefore, the machine should be designed to avoid such dangers.

2. A protective cover is recommended to minimize the risk of personal injury.

If a stationary object and moving parts of a cylinder are in close proximity, personal injury may occur. Design the structure to avoid contact with the human body.

3. Securely tighten all stationary parts and connected parts so that they will not become loose.

Especially when a cylinder operates with high frequency or is installed where there is a lot of vibration, ensure that all parts remain secure.

4. A deceleration circuit or shock absorber, etc., may be required.

When a driven object is operated at high speed or the load is heavy, a cylinder's cushion will not be sufficient to absorb the impact. Install a deceleration circuit to reduce the speed before cushioning, or install an external shock absorber to relieve the impact. In this case, the rigidity of the machinery should also be examined.

5. Consider a possible drop in circuit pressure due to a power outage, etc.

When a cylinder is used in a clamping mechanism, there is a danger of work pieces dropping if there is a decrease in clamping force due to a drop in circuit pressure caused by a power outage, etc. Therefore, safety equipment should be installed to prevent damage to machinery and human injury. Suspension mechanisms and lifting devices also require consideration for drop prevention.

6. Consider a possible loss of power source.

Measures should be taken to protect against human injury and equipment damage in the event that there is a loss of power to equipment controlled by air pressure, electricity or hydraulics, etc.

7. Design circuitry to prevent sudden lurching of driven objects.

When a cylinder is driven by an exhaust center type directional control valve or when starting up after residual pressure is exhausted from the circuit, etc., the piston and its driven object will lurch at high speed if pressure is applied to one side of the cylinder because of the absence of air pressure inside the cylinder. Therefore, equipment should be selected and circuits designed to prevent sudden lurching, because there is a danger of human injury and/or damage to equipment when this occurs.

8. Consider emergency stops.

Design so that human injury and/or damage to machinery and equipment will not be caused when machinery is stopped by a safety device under abnormal conditions, a power outage or a manual emergency stop.

9. Consider the action when operation is restarted after an emergency stop or abnormal stop.

Design the machinery so that human injury or equipment damage will not occur upon restart of operation. When the cylinder has to be reset at the starting position, install safe manual control equipment.

Selection

AWarning

1. Confirm the specifications.

The products advertised in this catalog are designed according to use in industrial compressed air systems. If the products are used in conditions where pressure, temperature, etc., are out of specification, damage and/or malfunction may be caused. Do not use in these conditions. (Refer to specifications.)

Consult SMC if you use a fluid other than compressed air.

2. Intermediate stops.

When intermediate stopping of a cylinder piston is performed with a 3 position closed center type directional control valve, it is difficult to achieve stopping positions as accurate and minute as with hydraulic pressure due to the compressibility of air.

Furthermore, since valves and cylinders, etc., are not guaranteed for zero air leakage, it may not be possible to hold a stopped position for an extended period of time. Contact SMC in case it is necessary to hold a stopped position for an extended period.

1. Operate within the limits of the maximum usable stroke.

The piston rod will be damaged when operated with the stroke exceeding the maximum stroke range. Refer to the air cylinder selection procedures regarding the maximum usable stroke.

2. Operate the piston within a range such that collision damage will not occur at the end of the stroke.

Operate within a range such that damage will not occur when the piston having inertial force stops by striking the cover at the stroke end. Refer to the cylinder selection procedures for the range within which damage will not occur.

- 3. Use a speed controller to adjust the cylinder drive speed, gradually increasing from a low speed to the desired speed setting.
- 4. Provide an intermediate support for a cylinder with a long stroke.

If the cylinder has a long stroke, provide an intermediate support to prevent the rod from sagging and the tube from flexing, as well as to prevent damage to the rod due to vibrations or external loads.

Mounting

1. Be sure to connect the rod and the load so that their axial center and movement directions match.

If they do not match, stress could be applied to the rod and the tube, causing the inner surface of the tube, the bushing, the rod surface, and the seals to wear and to become damaged.

2. When an external guide is used, connect the external slider and the load in such a way that there is no interference at any point within the stroke.

Precautions

Series MGP Actuator Precautions 2 Be sure to read before handling.

Mounting

3. Do not scratch or gouge the sliding parts of the cylinder tube or piston rod, etc., by striking or grasping them with other objects.

Cylinder bores are manufactured to precise tolerances, so that even a slight deformation may cause faulty operation. Also, scratches or gouges, etc., in the piston rod may lead to damaged seals and cause air leakage.

4. Prevent the rotating parts from seizing.

Apply grease to rotating parts (such as the pin) to prevent them from seizing.

5. Do not use until you can verify that equipment can operate properly.

Following mounting, maintenance or conversions, verify correct mounting by suitable function and leakage tests after compressed air and power are connected.

6. Instruction manual

The product should be mounted and operated after thoroughly reading the manual and understanding its contents.

Keep the instruction manual where it can be referred to as needed.

Piping

1. Preparation before piping

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove chips, cutting oil and other debris from inside the pipe.

2. Wrapping of pipe tape

When screwing together pipes and fittings, etc., be certain that chips from the pipe threads and sealing material do not get inside the piping.

Also, when pipe tape is used, leave 1.5 to 2 thread ridges exposed at the end of the threads.

Lubrication

1. Lubrication of lube type cylinder

Install a lubricator in the circuit, and use class 1 turbine oil (with no additives) ISO VG32. Do not use machine oil or spindle oil.

2. Lubrication of non-lube type cylinder

The cylinder is lubricated at the factory and can be used without any further lubrication.

However, in the event that it will be lubricated, use class 1 turbine oil (with no additives) ISO VG32.

Stopping lubrication later may lead to malfunction due to the loss of the original lubricant. Therefore, lubrication must be continued once it has been started.

Air Supply

AWarning

1. Use clean air.

Do not use compressed air that includes chemicals, synthetic oils containing organic solvents, salt or corrosive gases, etc., as it can cause damage or malfunction.

Caution

1. Install air filters.

Install air filters at the upstream side of valves. The filtration degree should be $5\mu m$ or finer.

2. Install an air dryer, after-cooler or water separator, etc.

Air that includes excessive drainage may cause malfunction of valves and other pneumatic equipment. To prevent this, install an air dryer, after-cooler or water separator, etc.

3. Use the product within the specified range of fluid and ambient temperature.

Take measures to prevent freezing, since moisture in circuits will be frozen under 5° C, and this may cause damage to seals and lead to malfunction.

Refer to SMC's "Air Cleaning Equipment" catalog for further details on compressed air quality.

Operating Environment

A Warning

1. Do not use in environments where there is a danger of corrosion.

Refer to the construction drawings regarding cylinder materials.

2. In dusty locations or where water, oil, etc., splash on the equipment, install a protective cover over the rod.

Use cylinders with a heavy duty scraper (-XC4) in dusty areas. Use water resistant cylinders in areas where liquids are splashed or sprayed

3. When using auto switches, do not operate in an environment with strong magnetic fields.

Maintenance

AWarning

1. Perform maintenance according to the procedure indicated in the instruction manual.

If handled improperly, malfunction and damage of machinery or equipment may occur.

2. Removal of equipment, and supply/exhaust of compressed air.

When machinery is removed, first check measures to prevent dropping of driven objects and run-away of equipment, etc. Then cut off the supply pressure and electric power, and exhaust all compressed air from the system.

When machinery is restarted, proceed with caution after confirming measures to prevent cylinder lurching.

1. Drain flushing

Remove drainage from air filters regularly.

Design and Selection

AWarning

1. Confirm the specifications.

Read the specifications carefully and use this product appropriately. The product may be damaged or malfunction if it is used outside the range of specifications for current load, voltage, temperature or impact.

2. Take precautions when multiple cylinders are used close together.

When multiple auto switch cylinders are used in close proximity, magnetic field interference may cause the switches to malfunction. Maintain a minimum cylinder separation of 40mm. (When the allowable separation is indicated for each cylinder series, use the specified value.)

3. Pay attention to the length of time that a switch is ON at an intermediate stroke position.

When an auto switch is placed at an intermediate position of the stroke and a load is driven at the time the piston passes, the auto switch will operate, but if the speed is too great the operating time will be shortened and the load may not operate properly. The maximum detectable piston speed is:

```
Auto switch operating range (mm)
V(mm/s) =
                                           x 1000
               Load operation time (ms)
```

4. Keep wiring as short as possible.

<Reed switches>

As the length of the wiring to a load gets longer, the rush current at switching ON becomes greater, and this may shorten the product's life. (The switch will stay ON all the time.)

- 1) For an auto switch without a contact protection circuit, use a contact protection box when the wire length is 5m or longer.
- 2) Even if an auto switch has a built-in contact protection circuit. when the wiring is more than 30m long, it is not able to adequately absorb the rush current and its life maybe reduced. It is necessary to connect a contact protection box in order to extend its life. Contact SMC in this case.

<Solid state switches>

3) Although wire length should not affect switch function, use a wire 100m or shorter.

5. Pay attention to the internal voltage drop of switches.

<Reed switches>

- 1) Switches with an indicator light (Except D-Z76)
- · If auto switches are connected in series as shown below, take note that there will be a large voltage drop because of internal resistance in the light emitting diodes. (Refer to internal voltage drop in the auto switch specifications.)

[The voltage drop will be "n" times larger when "n" auto switches are connected.]

Even though an auto switch operates normally, the load may not operate.

______ $\sim \sim 0$ l oad • In the same way, when operating below a specified voltage, although an auto switch may operate normally, the load may not operate. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.

Supply _ Internal voltage _ Minimum operating voltage _ drop of switch _ voltage of load

- 2) If the internal resistance of a light emitting diode causes a problem, select a switch without an indicator light (Model D-Z80). <Solid state switches>
- 3) Generally, the internal voltage drop will be greater with a 2 wire solid state auto switch than with a reed switch. Take the same precautions as in 1).

Also, note that a 12VDC relay is not applicable.

Pay attention to leakage current. <Solid state switches>

With a 2 wire solid state auto switch, current (leakage current) flows to the load to operate the internal circuit even when in the OFF state.

Operating current of load (OFF condition) > Leakage current

If the criteria given in the above formula are not met, it will not reset correctly (stays ON). Use a 3 wire switch if this specification will not be satisfied.

Moreover, leakage current flow to the load will be "n" times larger when "n" auto switches are connected in parallel.

7. Do not use a load that generates surge voltage.

<Reed switches>

If driving a load such as a relay that generates a surge voltage, use a switch with a built-in contact protection circuit or use a contact protection box.

<Solid state switches>

Although a zener diode for surge protection is connected at the output side of a solid state auto switch, damage may still occur if the surge is applied repeatedly. When a load, such as a relay or solenoid which generates surge is directly driven, use a type of switch with a built-in surge absorbing element.

8. Cautions for use in an interlock circuit

When an auto switch is used for an interlock signal requiring high reliability, devise a double interlock system to avoid trouble by providing a mechanical protection function, or by also using another switch (sensor) together with the auto switch. Also perform periodic maintenance and confirm proper operation.

9. Ensure sufficient clearance for maintenance activities.

When designing an application, be sure to allow sufficient clearance for maintenance and inspections.

With Air Cushion

With End Lock

Heavy Duty Guide Rod Type

MGP

MGF

Series MGP Auto Switch Precautions 2 Be sure to read before handling.

Mounting and Adjustment

AWarning

1. Do not drop or bump.

Do not drop, bump or apply excessive impacts ($300m/s^2$ or more for reed switches and $1000m/s^2$ or more for solid state switches) while handling.

Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.

2. Do not carry a cylinder by the auto switch lead wires.

Never carry a cylinder by its lead wires. This may not only cause broken lead wires, but it may cause internal elements of the switch to be damaged by the stress.

3. Mount switches using the proper fastening torque.

When a switch is tightened beyond the range of fastening torque, the mounting screws, mounting bracket or switch may be damaged. On the other hand, tightening below the range of fastening torque may allow the switch to slip out of position.

4. Mount a switch at the center of the operating range.

Adjust the mounting position of an auto switch so that the piston stops at the center of the operating range (the range in which a switch is ON).

(The mounting position shown in the catalog indicates the optimum position at stroke end.) If mounted at the end of the operating range (around the borderline of ON and OFF), operation will be unstable.

Wiring

MWarning

1. Avoid repeatedly bending or stretching lead wires.

Broken lead wires will result from wiring patterns which repeatedly apply bending stress or stretching force to the lead wires.

2. Be sure to connect the load before power is applied.

<2 wire type>

If the power is turned ON when an auto switch is not connected to a load, the switch will be instantly damaged because of excess current.

3. Confirm proper insulation of wiring.

Be certain that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.

4. Do not wire with power lines or high voltage lines.

Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits, including auto switches, may malfunction due to noise from these other lines.

Wiring

5. Do not allow short circuit of loads.

<Reed switches>

If the power is turned ON with a load in a short circuited condition, the switch will be instantly damaged because of excess current flow into the switch.

<Solid state switches>

All models of PNP output type switches do not have built-in short circuit protection circuits. If loads are short circuited, the switches will be instantly damaged as in the case of reed switches.

Take special care to avoid reverse wiring with the brown [red] power supply line and the black [white] output line on 3 wire type switches.

6. Avoid incorrect wiring.

<Reed switches>

A 24VDC switch with indicator light has polarity. The brown [red) lead wire or terminal no. 1 is (+), and the blue [black] lead wire or terminal no. 2 is (-).

1) If connections are reversed, a switch will operate, however, the light emitting diode will not light up.

Also note that a current greater than that specified will damage a light emitting diode and it will no longer operate.

Applicable models: D-Z73

<Solid state switches>

- If connections are reversed on a 2 wire type switch, the switch will not be damaged if protected by a protection circuit, but the switch will always stay in an ON state. However, it is still necessary to avoid reversed connections, since the switch could be damaged by a load short circuit in this condition.
- 2) If connections are reversed (power supply line + and power supply line –) on a 3 wire type switch, the switch will be protected by a protection circuit. However, if the power supply line (+) is connected to the blue [black] wire and the power supply line (–) is connected to the black [white] wire, the switch will be damaged.

* Lead wire color changes

Lead wire colors of SMC switches have been changed in order to meet NECA Standard 0402 for production beginning September, 1996 and thereafter. Please refer to the tables provided. Special care should be taken regarding wire polarity during the time that the old colors still coexist with the new colors.

3 wire

Power supply

2 wire				
	Old	New		
Output (+)	Red	Brown		
Output (-)	Black	Blue		

	Solid state v	d state with latch type			
	Output	White	Black		
e	GND	Black	Blue		

oly

Old

Red

Old

Red

Black

White

Yellow

New

Brown

New

Brown

Blue

Black

Orange

Solid state with diagnostic output

	Old	New	
Power supply	Red	Brown	Power sup
GND	Black	Blue	GND
Output	White	Black	Output
Diagnostic Output	Yellow	Orange	Latch type diagnostic outp

Note) Lead wire colours inside [] are those prior to conformity with NECA standards.

Operating Environment

AWarning

1. Never use in an atmosphere of explosive gases.

The construction of auto switches is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.

2. Do not use in an area where a magnetic field is generated.

Auto switches will malfunction or magnets inside cylinders will become demagnetized. (Consult SMC regarding the availability of a magnetic field resistant auto switch.)

3. Do not use in an environment where the auto switch will be continually exposed to water.

Do not use switches in applications where continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside switches may cause malfunction.

4. Do not use in an environment with oil or chemicals.

Consult SMC if auto switches will be used in an environment with coolant, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be adversely affected by improper insulation, malfunction due to swelling of the potting resin, or hardening of the lead wires.

Do not use in an environment with temperature cycles.

Consult SMC if switches are used where there are temperature cycles other than normal temperature changes, as they may be adversely affected internally.

6. Do not use in an environment where there is excessive impact shock.

<Reed switches>

When excessive impact (300m/s² or more) is applied to a reed switch during operation, the contact point will malfunction and generate or cut off a signal momentarily (1ms or less). Consult SMC regarding the need to use a solid state switch depending upon the environment.

Do not use in an area where surges are generated.

<Solid state switches>

When there are units (solenoid type lifter, high frequency induction furnace, motor, etc.) which generate a large amount of surge in the area around cylinders with solid state auto switches, this may cause deterioration or damage to the switch. Avoid sources of surge generation and crossed lines.

8. Avoid accumulation of iron waste or close contact with magnetic substances.

When a large amount of ferrous waste such as machining chips or spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with an auto switch cylinder, it may cause the auto switch to malfunction due to a loss of the magnetic force inside the cylinder.

Maintenance

- 1. Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
- 1) Securely tighten switch mounting screws.

If screws become loose or the mounting position is dislocated, retighten them after readjusting the mounting position.

2) Confirm that there is no damage to lead wires.

To prevent faulty insulation, replace switches or repair lead wires, etc., if damage is discovered.

 Confirm the lighting of the green light on the 2 colour indicator type switch.

Confirm that the green LED is on when stopped at the established position. If the red LED is on, the mounting position is not appropriate. Readjust the mounting position until the green LED lights up.

Other

AWarning

1. Consult SMC concerning water resistance, elasticity of lead wires, and usage at welding sites, etc. Standard Type

With Air Cushion

With End Lock

MGP

MGF

MGP

Series MGP Specific Product Precautions

Be sure to read before handling. Refer to pages 64 through 69 for safety instructions, actuator precautions and auto switch precautions.

Mounting

MWarning

1. Do not put hands or fingers, etc. between the plate and body.

Be careful that hands or fingers, etc., do not get caught in the space between the cylinder body and the plate when air pressure is applied.

1. Do not scratch or nick the sliding parts of the piston rod and guide rods.

Damage to seals can cause air leaks or malfunction, etc.

2. Bottom of cylinder.

The guide rods protrude from the bottom of the cylinder at the end of the retracting stroke, and therefore, in cases where the cylinder is to be bottom mounted, it is necessary to provide by-pass ports in the mounting surface for the guide rods, as well as holes for the hexagon socket head screws which are used for mounting.

Moreover, in applications where impact occurs from a stopper, etc., the mounting bolts should be inserted to a depth of 2d or more (1.5d or more for MGPS).

Series MGP

Series MGPS

Bore size	A	В	C	D (mm)		Hexagon socket
(mm)	(mm)	(mm)	(mm)	MGPM	MGPL	mounting bolt
12	50	18	41	10	8	M4 x 0.7
16	56	22	46	12	10	M5 x 0.8
20	72	24	54	14	12	M5 x 0.8
25	82	30	64	18	15	M6 x 1.0
32	98	34	78	22	18	M8 x 1.25
40	106	40	86	22	18	M8 x 1.25
50	130	46	110	27	22	M10 x 1.5
63	142	58	124	27	22	M10 x 1.5
80	180	54	156	33	28	M12 x 1.75
100	210	62	188	39	33	M14 x 2.0

Cushion

When equipped with air cushion

▲Caution

1. Keep the adjustment range of the cushion valve within 3 rotations of the completely closed position.

When adjusting the cushion valve, use the following screw driver or hexagon wrenches. Keep the adjustment range of the cushion valve within 3 rotations of the completely closed position. Air leakage will occur if operated after opening by 4 rotations or more. Furthermore, a stopper mechanism is provided for the cushion valve, and it should not be forced open beyond that position.

Bore size (mm)	Applicable tool
16	Flat head watchmakers screw driver 3mm
20, 25, 32, 40	JIS B4648 hexagon wrench key 1.5
50, 63	JIS B4648 hexagon wrench key 2.5
80, 100	JIS B4648 hexagon wrench key 4

2. Be sure to activate the air cushion at the cylinder stroke end.

Be sure to activate the air cushion at the end of the cylinder stroke. When it is intended to operate with the cushion valve fully opened, select a cylinder equipped with rubber bumper. If operated without confirming this point, the piston rod assembly, etc., may be damaged.

3. Be sure to operate a cylinder equipped with air cushion to the end of the stroke.

If it is not operated to the end of the stroke, the effect of the air cushion will not be fully exhibited. Consequently, in cases where the stroke is regulated by an external stopper, etc., caution must be exercised, as the air cushion may become completely ineffective.

Piping

Depending on the operating conditions, piping port positions can be changed by using a plug.

1. For M5

After tightening by hand, tighten an extra 1/6 to 1/4 rotation with a tightening tool.

2. For taper thread

Use the correct tightening torques listed below. Before tightening the plug, wrap pipe tape around it.

Connection thread size	Correct tightening torque N-m
R 1/8	7 to 9
R 1/4	12 to 14
R 3/8	22 to 24

Series MGP Specific Product Precautions

Be sure to read before handling. Refer to pages 64 through 69 for safety instructions, actuator precautions and auto switch precautions.

Auto Switches

75

Use the recommended pneumatic circuits.

≜Caution

• This is necessary for proper operation and release of the lock.

1. Do not use 3 position solenoid valves.

Avoid use in combination with 3 position solenoid valves (especially closed center metal seal types). If pressure is trapped in the port on the lock mechanism side, the cylinder cannot be locked.

Furthermore, even after being locked, the lock may be released after some time, due to air leaking from the solenoid valve and entering the cylinder.

- 2. Back pressure is required when releasing the lock. Before starting operation, be sure to control the system so that air is supplied to the side without the lock mechanism as shown in the figure above. There is a possibility that the lock may not be released. (Refer to the section on releasing the lock.)
- 3. Release the lock when mounting or adjusting the cylinder.
 - If mounting or other work is performed when the cylinder is locked, the lock unit may be damaged.
- 4. Operate with a load ratio of 50% or less.

If the load ratio exceeds 50%, this may cause problems such as failure of the lock to release, or damage to the lock unit. Furthermore, do not exceed the operating ranges indicated in the series MGP catalog (Best Pneumatics No. 2) when making selections.

5. Do not operate multiple synchronized cylinders.

Avoid applications in which two or more end lock cylinders are synchronized to move one workpiece, as one of the cylinder locks may not be able to release when required.

6. Use a speed controller with the meter-out function.

It may not be possible to release the lock with meter-in control.

7. Be sure to operate completely to the cylinder stroke end on the side with the lock.

If the cylinder piston does not reach the end of the stroke, locking and unlocking may not be possible.

- 8. Do not use an air cylinder as an air-hydro cylinder. This will cause leakage of hydraulic fluid.
- 9. Adjust an auto switch's position so that it operates for movement to both the stroke and backlash (2mm) positions.

A 2 color indication switch adjusted for green indication at the stroke end may change to red indication after the backlash return, but this is not abnormal.

Operating Pressure

1. Use air pressure of at least 0.15MPa for the port on the lock mechanism side. This is necessary to release the lock.

Exhaust Speed

1. Locking will occur automatically if the pressure applied to the port on the lock mechanism side falls to 0.05MPa or less. In cases where the piping on the lock mechanism side is long and thin, or the speed controller is separated at some distance from the cylinder port, the exhaust speed will be reduced. Take note that some time may be required for the lock to engage. In addition, clogging of a silencer mounted on the solenoid valve exhaust port can produce the same effect.

Releasing the Lock

AWarning

Before releasing the lock, be sure to supply air to the side without the lock mechanism, so that there is no load applied to the lock mechanism when it is released. (Refer to the recommended pneumatic circuits.) If the lock is released when the port on the other side is in an exhaust state, and with a load applied to the lock unit, the lock unit may be subjected to an excessive force and be damaged. Furthermore, sudden movement of the piston rod is very dangerous.

Manual Release

- 1. Non-locking type manual release
 - Insert the accessory bolt from the top of the rubber cap (it is not necessary to remove the rubber cap), and after screwing it into the lock piston, pull it to release the lock. If you stop pulling the bolt, the lock will return to an operational state. Thread sizes, pulling forces and strokes are as shown below.

Bore size (mm)	Thread size	Pulling force N	Stroke (mm)
20, 25, 32	M2.5 x 0.45 x 25ℓ or more	4.9N	2
40, 50, 63	M3 x 0.5 x 30ℓ or more	10N	3
80, 100	M5 x 0.8 x 40ℓ or more	24.5N	3

Remove the bolt for normal operation. It can cause lock malfunction or faulty release.

2. Locking type manual release

While pushing the M/O knob turn it 90° counter clockwise. The lock is released (and remains in a released state) by aligning the \blacktriangle mark on the cap with the \blacktriangledown OFF mark on the M/O knob. To operate the lock, turn the M/O knob 90° clockwise while

pushing it all the way down, and align the ▲ mark on the cap with the ▼ ON mark on the M/O knob. When doing this, be sure that it locks into place with a click. Failure to click into place properly, can cause the lock to disengage.

SMC

Locked condition Released condition

