Distinctive features and specification

O12 VOY1612R3US

Features

- · 12mm panel mounting LED indicator
- 8mm colored diffused epoxy lens or 8mm water clear super bright LEDs
- · Plated brass bezel finished in bright chrome, black chrome or satin grey and moulded polycarbonate rear body
- · Prominent recessed and flush bezel style
- 2VDC 220VAC
- (2.8 x 0.8) solder lug/faston terminals, pins or (200mm long) wire terminations
- IP67 sealing option (EN60529)
- · Supplied with fixing nut and spring washer

NB: UL Recognized Component

TECHNICAL SPECIFICATIONS						
Voltage	Operating Voltage	Operating Current				
	(Min to Max)	(Typical All Types)				
02 (No Resistor)	1.8 to 3.3VDC	20mA max*				
6VDC	5.4 to 6.6VDC	20mA				
12VDC	10.8 to 13.2VDC	20mA				
24VDC	21.6 to 26.4VDC	20mA				
28VDC	25.2 to 30.8VDC	20mA				
110VAC	99 to 121VAC	6mA				
220VAC	207 to 253VAC	3mA				

Max Reverse Voltage: 5V			
Viewing Angle: 30–100° (dependant on model)			
Life Expectancy: 100,000 hours			
Temperature Range: -40 to +85°C (operating & storage)			
Torque: 75cNm			
Ø 12.00 +0.15/-0.0 15.00 [0.591] AF 2.00 [0.079]			

M12 x 0,75 THREAD

PANEL CUTOUT

Standard LED Intensity	Prominent and Recessed	Flush	Forward Voltage
HE Red	350mcd	N/A	2.0V
Green	60mcd	N/A	2.2V
Yellow	50mcd	N/A	2.1V
Blue	800mcd	N/A	3.3V
Blue	N/A	330mcd	3.1V
White	1,200mcd	N/A	3.3V
White	N/A	2,180mcd	3.1V
Orange	100mcd	N/A	2.0V
Bi-color (Typical) (Red/Green)	20/10mcd	N/A	2.0V/2.2V
Tri-color (Typical) (Red/Green/Yellow)	80/15/13mcd	N/A	2.0V/2.2V/2.1V

Bi-color - The color is changed by reversing the polarity of the supply voltage.

Tri-color - The indicator has red and green LEDs, when both connected yellow is produced.

Super Bright LED	Prominent and Recessed	Flush	Forward Voltage
HE Red	3,000mcd	N/A	2.2V
Green	8,000mcd	N/A	3.3V
Yellow	1,100mcd	N/A	2.3V
Blue	1,500mcd	N/A	3.3V
White	1,200mcd	N/A	3.3V
Orange	2,000mcd	N/A	2.2V

Hyper Bright LED	Prominent and Recessed	Flush	Forward Voltage	
HE Red	N/A	1,120mcd	2.0V	
Green	N/A	1,560mcd	3.3V	
Yellow	N/A	1,120mcd	2.0V	
Orange	N/A	1,120mcd	2.2V	
Luminous intensity will be reduced with lower operating current.				

Note: The operating voltage must not be exceeded by more that 10% as this will result in reduced life expectancy.

The company reserves the right to change specifications without notice.

* Customer to supply resistor for desired operating current.

Luminous intensity is measured at 20mA on a discrete LED unless otherwise stated.

Luminous intensities and color shades of white LEDs may vary within a batch.

LED characteristics are dependent upon environmental conditions. Therefore published data should be considered nominal.

Technical Drawings

PROMINENT BEZEL

RECESSED BEZEL

Flush Bezel Overview

APEM

STANDARD OPTIONS

The Q12 Series is available with a range of standard options, to specify your LED, simply choose one option from each column. An example is shown below.

Example Q12F5GXXR12E

Ø12mm, flush bezel, epoxy wires, bright chrome finish, fixed light, red, 12VDC LED, IP67 panel sealed

- Gold Faston terminal denotes Anode (+), silver terminal denotes Cathode (-)
- Standard wire length is 200mm, 24AWG UL1061, red wire denotes Anode (+), black wire denotes Cathode (-) for other wire lengths consult APEM
- · For LEDs with alternative voltage consult APEM
- Take care when soldering to the Faston terminals (recommended solder temperature 300°C 3 sec)
- Max voltage for pins and wires is 28V
- Maximum panel thickness 7mm
- 110VAC and 220VAC only available with solder lug/Faston terminals

^{* =} For resistorless versions (02) please refer to the forward voltage on page 1

Technical Drawings

Prominent & Recessed Bezel Overview

STANDARD OPTIONS

The Q12 Series is available with a range of standard options, to specify your LED, simply choose one option from each column. An example is shown below.

- Gold Faston terminal denotes Anode (+), silver terminal denotes Cathode (-)
- Standard wire length is 200mm, 24AWG UL1061, red wire denotes Anode (+), black wire denotes Cathode (-) for other wire lengths consult APEM
- Bi-color LEDs, by connecting the gold Faston (+) one color is produced,
 by reversing the supply voltage another color is produced Bi-colors are available up to 28VDC
- Take care when soldering to the Faston terminals (recommended solder temperature 300°C 3 sec)
- · Max voltage for pins and wires is 28V
- · Maximum panel thickness 7mm
- Tri-color are not available with terminal option 1
- Tri-colors are only available behind panel epoxy sealed with wires (option 1) or pins (option 3)
- 110VAC and 220VAC not available with terminal options 6 and 7
- We recommend using Hyperbright or Superbright LEDs for use at 110VAC and 220VAC
- · The Tri-color LED has red and green LEDs when both are connected yellow is produced
- Standard Tri-color Faston terminals are two Anodes (+) and one Cathode (-)
- Tri-color wires are one red (+) and one green (+) Anode and one black (-) Cathode
- Tri-color pins are center (-) Cathode, shortest (+) Anode pin green, longest (+) Anode pin red

5

^{*} = For resistorless versions (02) please refer to the forward voltage on page 1