
AN258

Low Cost USB Microcontroller Programmer
The building of the PICkit™ 1 FLASH Starter Kit
INTRODUCTION

The PICkit™ 1 FLASH Starter Kit is a low cost

programmer for Microchip's 8/14-pin FLASH

microcontrollers. On the surface, the PICkit 1 is an

easy to use programmer. What may not be so obvious

to its user is the PICkit 1 is also a useful design

example illustrating primarily two things: (1) a

Windows®-based low speed USB application and (2)

a simple boost power supply design. This application

note discusses all aspects of design that went into

creating the PICkit 1. This application note will explore

in detail the hardware design, Windows-based soft-

ware, and PIC16C745 firmware. The following is a list

of features that make the PICkit 1 a useful design

example.

• USB Benefits

- Plug and play

- Non-bulky cables

- No driver development needed (for Human

Interface Device class)

- Powered by PC (extra cable not needed)

• Low cost boost power supply

- Firmware implemented PID control

- Use of on-board CCP and ADC

- Software configurable VPP level from 9V to

14V

• Windows-based programming Interface

- Simple ASCII based communication with

device

- Portable Visual Basic USB functions

FIGURE 1: PICkit™ 1 FLASH STARTER KIT

PRINTED CIRCUIT BOARD

USB SIDE OF THINGS

USB devices have provided consumers with easy to

use peripherals. The advantages of USB peripherals

are numerous over earlier peripheral communication

protocols, namely the serial and parallel ports. A stan-

dardized cable is used for all USB peripherals and the

cable itself is less bulky compared to serial or parallel

cables. USB connectors are distinguishable from one

end to the other and are small and convenient. As

laptop computers, PDAs and tablet PCs become

slimmer and more compact, fewer and fewer support

the previous peripheral protocols. USB devices can be

bus powered, or powered directly by the PC, therefore

eliminating the need for an extra power cord. USB

devices are hot pluggable without risking damage to

the PC or device. As a result of these benefits, periph-

eral developers are almost exclusively developing

USB devices. For the developer who knows very little

about the USB specification, this can be a daunting

task. In an attempt to alleviate this task, this section will

detail the software and firmware used to create USB

communication between the PICkit 1 programmer

board and PICkit 1 Graphical User Interface (GUI).

Both the firmware and software can easily be modified

to fit a variety of other applications.

Authors: Reston Condit

Dan Butler

Microchip Technology Inc.
 2003 Microchip Technology Inc. DS00258A-page 1

AN258
Implementation: Firmware

The PIC16C745 is Microchip's low speed USB

microcontroller used to facilitate USB communication

between the host computer and the PICkit 1 program-

mer board. The PIC16C745's on-chip USB peripheral,

or Serial Interface Engine (SIE), provides the lowest

level interface to the USB. Microchip provides USB

Support Firmware to provide a mid-level interface

between the SIE and main loop in the application. This

firmware, also called the Ch. 9 library firmware,

primarily implements the functionality described in Ch. 9

of the USB Specification, version 1.1. Ch. 9 describes

what requests the host makes of a USB device and how

the device responds appropriately to these requests.

Get and Put functions are provided in the Ch. 9 library

to facilitate moving data onto and off of the bus in the

main loop. The USB Support Firmware was used as a

starting place to develop the PICkit 1 firmware.

The USB Support Firmware is more than just a library,

it is also a working demo. The firmware creates a

device that enumerates as a USB mouse and then

sends mouse data that causes the cursor to move in a

circle. This functionality was replaced by the functional-

ity the PICkit 1 requires. Two things were changed: (1)

the USB descriptors and (2) the main loop. Initialization

of the SIE (Serial Interface Engine) was left the same

as found in the USB Support Firmware. USB

initialization consists of calling the function InitUSB and

macro ConfiguredUSB.

DESCRIPTORS

The first thing altered in the USB Support Firmware

was the descriptors. Descriptors describe to the host

what information will be sent to the host. For the PICkit

1 application, generic data is sent back and forth to the

host via Endpoint 1. By utilizing the Human Interface

Device (HID) class, it is possible to create a device that

does not require the development of a driver on the

host side. HID devices are supported automatically by

Microsoft® Windows (98 SE and later.) Therefore, the

descriptors for the PICkit 1 describe a vendor-defined

HID class device that sends eight bytes to and from the

host via Endpoint One. The vendor-defined designa-

tion is made in the report descriptor, a descriptor

required by HID devices. This designation makes it

possible to use the Jan Axelson functions discussed

later in this document in “Implementation: Software”. All

descriptors are listed with comments in Appendix A.

These descriptors are easily transferable to another

application, with the exception that the vendor ID

(owned by Microchip) and string descriptors be

changed.

MAIN LOOP

The main loop of the PICkit 1 firmware accomplishes

the following primary tasks:

1. Services USB flags

2. Receives commands and data from the host

3. Transmits requested data to the host

4. Translates ASCII commands into actions

Servicing the flags generated by the Serial Interface

Engine (SIE) is accomplished by calling the function

ServiceUSB. This function must be called at least once

every 50 ms in order to maintain reliable USB commu-

nication. The critical USB flags are serviced in the inter-

rupt service routine (ISR) so this was left unchanged

from the USB Support Firmware. All USB flags are

serviced by ServiceUSB and the ISR, so other than

polling ServiceUSB, the Ch.9 library makes handling

USB requests transparent to the developer. A simple

Get/Put interface is provided by the Ch.9 library to

make getting data from and sending data over the USB

easy to implement in the main loop.

Data is received from the host computer by the GetEP1

function (GetEP2 is provided if Endpoint 2 is the

desired OUT endpoint.) This function is polled until the

carry flag is set. The carry flag (STATUS, C) is set when

the endpoint buffer is full, indicating data has been

received from the host. GetEP1 transfers the data from

the endpoint buffer to the user's buffer defined at the

address pointed to by the FSR register and IRP bit.

This parameter must be set up prior to polling the

GetEP1 function. GetEP1 returns the number of bytes

received in W.

Data is sent to the host in a similar fashion, using the

PutEP1 function. Before calling PutEP1, the buffer

where data is waiting to be sent to the host must be

pointed to by the FSR register and IRP bit, and length

of the buffer loaded into in the W register. If the

endpoint buffer is empty, the carry flag will be sent after

calling PutEP1, indicating that the data will successfully

be sent to the host. PutEP1 should be polled until the

carry flag is set in order to ensure the data is sent to the

host successfully.

Note: ConfiguredUSB sets the Zero flag

(STATUS, Z) when the device is config-

ured. The device must be configured in

order to send or receive user data. The

device must reach the configured state

before using GetEP1 or PutEP1.

Note: The PICkit 1 descriptors describe two

configurations. For the purposes of this

application note the second configuration

can be ignored. This configuration was

created so that the PICkit 1 can interface

with Macintosh® computers. Non-HID

descriptors are more easily interfaced by

the Macintosh operating system.
DS00258A-page 2  2003 Microchip Technology Inc.

AN258
“Implementation: Software” talks about the ASCII

commands sent by the host to the PIC16C745. The

PIC16C745 translates these commands into actions.

For instance, a “P” received from the host corresponds

to the action “Enter Programming mode.” The firmware

interprets this command into the necessary action by

toggling VDD and VPP to the 8/14-pin FLASH microcon-

troller in the appropriate sequence so that the 8/14-pin

device enters Programming mode. All programming

commands cause the PIC16C745 to initiate the

corresponding actions defined in the programming

specifications for the 8/14-pin FLASH microcontrollers

(DS41173 Rev B, DS41191 Rev B.)

Implementation: Software

The Graphical User Interface (GUI) for PICkit 1 was

written using Visual Basic® 6.0. This section will

explore the low level interface of the Visual Basic®

software that communicates with the PIC16C745 via

USB link. In addition, the high level interface, where the

host directs the programming process, will be dis-

cussed briefly. The high level interface is not discussed

in depth as it is unlikely the reader will want to adapt

this functionality to his/her application. The software

and firmware are extensively commented should the

reader be curious. Figure 2 shows what the PICkit 1

Visual Basic® based GUI looks like.

FIGURE 2: PICkit 1 FLASH STARTER

KIT GUI INTERFACE

Low Level Details

Much of this section is adapted from Jan Axelson's

book, “USB Complete, 2nd edition.” In Chapters 15 and

16 she discusses in depth, the Windows API functions

that are available for interfacing to HID devices. Also,

these chapters show how to declare and call the

functions in both Visual C++® and Visual Basic®. This

application note limits the scope of describing these

functions to the Visual Basic® functions utilized in the

PICkit 1 software.

The host will enumerate a device as soon as the device

is connected to the computer. At this point, the device

can be accessed from any Windows application. Jan

Axelson describes the process for interfacing with a

HID using the HID class application calls. The code to

do this is available from Jan's web site www.lvr.com,

both in Visual C++® and Visual Basic®, usbhidio2c.zip

and usbhidio2.zip respectively. The function declara-

tion modules included in the PICkit 1 software are spin-

offs from the modules in these examples. The following

paragraphs describe the process by which the PICkit 1

identifies and communicates with PICkit 1.

Note: The specifics of the bit bang operations

performed for each command are left to

the reader to explore in the PICkit 1

PIC16C745 firmware (extensively

commented) included with this applica-

tion note, and/or in the PIC12F629/675

and PIC16F630/16F676 programming

specifications.
 2003 Microchip Technology Inc. DS00258A-page 3

AN258
Low Level Programming

The first function call is HID_GetHidGuid. This is done

in order to get the GUID, or Globally Unique Identifier,

for the HID class. Once this is done, SetupDiGetClass-

Dev is used to get a list of the enumerated HID devices.

The software searches the list for a device matching

the PICkit's product and vendor IDs. If a match is found,

the device's correct interface is found using SetupDiE-

numDeviceInterface. The application then calls Setup-

DiEnumDeviceInterfaceDetail to get the device path.

With this information, the application can open the

device using CreateFile and communicate using

standard IO Calls, ReadFile and WriteFile. This

process is greatly abbreviated. Refer to Ch. 16 of “USB

Complete” or the PICkit 1 software listing for details.

The PICkit 1 implements this process within the

ReadReport and WriteToDevice functions. This

eliminates the need for a separate OpenFile function.

These functions keep track of whether a device is

found, and if not, run though the process to find it.

Developers adapting the PICkit 1 software to their own

needs can use ReadReport and WriteToDevice outright

without dealing with the process described in the

previous paragraph. These functions are explained in

more detail in the next paragraphs.

ReadReport returns a buffer from the USB device.

PICkit 1 uses overlapped reads and writes. That means

rather than blocking the process waiting for a buffer to

be returned from the device, ReadReport immediately

returns the oldest buffer received. If no buffer has been

received, it still returns immediately with an error code.

While non-overlapped reads may seem simpler, it

presents a problem in that it blocks the process until the

buffer has been returned. The process could wait

forever if the board is not attached.

The following is a list of function parameters:

• Inputs - None from process. Uses constants for

vendor and device IDs

• Outputs - ReadBuffer, global array of 8 bytes

• Status - Result, global integer

WriteToDevice sends an 8 byte command buffer to the

device. The command is passed as a string type.

Internally, WriteToDevice copies the string over to an

array of 8 bytes. A leading '0' is used by the HID class

driver as a report ID.

The following is a list of function parameters:

• Inputs - Command string

• Outputs - None

• Status - Result, global integer

One limitation to ReadReport and WriteToDevice is that

they require communication to occur 8 bytes at a time.

Short packets are not allowed, so OUT transactions are

padded with a null command to the device. Likewise IN

transactions are padded with null bytes. The next

section will clarify this issue.

PICkit 1 is supported on Windows® 98SE, Windows®

ME, Windows® 2000, and Windows® XP. PICkit 1 will

not work on Windows® NT or Windows® 98 Gold. The

reason PICkit 1 will not work on Windows 98 Gold is

that the PICkit 1 uses an Interrupt OUT endpoint.

Interrupt OUT endpoints were not introduced until

version 1.10 of the USB Specification. Windows 98

Gold supported only version 1.00.

HIGH LEVEL PROGRAMMING

The PICkit 1 PIC16C745 device implements only the

most primitive programming operations, very closely

aligned with the actual programming commands

provided in the part. These commands are described in

the PIC12F629/675 and PIC16F630/676 programming

specifications. It is the host that directs the sequence of

these primitive functions in order to implement the

programming of the 8/14-pin device. This was done so

that as long as the command table doesn't change from

device to device, future devices of varying memory

sizes can be accommodated with only a change to host

software, not firmware.

Currently there are thirteen commands implemented:

• 'P' - Enter Programming mode. Enables Program-

ming mode in the device. Must be done

before any other commands can be

executed.

• 'p' - Exit Programming mode. Shuts down

Programming mode.

• 'E' - Bulk erase program memory

• 'e' - Bulk erase data memory

• 'W' -Write program memory and increment PC to

the next word address

• 'D' - Write byte to EE Data memory

• 'C' - Advance PC to Configuration memory

(0x2000)

• 'I' - Increment address n times

• 'R' - Read four words from program memory

• 'r' - read eight bytes from EE Data memory

• 'V' - Control device power and 2.5 kHz control

• 'v' - Return firmware version, three bytes

<major>, <minor>, <dot>

• 'S' - Calculate checksums for both Program

memory and EE Data memory.

• 'Z' - Null command, used to pad out the 8 byte

command packets

Commands are packed conveniently into the 8 byte

packets (e.g., Write commands take three bytes: 'W',

<high byte>, <low byte>). Two of these are packed into

each 8 byte packet and the last two bytes are padded

with null commands. The Read commands read as

much as will fit into a return packet. Read Program

memory reads and returns 4 words; Read EE Data

returns 8 bytes. Since eight of these commands can be

packed into each OUT transaction, 32 words or 64

bytes may be read as a result of one OUT transaction.
DS00258A-page 4  2003 Microchip Technology Inc.

AN258
The erase process is complicated by calibration values

that must be preserved. The OSCCAL value is stored

at the last location of program memory and the

Bandgap calibration is in the high order bits of the

configuration word. These must be read prior to erasing

and restored after the erase.

THE BOOST POWER SUPPLY

A boost power supply is needed on the PICkit 1

programmer board in order to create the programming

voltage (VPP) called for in the PIC12F629/675

programming specification. The boost power supply is

a combination of hardware and firmware design.

Implementation: Hardware

The hardware developed for the PICkit 1 FLASH

Starter Kit intentionally uses as few components as

necessary to keep the cost low. Most of the compo-

nents on the PICkit 1 programmer board make up the

boost power supply. The boost power supply, shown in

Figure 3, creates the 13V voltage needed for program-

ming Microchip's low pin count FLASH devices. CCP1

runs in PWM mode to create the input to the boost

circuit. Timer2 sets the period of the PWM. An A/D

channel (RA1) provides feedback to the PIC16C745.

VPP is switched on and off by pin RA0. Similarly, RB7

switches power to VDD. Finally, RC6 and RC7 bit bang

programming commands to the device.

FIGURE 1-1: PROGRAMMING HARDWARE

P
IC
1
6
C
7
4
5

R
C
2
/C
C
P
1

R
A
1
/A
N
1

R
A
0
/A
N
0

R
B
7

R
C
7
/R
X
/D
T

R
C
6
/T
X
/C
K

V
P
P
_
P
U
M
P

V
P
P
_
F
E
E
D
B
A
C
K

V
P
P
_
O
F
F

V
D
D
_
E
N
A
B
L
E

IC
S
P
_
D
A
T
A

IC
S
P
_
C
L
K

V
P
P

+
5
_
S
W
IT
C
H
E
D

IC
S
P
_
D
A
T
A

IC
S
P
_
C
L
K

G
P
3
/M
C
L
R
/V

P
P

P
IC
1
2
F
6
X
X

V
D
D

G
P
0
/I
C
S
P
D
A
T
A

G
P
1
/I
C
S
P
C
L
K

C
5

0
.1
 µ
F

R
2
2

1
0
KQ
4

1
0
0
K

2
N
3
9
0
6

R
1
3

R
1
4

1
0
K Q
3

2
N
3
9
0
4

R
1
2

1
0
K

C
1

0
.1
 µ
F

+
5
V

Q
1

2
N
3
9
0
6

R
1
9

1
0
K

C
4

4
7
 µ
F

2
5
V

R
1
0

4
.7
K

R
1
1

2
.7
K

+

1
N
5
8
1
7

D
1
3

Q
2

2
N
3
9
0
4

R
9

1
0
K

L
1

6
8
0
 µ
H

C
3

1
0
 µ
F

1
6
V

+

+
5
V

1

2
3

1

2

3

1

2

3

1

2

3

 2003 Microchip Technology Inc. DS00258A-page 5

AN258
Details on how a boost circuit works are discussed in

Technical Brief TB053. What happens briefly is that

when Q2 is turned on, inductor L1 charges. When Q2

is switched off, the energy stored in L1 flows through

D13 to the storage capacitor (C4) and load. Q3 and Q4

make up a switch for turning VPP on and off to the

FLASH device. The switch is toggled on and off by

RA0. Assuming the resistive load is the held constant,

VPP will change with respect to the energy released

from L1. L1 stores energy during the high phase of the

PWM and releases energy during the low phase of the

PWM. This boost circuit runs in Discontinuous mode,

meaning L1 will always discharge fully during the low

phase of the PWM. VPP increases as the duty cycle of

the PWM increases. The stability of VPP is achieved

with a firmware PID.

Implementation: Firmware

The boost circuit routines are located in two linked files:

pid.asm and VPPCntl.asm. VPPCntl.asm contains the

functions for initializing the PIC16C745 peripherals

used to generate the boost circuit, turning VPP and VDD

on and off, and clamping VPP high or low. This file also

contains the DoSwitcher function which is called from

the ISR when Timer2 interrupts. Timer2 is set up to

overflow at a frequency of 93.75 kHz. The Timer2

postscaler is 1:16, therefore the Timer2 interrupt occurs

at a frequency of 5.86 kHz. DoSwitcher reads the A/D

value generated on the boost circuit feedback pin.

DoSwitcher then transfers this value to the PID function

where a correction factor is calculated. Several

parameters are defined at the head of VPPCntl.asm.

They are described in Table 1.

TABLE 1: PARAMETER

PID control is used to stabilize VPP. From a control

standpoint the boost circuit looks like the following

system:

FIGURE 3: BOOST CIRCUIT DIAGRAM

Any increase or decrease in the duty cycle causes a

respective rise or fall in VPP. The variable governing the

duty cycle is the control variable (CV). The control

variable is calculated for the next cycle based on the

proportional, integral and differential analysis of the

feedback. Equation 1 shows this relation.

EQUATION 1:

Pk, Ik, and Dk are all functions of the difference

between the Set Point (SP) and Present Variable (PV).

This difference is the error (ek) for a present cycle.

Equation 2 shows this relation.

EQUATION 2:

The proportional term in Equation 1 is directly propor-

tional to ek. It is defined as ek multiplied by the propor-

tionality gain constant, Kp (Equation 3). The

proportional term's contribution to the output is based

only on the amount of error. By increasing Kp, the

response time of the output decreases and the

overshoot increases. If Kp is too large the system will

be unstable. In summary, Pk compensates for a change

in what CV currently is and what it needs to be.

EQUATION 3:

The integral term Ik is equal to the previous integral

calculation plus the deviation from the Set Point, ek,

multiplied by the integration gain constant, Ki

(Equation 4). From a conceptional standpoint, Ik effects

the output based on how long the error has been

around, as well as the amount of error. The longer the

error is present, the greater Ik contributes to changing

the output. Ik tends to integrate the error to zero.

EQUATION 4:

The final contribution to Equation 1 is the derivative

term. This term is equal to the derivative gain constant,

Kd, multiplied by the difference between the previous

deviation from the Set Point, ek-1, and the current

deviation, ek. The derivative term affects the output

based on the rate of change of the error. The faster the

rate of change of the error, the greater affect this term

has on the output. Dk compensates for a dynamically

changing CV requirement.

Parameter Description

VCHECK ADC value corresponding to VPP =

13V

PWM_MAX Max duty cycle

skip_reload Number of TMR2 interrupts between

reading ADC

PWM
Control

Boost
Circuit

SP e

+

-

YCV

PV

CVk+1 = Pk + Ik + Dk

ek = SP - PVk

Pk = Kpek

Ik = Ik-1 + Kiek
DS00258A-page 6  2003 Microchip Technology Inc.

AN258
EQUATION 5:

Trial and error was used to find the values of Kp, Ki, and

Kd that gave VPP the best balance between rise time,

stability and overshoot. These values are defined in

pid.inc.

Conclusion

The USB design for the PICkit 1 FLASH starter kit is

very versatile and can be used in a variety of other

applications with minimal changes to its firmware and

Visual Basic software. For developers looking to create

a Windows-based USB application using the

PIC16C745, the PICkit 1 design offers a ready made

example of how to do it. In addition, the PICkit 1 also

provides an example of boost circuit design using

minimal components. As a design example, the PICkit

1 offers more to engineers than just a low cost PIC®

MCU programmer.

References

• Jan Axelson, “USB Complete, Second Edition”, ©

2001, Lakeview Research, Madison, WI

• Jan Axelson’s website: www.lvr.com

• PICkit™ 1 User's Guide (DS40051C)

• PIC12F629/675 Programming Specification

(DS41173C)

• TB053, “Generating High Voltage Using the

PIC16C781/782” (DS91053A)

• Universal Serial Bus Specification, Revision 1.1 ©

1998, Compaq Computer Corporation, Intel

Corporation, Microsoft Corporation, NEC

Corporation

• HID Class Definition, revision 1.1 © 1998,
Compaq Computer Corporation, Intel
Corporation, Microsoft Corporation, NEC
Corporation

• USB Support Firmware User’s Guide

Dk = Kd (ek-1 – ek)
 2003 Microchip Technology Inc. DS00258A-page 7

AN258
NOTES:
DS00258A-page 8  2003 Microchip Technology Inc.

AN258
APPENDIX A: USB DESCRIPTORS

Descriptor fields defined in Ch9 of USB Specification and HID Class Definition

Device Descriptor
0x12 ; bLength Length of descriptor
0x01 ; bDescType This is a DEVICE descriptor
0x10 ; bcdUSBUSB USB spec. revision 1.10 (low byte)
0x01 ; (high byte)
0x00 ; bDeviceClass
0x00 ; bDeviceSubClass
0x00 ; bDeviceProtocol
0x08 ; bMaxPacketSize0
0xD8 ; idVendor 0x04D8 is Microchip's Vendor ID
0x04 ; (high byte)
0x32 ; idProduct Product ID = 50 (low byte)
0x00 ; (high byte)
0x00 ; bcdDevice (low byte)
0x00 ; (high byte)
0x01 ; iManufacturer String Index = 1
0x02 ; iProduct String Index = 2
0x00 ; iSerialNumber 0
0x02 ; bNumConfigs 2 configurations

Configuration Descriptor 1 (Index 0)
0x09 ; bLength Length of descriptor
0x02 ; bDescType This is a CONFIGURATION descriptor
0x29 ; wTotalLength Total length of all descriptors in
0x00 this configuration
0x01 ; bNumInterfaces Number of interfaces in this config
0x01 ; bConfigValue Configuration Value
0x03 ; iConfig String Index = 3
0x80 ; bmAttributes bus powered, remote wakeup disabled
0x32 ; MaxPower 100mA (2mA*32h)

Interface Descriptor
0x09 ; bLength Length of descriptor
0x04 ; bDescType This is an INTERFACE descriptor
0x00 ; bInterfaceNum number of interface, 0 based array
0x00 ; bAlternatSet Alternate setting - N/A
0x02 ; bNumEndpoints # of endpoints in this interface
0x03 ; bInterfaceClass assigned by the USB
0x00 ; bIntrfcSubClass Not A boot device
0x00 ; bIntrfcProtocol none
0x00 ; iInterface String Index = 0 (none)

HID Descriptor
0x09 ; bLength Length of descriptor
0x21 ; bDescType This is an HID descriptor
0x00 ; bcfHID HID spec. revision 1.00 (low byte)
0x01 (high byte)
0x00 ; bCountryCode Localized country code (none)
0x01 ; bNumDescriptors # of HID class descriptors
0x22 ; bDescType Report descriptor type
0x1D ; bDescLength Length of Report descr. (low byte)
0x00 (high byte)

Endpoint Descriptor
0x07 ; bLength Length of descriptor
0x05 ; bDescType This is an ENDPOINT descriptor
0x81 ; bEndpointAddr EP1, In
0x03 ; bmAttributes Transfer Type: Interrupt
0x08 ; wMaxPacketSize Maximum packet size (low byte)
0x00 (high byte)
0x0A ; bInterval polling interval: 10ms

Endpoint Descriptor
0x07 ; bLength Length of descriptor
0x05 ; bDescType
0x01 ; bEndpointAddr EP1, OUT
 2003 Microchip Technology Inc. DS00258A-page 9

AN258
0x03 ; bmAttributes Interrupt
0x08 ; wMaxPacketSize Maximum packet size (low byte)
0x00 (high byte)
0x0a ; bInterval polling interval: 10ms

Configuration Descriptor 2 (Index 1)
0x09 ; bLength Length of descriptor
0x02 ; bDescType This is a CONFIGURATION descriptor
0x20 ; wTotalLength Total length of all descriptors in
0x00 this configuration
0x01 ; bNumInterfaces Number of interfaces in this config
0x02 ; bConfigValue Configuration Value
0x04 ; iConfig String Index = 4
0x80 bmAttributes bus powered, remote wakeup disabled
0x32 ; MaxPower 100mA (2mA*32h)

Interface Descriptor
0x09 ; bLength Length of descriptor
0x04 ; bDescType This is an INTERFACE descriptor
0x00 ; bInterfaceNum number of interface, 0 based array
0x00 ; bAlternatSet Alternate setting - N/A
0x02 ; bNumEndpoints # of endpoints in this interface
0xFF ; bInterfaceClass assigned by the USB
0x00 ; bIntrfcSubClass Not A boot device
0x00 ; bIntrfcProtocol none
0x00 ; iInterface String Index = 0 (none)

Endpoint Descriptor
0x07 ; bLength Length of descriptor
0x05 ; bDescType This is an ENDPOINT descriptor
0x81 ; bEndpointAddr EP1, In
0x03 ; bmAttributes Transfer Type: Interrupt
0x08 ; wMaxPacketSize Maximum packet size (low byte)
0x00 (high byte)
0x0A ; bInterval polling interval: 10ms

Endpoint Descriptor
0x07 ; bLength Length of descriptor
0x05 ; bDescType
0x01 ; bEndpointAddr EP1, OUT
0x03 ; bmAttributes Interrupt
0x08 ; wMaxPacketSize Maximum packet size (low byte)
0x00 (high byte)
0x0a ; bInterval polling interval: 10ms

ReportDescriptor
0x06, 0x00, 0xff ; USAGE_PAGE (Vendor Defined Page 1)
0x09, 0x01 ; USAGE (Vendor Usage 1)
0xa1, 0x01 ; COLLECTION (Application)
0x19, 0x01 ; USAGE_MINIMUM (Vendor Usage 1)
0x29, 0x08 ; USAGE_MAXIMUM (Vendor Usage 8)
0x15, 0x00 ; LOGICAL_MINIMUM (0)
0x26, 0xff, 0x00 ; LOGICAL_MAXIMUM (255)
0x75, 0x08 ; REPORT_SIZE (8)
0x95, 0x08 ; REPORT_COUNT (8)
0x81, 0x02 ; INPUT (Data,Var,Abs)
0x19, 0x01 ; USAGE_MINIMUM (Vendor Usage 1)
0x29, 0x08 ; USAGE_MAXIMUM (Vendor Usage 8)
0x91, 0x02 ; OUTPUT (Data,Var,Abs)
0xc0 ; END_COLLECTION
DS00258A-page 10  2003 Microchip Technology Inc.

AN258
String1*
"Microchip Technology Inc."

String2*
"PICkit™ 1 FLASH Starter Kit"

String3*
"Config. 1: HID"

String4*
"Config. 2: non-HID"

*Strings written in unicode format. Refer to firmware for details.
 2003 Microchip Technology Inc. DS00258A-page 11

AN258
APPENDIX B: SOURCE CODE

The complete source code, including the application

software and device firmware are available for

download as a single archive file from the Microchip

corporate web site at:

www.microchip.com
DS00258A-page 12  2003 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our

knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data

Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our

products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts

allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device

applications and the like is intended through suggestion only

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

No representation or warranty is given and no liability is

assumed by Microchip Technology Incorporated with respect

to the accuracy or use of such information, or infringement of

patents or other intellectual property rights arising from such

use or otherwise. Use of Microchip’s products as critical

components in life support systems is not authorized except

with express written approval by Microchip. No licenses are

conveyed, implicitly or otherwise, under any intellectual

property rights.
 2003 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,

KEELOQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and

PowerSmart are registered trademarks of Microchip

Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL

and The Embedded Control Solutions Company are

registered trademarks of Microchip Technology Incorporated

in the U.S.A.

Accuron, Application Maestro, dsPICDEM, dsPICDEM.net,

ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-

Circuit Serial Programming, ICSP, ICEPIC, microPort,

Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,

PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo,

PowerMate, PowerTool, rfLAB, rfPIC, Select Mode,

SmartSensor, SmartShunt, SmartTel and Total Endurance are

trademarks of Microchip Technology Incorporated in the

U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark

of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their

respective companies.

© 2003, Microchip Technology Incorporated, Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00258A-page 13

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

DS00258A-page 14  2003 Microchip Technology Inc.

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

Phoenix
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia
Microchip Technology Australia Pty Ltd
Marketing Support Division
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380 Fax: 86-755-8295-1393

China - Qingdao
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205

India
Microchip Technology Inc.
India Liaison Office
Marketing Support Division
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy
Microchip Technology SRL
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611 Fax: 39-0331-466781

United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869 Fax: 44-118-921-5820

05/30/03

WORLDWIDE SALES AND SERVICE

	Introduction
	FIGURE 1: PICkit™ 1 Printed Circuit Board

	USB Side of Things
	Implementation: Firmware
	Implementation: Software
	FIGURE 2: PICkit 1 FLASH Starter Kit GUI Interface
	Low Level Programming

	The Boost Power Supply
	Implementation: Hardware
	Implementation: Firmware
	FIGURE 3: Boost Circuit Diagram
	Conclusion
	References

	Appendix A: USB Descriptors
	Appendix B: Source Code
	Trademarks
	Worldwide Sales

