

GSM Penta Band / LTE / 868MHz

Miniature Stubby SMA

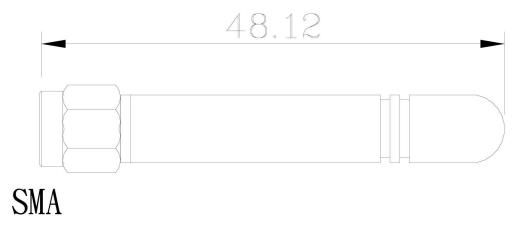
Features

- 824-960/1710-1990/2170MHz
- 1/4 Wave Monopole Antenna
- Omni-Directional
- VSWR < 3.0
- SMA Connector
- 50Ω Impedance
- OdBi Gain
- ABS / Rubber Housing
- Operates from –40 to+70°C

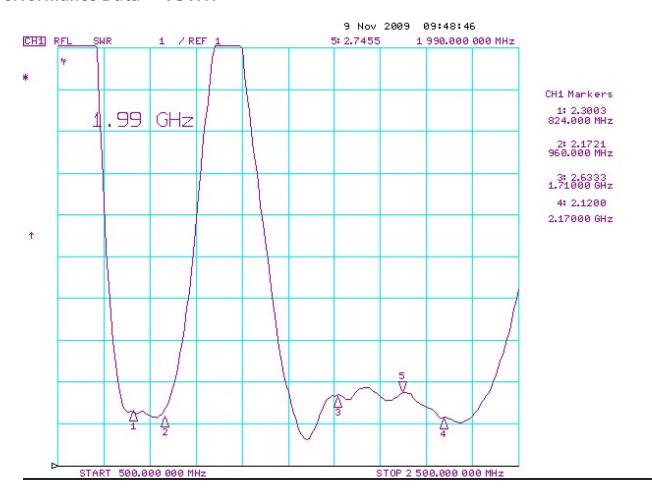
Applications

- General Low Power Radio
- M2M Applications
- Telemetry

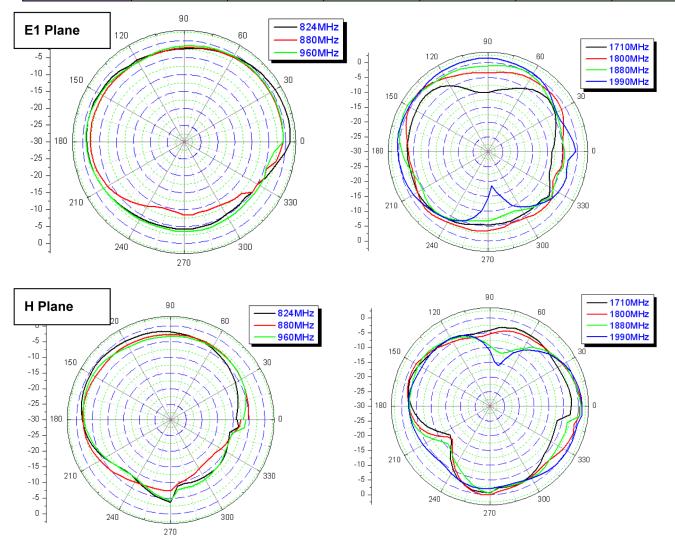
A Miniature antenna for demanding applications. This antenna provides operation a high performance across a broad spectrum of frequencies. Housed in a rugged low profile ABS, this antenna is compact and resistant to Vandalism.


Ordering Information

Part No	Description				
ANT-MSTUB-SMAF	Stubby Antenna LTE 824-960/1710-1990/2170MHz SMA(Female)				
ANT-MSTUBR-SMAM	Stubby Antenna LTE 824-960/1710-1990/2170MHz SMA(Male)				



Mechanical Detail—Straight Version

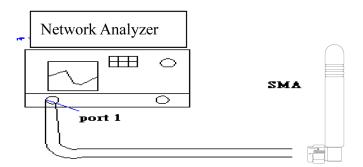

Performance Data — VSWR

Performance Data — RETURN LOSS

Frequency (MHz)	H Plane			E1 Plane		
Unit dBi	Max.	Min.	Avg.	Max.	Min.	Avg.
824	1.52	-5.61	-1.64	-0.45	-10.65	-4.09
880	-0.60	-9.54	-2.94	-1.88	-12.53	-4.42
960	-0.42	-4.52	-2.06	-1.36	-10.19	-4.47
1710	-1.89	-10.09	-3.62	-0.65	-13.31	-3.39
1800	0.79	-9.60	-2.60	1.20	-13.02	-2.30
1880	1.16	-10.93	-2.54	1.03	-11.55	-2.98
1990	1.57	-18.53	-1.21	1.44	-15.88	-2.22

Performance Data

2170	1990	1710	960	824	Frequency (MHz)
					Point Values
0	0	0	0	0	Ant. Port Input Pwr. (dBm)
-2.55152	-3.35456	-3.43015	-4.53846	-3.02158	Tot. Rad. Pwr. (dBm)
0.578211	-0.177191	-0.31156	-2.20475	-0.273484	Peak EIRP (dBm)
3.12973	3.17737	3.11859	2.33372	2.7481	Directivity (dBi)
-2.55152	-3.35456	-3.43015	-4.53846	-3.02158	Efficiency (dB)
55.571	46.1896	45.3925	35.1685	49.8703	Efficiency (%)
0.578211	-0.177191	-0.31156	-2.20475	-0.273484	Gain (dBi)
-3.53953	-4.23522	-4.52182	-6.37139	-4.7446	NHPRP i/4 (dBm)
-4.96417	-5.58046	-5.92586	-7.99471	-6.34653	NHPRP i/6 (dBm)
-6.12253	-6.7178	-7.02402	-9.23127	-7.517	NHPRP i/8 (dBm)
-4.67429	-6.16282	-5.69479	-7.0721	-5.74067	Upper Hem. PRP (dBm)
-6.67857	-6.57675	-7.34124	-8.08427	-6.34403	Lower Hem. PRP (dBm)
-0.988006	-0.880662	-1.09167	-1.83292	-1.72302	NHPRP4 / TRP Ratio (dB)
79.6525	81.6458	77.7738	65.5704	67.2509	NHPRP4 / TRP Ratio (%)
-2.03438	-2.73007	-3.01667	-4.86624	-3.23945	Near Horz. TRP for i/4 (dBm)
-2.41265	-2.2259	-2.49571	-3.45624	-3.32495	NHPRP6 / TRP Ratio (dB)
57.3767	59.8977	56.2897	45.1207	46.5055	NHPRP6 / TRP Ratio (%)
-1.95387	-2.57016	-2.91556	-4.98441	-3.33623	Near Horz. TRP for i/6 (dBm)
-3.57101	-3.36324	-3.59387	-4.69281	-4.49542	NHPRP8 / TRP Ratio (dB)
43.9439	46.0974	43.7133	33.9406	35.5188	NHPRP8 / TRP Ratio (%)
-1.95093	-2.54619	-2.85242	-5.05967	-3.34539	Near Horz. TRP for i/8 (dBm)
-2.12277	-2.80827	-2.26463	-2.53364	-2.71909	UHPRP / TRP Ratio (dB)
61.3371	52.381	59.3659	55.8003	53.4676	UHPRP / TRP Ratio (%)
-1.66399	-3.15252	-2.68449	-4.0618	-2.73037	Upper Hem.Total Radiated Pwr (dBm)
-4.12705	-3.22219	-3.91109	-3.5458	-3.32245	LHPRP / TRP Ratio (dB)
38.6629	47.619	40.6341	44.1997	46.5324	LHPRP / TRP Ratio (%)
-3.66827	-3.56645	-4.33094	-5.07397	-3.33373	Lower Hem. Total Radiated Pwr(dBm)
5.19069	2.40834	5.71434	2.04379	2.08198	Front/Back Ratio (dB)
238	151	194	125	282	Phi BW (?
103	112	138	61	63	+ Phi BW (?


Total Frequency (MHz)	824	960	1710	1990	2170
Point Values					
- Phi BW (?	219	64	56	39	135
Theta BW (?	107	304	122	115	82
+ Th. BW (?	50	204	87	72	58
- Th. BW (?	57	100	35	43	24
Boresight Phi (?	33.65	53.4	304.1	42.05	56.7
Boresight Th. (?	45	60	60	75	45
Maximum Power (dBm)	-0.273484	-2.20475	-0.31156	-0.177191	0.578211
Minimum Power (dBm)	-15.3831	-20.1007	-16.2884	-15.7609	-14.7237
Average Power (dBm)	-2.7917	-4.2109	-4.0649	-4.32296	-3.55684
Max/Min Ratio (dB)	15.1096	17.896	15.9768	15.5837	15.3019
Max/Avg Ratio (dB)	2.51822	2.00615	3.75334	4.14577	4.13505
Min/Avg Ratio (dB)	-12.5914	-15.8898	-12.2235	-11.4379	-11.1669
Average Gain (dB)	-3.02158	-4.53846	-3.43015	-3.35456	-2.55152
E-Plane BW (?	87	102	191	102	84
+ E-Plane BW (?	46	64	142	54	22
- E-Plane BW (?	41	38	49	48	62
H-Plane BW (?	360	360	97	81	102
+ H-Plane BW (?	360	360	51	36	57
- H-Plane BW (?	0	0	46	45	45

6. Measurement Setup

(1) Reflection Coefficient Measurement:

- (a) Instrument: Network Analyzer
- (b) Setup:
 - (1) Calibrate the Network Analyzer by one port calibration using O.S.L calibration kits.
 - (II) Connect the antenna under test to the Network Analyzer.
 - (III) Measure the S11(reflection coefficient) shown in Fig. 1.
 - (IV) Generally, the S11 is less than $\,$ 10dB to ensure the 90% power into antenna and only less than 10% power back to system

(2) Pattern measurement:

a . The anechoic chamber is a far–field measurement system with size of $7m\times3.3m\times3.3m$. The quiet zone region is $30cm \times 30cm \times 30cm$ in the center of the rotator.

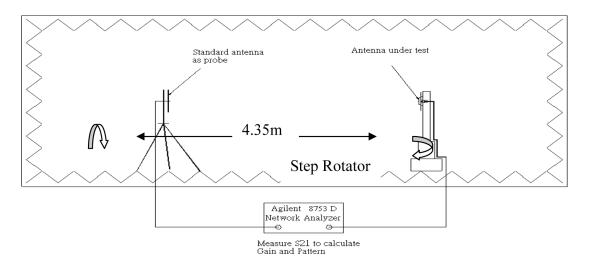
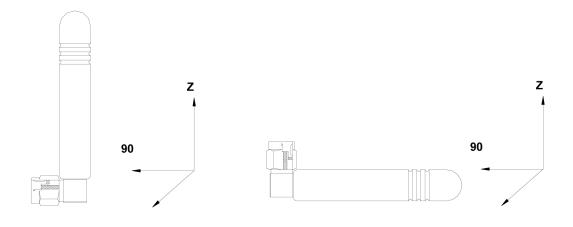


Fig.2 The interior components of the anechoic chamber

- b. The probing antenna is the BBHA 9120 LFA 700MHz ~ 6GHz module (9120D horn antenna), which is placed in the one side of the chamber room. And the antenna under testing (AUT) is placed in the other side of the chamber. The distance between the probing antenna and the AUT is about 4m.
- c. While we measure the radiation patterns by rotating AUT with 360 degrees and repeat again by replacing the AUT with the standard gain antenna under test, we compare both data and using a formula to obtain the gain of AUT. The standard gain antenna is a gain horn (BBHA 9120 LFA 700MHz~6GHZ).

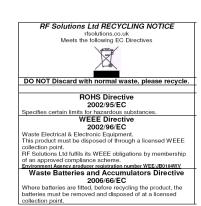
$$G_{AUT} = G_{s \tan d} + P_{AUT} - P_{s \tan d}$$

 G_{AUT} : Gain of AUT


 $G_{s \tan d}$: Gain of $S \tan dard$ Gain Antenna

 P_{AUT} : Measured Power of AUT

 $P_{s tan d}$: Measured Power of S tan dard Gain Antenna


- d. The scanning method is CW wave with 6 degree by one step.
- **e** . We measure the radiation pattern in the free space situation at the lowest, middle and highest frequency for the $H(X-Y) \cdot E1(Y-Z)$ planes, which defined in figure next page.

(3) Plane definition:

H-Plane E1-Plane

Fig.3 The plane definition for H and E1 planes.

Whilst the information in this document is believed to be correct at the time of issue, RF Solutions Ltd does not accept any liability whatsoever for its accuracy, adequacy or completeness. No express or implied warranty or representation is given relating to the information contained in this document. RF Solutions Ltd reserves the right to make changes and improvements to the product(s) described herein without notice. Buyers and other users should determine for themselves the suitability of any such information or products for their own particular requirements or specification(s). RF Solutions Ltd shall not be liable for any loss or damage caused as a result of user's own determination of how to deploy or use RF Solutions Ltd's products. Use of RF Solutions Ltd products or components in life support and/or safety applications is not authorised except with express written approval. No licences are created, implicitly or otherwise, under any of RF Solutions Ltd's intellectual property rights. Liability for loss or damage resulting or caused by reliance on the information contained herein or from the use of the product (including liability resulting from negligence or where RF Solutions Ltd was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict RF Solutions Ltd's liability for death or personal injury resulting from its negligence.

www.rfsolutions.co.uk