

#### Product Change Notification / NTDO-04TZHM142

#### Date:

08-Nov-2021

#### **Product Category:**

Depletion Mode MOSFETs, N-Channel Enhancement Mode MOSFETs, P-Channel Enhancement Mode MOSFETs

#### **PCN Type:**

Manufacturing Change

#### **Notification Subject:**

CCB 4883 Initial Notice: Qualification of CEL-8240 as a new mold compound for 2N700x, DNx5xxN3, LP0701N3, TxxxxxN3, VNxxxxxx and VPxxxxxx device families available in 3L TO-92 package assembled at CRTK assembly site.

#### **Affected CPNs:**

NTDO-04TZHM142\_Affected\_CPN\_11082021.pdf NTDO-04TZHM142\_Affected\_CPN\_11082021.csv

#### **Notification Text:**

PCN Status: Initial notification

PCN Type: Manufacturing Change

Microchip Parts Affected: Please open one of the files found in the Affected CPNs section.

NOTE: For your convenience Microchip includes identical files in two formats (.pdf and .xls).

**Description of Change:**Qualification of CEL-8240 as a new mold compound for 2N700x, DNx5xxN3, LP0701N3, TxxxxxN3, VNxxxxxx and VPxxxxxx device families available in 3L TO-92 package assembled at CRTK assembly site.

#### **Pre and Post Change Summary:**

|               | Pre Cha                      | Post Change        |                    |  |  |
|---------------|------------------------------|--------------------|--------------------|--|--|
| Assembly Site | Greatek Electonic Inc. (GTK) | Cirtek Electronics | Cirtek Electronics |  |  |

|                           |           |                                              |        | Corporation<br>(CRTK) | Corporation<br>(CRTK) |  |  |  |  |
|---------------------------|-----------|----------------------------------------------|--------|-----------------------|-----------------------|--|--|--|--|
| Wire material             |           | Au                                           |        | Au                    | Au                    |  |  |  |  |
| Die attach material       |           | CRM1076DJ-G                                  | 8060T  | 84-1LMISR4            | 84-1LMISR4            |  |  |  |  |
| Molding compound material |           | G600                                         | 0      | G600                  | CEL-8240              |  |  |  |  |
| Material                  |           | CDA194 /                                     | ′ A194 | A194                  | A194                  |  |  |  |  |
| Lead frame                | Lead-lock | No                                           |        | No                    | No                    |  |  |  |  |
|                           | Design    | See attached Pre and Post Change comparison. |        |                       |                       |  |  |  |  |
| Package                   | Lay-out   | See attached Pre and Post Change comparison. |        |                       |                       |  |  |  |  |

Note: \*C194, A194 or CDA194 Lead frame material are the same, it is just a MCHP internal labelling

Impacts to Data Sheet: None

Change Impact: None

**Reason for Change:**To improve productivity and on-time delivery performance by qualifying CEL-8240 as a new mold compound at CRTK assembly site.

**Change Implementation Status:**In Progress

Estimated Qualification Completion Date: February 2022

Note: Please be advised the qualification completion times may be extended because of unforeseen business conditions however implementation will not occur until after qualification has completed and a final PCN has been issued. The final PCN will include the qualification report and estimated first ship date. Also note that after the estimated first ship date guided in the final PCN customers may receive pre and post change parts.

#### **Time Table Summary:**

|                          |    | Nove  | mber | 2021 |    | > | February 2022 |    |    |    |    |  |
|--------------------------|----|-------|------|------|----|---|---------------|----|----|----|----|--|
| Workweek                 | 45 | 45 46 |      | 48   | 49 |   | 06            | 07 | 08 | 09 | 10 |  |
| Initial PCN Issue Date   |    | Х     |      |      |    |   |               |    |    |    |    |  |
| Qual Report Availability |    |       |      |      |    |   | Х             |    |    |    |    |  |
| Final PCN Issue Date     |    |       |      |      |    |   | Х             |    |    |    |    |  |

Method to Identify Change: Traceability code

Qualification Plan: Please open the attachments included with this PCN labeled as PCN # Qual Plan.

Revision History:November 8, 2021: Issued initial notification.

| The change described in this PCN does not alter Microchip's current regulatory compliance regarding the material content | nt |
|--------------------------------------------------------------------------------------------------------------------------|----|
| of the applicable products.                                                                                              |    |

#### **Attachments:**

PCN\_NTDO-04TZHM142\_Pre and Post Change Summary.pdf PCN\_NTDO-04TZHM142\_Qual Plan.pdf

Please contact your local Microchip sales office with questions or concerns regarding this notification.

#### **Terms and Conditions:**

If you wish to <u>receive Microchip PCNs via email</u> please register for our PCN email service at our <u>PCN</u> home page select register then fill in the required fields. You will find instructions about registering for Microchips PCN email service in the <u>PCN FAQ</u> section.

If you wish to <u>change your PCN profile</u>, <u>including opt out</u>, please go to the <u>PCN home page</u> select login and sign into your myMicrochip account. Select a profile option from the left navigation bar and make the applicable selections.

NTDO-04TZHM142 - CCB 4883 Initial Notice: Qualification of CEL-8240 as a new mold compound for 2N700x, DNx5xxN3, LP0701N3, TxxxxxN3, VNxxxxxx and VPxxxxxx device families available in 3L TO-92 package assembled at CRTK assembly site.

#### Affected Catalog Part Numbers (CPN)

TN0106N3-G

TN0110N3-G

TN0104N3-G

VN0106N3-G

VN0109N3-G

VN0606L-G

VN0550N3-G

VP0104N3-G

VP0106N3-G

VP0109N3-G

VP0550N3-G

TN0106N3-G-P003

TN0106N3-G-P013

TN0110N3-G-P002

TN0104N3-G-P003

TN0104N3-G-P014

VN0106N3-G-P003

VN0606L-G-P003

VN0550N3-G-P013

VP0550N3-G-P013

DN2540N3-G

DN3545N3-G

DN2530N3-G

DN2535N3-G

TN0606N3-G

TN0610N3-G

TN0620N3-G

TN0620N3-G-D163

TN2540N3-G

TP0606N3-G

VP0808L-G

TP0620N3-G

TP2535N3-G

TP2540N3-G

VN0300L-G

VN1206L-G

VN2406L-G

VN2410L-G

VN4012L-G

DN2540N3-G-P003

DN2535N3-G-P003

DN2535N3-G-P013

TN0606N3-G-P003

TN0610N3-G-P003

TN0610N3-G-P013

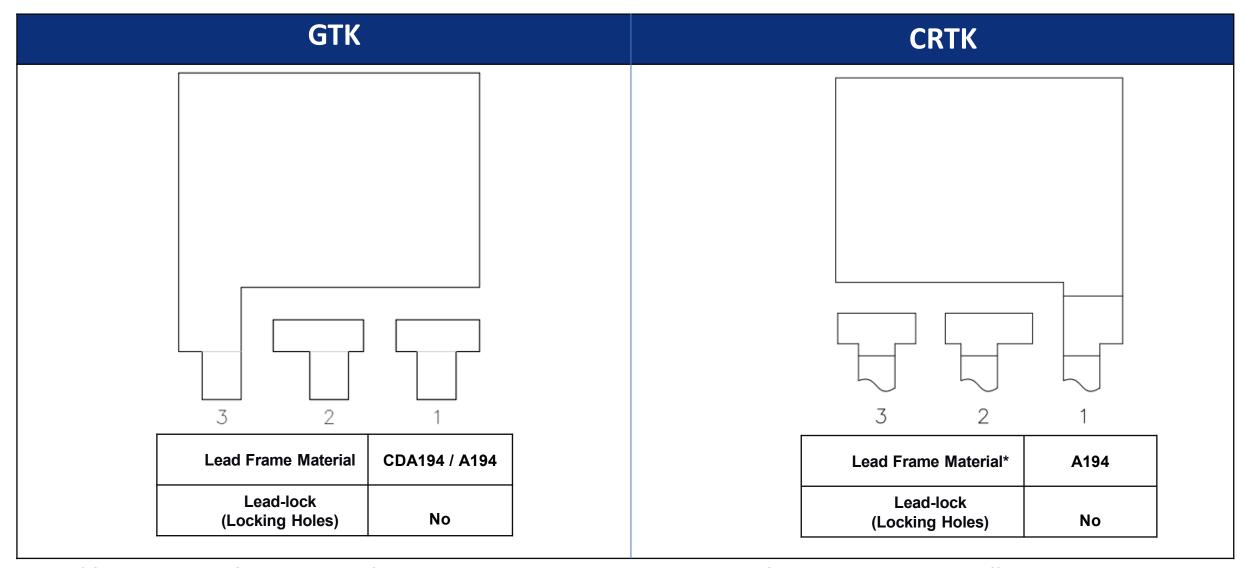
TN0620N3-G-P002

Date: Monday, November 08, 2021

NTDO-04TZHM142 - CCB 4883 Initial Notice: Qualification of CEL-8240 as a new mold compound for 2N700x, DNx5xxN3, LP0701N3, TxxxxxN3, VNxxxxxx and VPxxxxxx device families available in 3L TO-92 package assembled at CRTK assembly TN0620N3-G-P014 TN2540N3-G-P002 TP0606N3-G-P002 TP0606N3-G-P003 TP2540N3-G-P002 VN0300L-G-P002 VN1206L-G-P002 VN2410L-G-P013 VN2410L-G-P014 2N7000-G 2N7000-G-D596 2N7008-G TN2106N3-G TP2104N3-G VN0104N3-G VN0808L-G VN10KN3-G VN2106N3-G VN2222LL-G VP2106N3-G TP2104N3-G-P003 VN0104N3-G-P013 VN10KN3-G-P002 VN10KN3-G-P003 VN10KN3-G-P013 VN10KN3-G-P014 VN2222LL-G-P003 VN2222LL-G-P013 VN2210N3-G VN2224N3-G VP2206N3-G VP2206N3-G-P003 TN2640N3-G TP2635N3-G TP2640N3-G TN0604N3-G TN0702N3-G TN0604N3-G-P005 TN0604N3-G-P013 VN3205N3-G VP3203N3-G VN3205N3-G-P002 LP0701N3-G TP0604N3-G VN2450N3-G VN2460N3-G VP2450N3-G VN2460N3-G-P003 VN2460N3-G-P014

Date: Monday, November 08, 2021

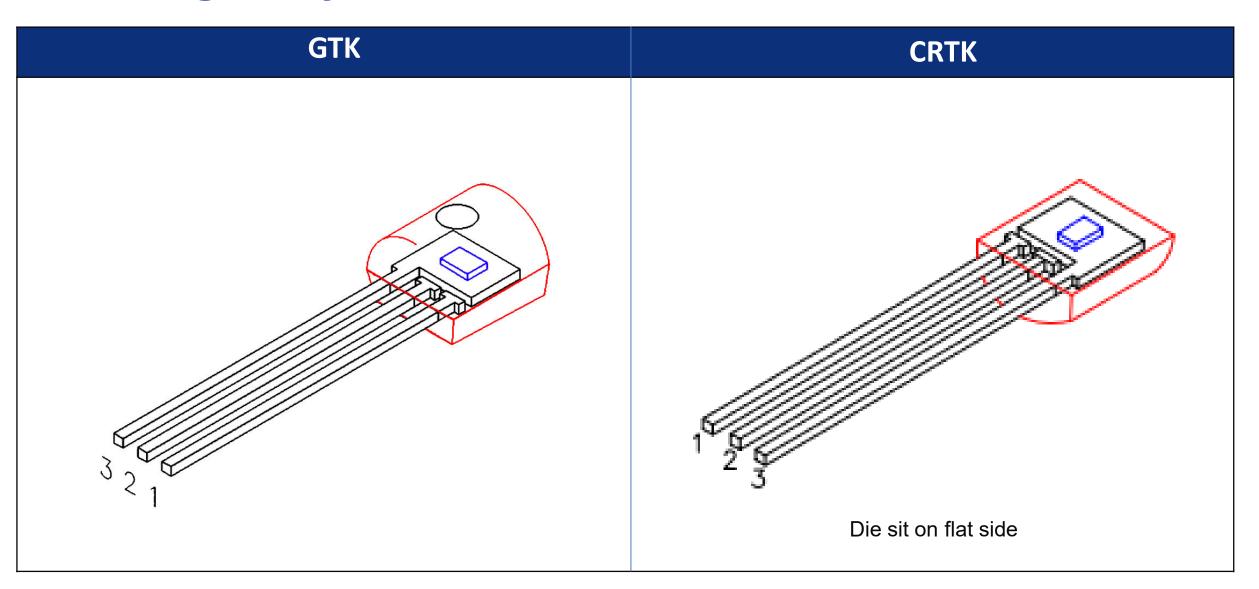
| NTDO-04TZHM142 - CCB 4883 Initial Notice: Qualification of CEL-8240 as a new mold compound for 2N700x, DNx5xxN3, LP0701N3, TxxxxxN3, VNxxxxxx and VPxxxxxx device families available in 3L TO-92 package assembled at CRTK assembly site. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TN3323N3-G                                                                                                                                                                                                                                |
| TN5325N3-G-P002                                                                                                                                                                                                                           |
| 11(3)251(3-G-1 002                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |
| Date: Monday, November 08, 2021                                                                                                                                                                                                           |


# CCB 4883 Pre and Post Change Summary PCN #: NTDO-04TZHM142



A Leading Provider of Smart, Connected and Secure Embedded Control Solutions




## **Lead Frame Comparison**



Note:\*C194, A194 or CDA194 Lead frame material are the same, it is just a MCHP internal labelling difference.



## **Package Layout**







### **QUALIFICATION PLAN SUMMARY**

PCN #: NTDO-04TZHM142

Date: October 14, 2021

Qualification of CEL-8240 as a new mold compound for 2N700x, DNx5xxN3, LP0701N3, TxxxxxN3, VNxxxxxx and VPxxxxxx device families available in 3L TO-92 package assembled at CRTK assembly site.

Purpose: Qualification of CEL-8240 as a new mold compound for 2N700x, DNx5xxN3, LP0701N3, TxxxxxN3, VNxxxxxx and VPxxxxxx device families available in 3L TO-92 package assembled at CRTK assembly site.

|                   | Assembly site                            | CRTK             |  |  |  |  |  |
|-------------------|------------------------------------------|------------------|--|--|--|--|--|
|                   | BD Number                                | TBD              |  |  |  |  |  |
|                   | MP Code (MPC)                            | 630589A2XB00     |  |  |  |  |  |
| Misc.             | Part Number (CPN)                        | TN2640N3-G       |  |  |  |  |  |
|                   | Assembly Shipping Media (T/R, Tube/Tray) | Bag              |  |  |  |  |  |
|                   | Base Quantity Multiple (BQM)             | 1000             |  |  |  |  |  |
|                   | CCB No.                                  | 4883             |  |  |  |  |  |
|                   | Paddle size                              | 140x100          |  |  |  |  |  |
|                   | Material                                 | A194             |  |  |  |  |  |
|                   | DAP Surface Prep                         | Ag               |  |  |  |  |  |
|                   | Process                                  | Stamping         |  |  |  |  |  |
| <u>Lead-Frame</u> | Lead-lock (with Locking holes)           | No               |  |  |  |  |  |
|                   | Part Number                              | TO03NH2101       |  |  |  |  |  |
|                   | Lead Plating                             | Matte Sn         |  |  |  |  |  |
|                   | Strip Size                               | 254.05+/-0.15 mm |  |  |  |  |  |
|                   | Strip Density                            | 50               |  |  |  |  |  |
| Bond Wire         | Material                                 | Au               |  |  |  |  |  |
| Die Attach        | Part Number                              | 84-1 LMIS R4     |  |  |  |  |  |
|                   | Conductive                               | Yes              |  |  |  |  |  |
| <u>MC</u>         | Part Number                              | CEL-8240 GS      |  |  |  |  |  |
| DKC               | PKG Type                                 | TO-92            |  |  |  |  |  |
| <u>PKG</u>        | Pin/Ball Count                           | 3                |  |  |  |  |  |

| Test Name                         | Conditions                                                                                                                                                                                                                               | Sample Size                                               | Min. Qty of<br>Spares per<br>Lot<br>(should be<br>properly<br>marked) | Qty<br>of<br>Lots | Total<br>Units | Fail<br>Accept<br>Qty                | Est.<br>Dur.<br>Days | ATE<br>Test<br>Site | REL<br>Test<br>Site | Pkg. Type | Special Instructions                                                                                         |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|-------------------|----------------|--------------------------------------|----------------------|---------------------|---------------------|-----------|--------------------------------------------------------------------------------------------------------------|
| Standard Pb-free<br>Solderability | J-STD-002D; Perform 8 hour steam aging for Matte tin finish and 1 hour steam aging for NiPdAu finish prior to testing.  Standard Pb-free: Matte tin/ NiPdAu finish, SAC solder, wetting temp 245°C for both SMD & through hole packages. | 22                                                        | 5                                                                     | 1                 | 27             | > 95%<br>lead<br>coverage            | 5                    | MTAI                | MTAI                | TO-92     | Standard Pb-free solderability is the requirement.  SnPb solderability (backward solderability- SMD reflow   |
| Standard SnPB<br>Solderability    | J-STD-002D; Perform 8 hour steam aging prior to testing.  Standard SnPB: SnPb finish, SnPb solder, wetting temp 215°C for SMD & 245°C for through hole packages.                                                                         | 22                                                        | 5                                                                     | 1                 | 27             | > 95%<br>lead<br>coverage            | 5                    | MTAI                | MTAI                | TO-92     | soldering) is required for any plating related changes and highly recommended for other package BOM changes. |
| Wire Bond Pull - WBP              | Mil. Std. 883-2011                                                                                                                                                                                                                       | 5                                                         | 0                                                                     | 1                 | 5              | 0 fails<br>after TC                  | 5                    | MTAI                | MTAI                | TO-92     | 10 bonds from a min. 5 devices.                                                                              |
| Wire Bond Shear -<br>WBS          | CDF-AEC-Q100-001                                                                                                                                                                                                                         | 5                                                         | 0                                                                     | 1                 | 5              | 0                                    | 5                    | MTAI                | MTAI                | TO-92     | 10 bonds from a min. 5 devices.                                                                              |
| Wire Sweep                        |                                                                                                                                                                                                                                          |                                                           |                                                                       |                   |                |                                      |                      | MTAI                | MTAI                | TO-92     | Required for any reduction in wire bond thickness.                                                           |
| Physical Dimensions               | Measure per JESD22 B100 and B108                                                                                                                                                                                                         | 10                                                        | 0                                                                     | 3                 | 30             | 0                                    | 5                    | MTAI                | MTAI                | TO-92     |                                                                                                              |
| Lead Integrity                    | JESD22 B105                                                                                                                                                                                                                              | 5                                                         | 0                                                                     | 1                 | 5              | 0 (No lead<br>breakage<br>or cracks) | 5                    | MTAI                | MTAI                | TO-92     | 3 leads from each of 5 parts.<br>Not required for SMD, only<br>required for through-hole.                    |
| External Visual                   | Mil. Std. 883-2009/2010                                                                                                                                                                                                                  | All devices prior to submission for qualification testing | 0                                                                     | 3                 | ALL            | 0                                    | 5                    | MTAI                | MTAI                | TO-92     |                                                                                                              |
| HAST                              | +130°C/85% RH for 96 hours or<br>110°C/85%RH for 264 hours<br>Electrical test pre and post stress at +25°                                                                                                                                | 77                                                        | 5                                                                     | 3                 | 246            | 0                                    | 10                   | MTAI                | MTAI                | TO-92     | Spares should be properly identified. Use the parts which have gone through Pre-conditioning.                |
| UHAST                             | +130°C/85% RH for 96 hrs or +110°C/85% RH for 264 hrs.  Electrical test pre and post stress at +25°C                                                                                                                                     | 77                                                        | 5                                                                     | 3                 | 246            | 0                                    | 10                   | MTAI                | MTAI                | TO-92     | Spares should be properly identified. Use the parts which have gone through Pre-conditioning.                |
| Temp Cycle                        | -65°C to +150°C for 500 cycles.  Electrical test pre and post stress at +25°C; 3-gram force WBP, on 5 devices from 1 lot, test following Temp Cycle stress.                                                                              | 77                                                        | 5                                                                     | 3                 | 246            | 0                                    | 15                   | MTAI                | MTAI                | TO-92     | Spares should be properly identified. Use the parts which have gone through Pre-conditioning.                |