ON Semiconductor®

Final Product/Process Change Notification Document # : FPCN22038X

Issue Date: 25 May 2018

Title of Change	Mini	Gates tm Fab, Assembly Material ar	dTast Change (S(/S7 Datashootundato				
Title of Change:			id lest change (so		/SZ Datasneetupuate.				
Proposed first ship date:	1 Sep	1 September 2018							
Contact information:	Cont	Contact your local ON Semiconductor Sales Office or < <u>logic.fpcn22038x@onsemi.com</u> >							
Samples:	Cont	Contact your local ON Semiconductor Sales Office							
Additional Reliability Dat	a: Cont	Contact your local ON Semiconductor Sales Office or < <u>ioe.chapple@onsemi.com</u> >.							
Type of notification:	imple ON S	This is a Final Product/Process Change Notification (FPCN) sent to customers. FPCNs are issued 90 days prior to implementation of the change. ON Semiconductor will consider this change accepted, unless an inquiry is made in writing within 30 days of delivery of this notice. To do so, contact <pcn.support@onsemi.com>.</pcn.support@onsemi.com>							
Change Part Identification		ucts with date code "N" or greater ucts with date code "1" or greater							
Change category:	×	/afer Fab Change 🛛 🛛 Assembl	y Change	Test Change	□ Other				
Change Sub-Category(s): Manufacturing Site Ch Manufacturing Proces	ange/Additic		Material Change			/Product Doc change ackaging/Marking			
Sites Affected:					ry/Subcon Sites: ry Tower, External Foundry TPSCo				
	1inigates to i	ncrease capacity and material star arification of OVT parameters per l			isheet adjustment of the ma	x op erating			
Mater	ials	Before 90 day expiration		expiration and	After January 1st, 2019				
Die		External Foundry Israel	before January 1st, 2019 External Foundry Israel or External Foundry Japan		External Foundry Japan				
Die Att	ach	Eutectic	Eutectic		Eutectic				
Wire	9	Cu	Cu		Cu				
Wire	*	Au (NL17SZ32DFT2G, NL17VHC1GT50DF1G, NL17SZ126DFT2G)	Au and Cu		Cu				
Mold Com	pound	EME 600 or Henkel	EME 600	or Henkel	Henkel				
Assy/tes	t Site	ON Leshan, China	ON Lesh	an, China	ON Leshan, China				
Tape & Reel	Volumes	All items 3000 per reel	All items 3	000 per reel	All items 3000 per reel				
* parts with Gol	d wire will be a	available only until inventory is depleted	d.		·J				

Issue Date: 25 May 2018

Note that V_{CC} and V_{IN} show NLV prefix parts (automotive) in TSOP-5 and SC-88A that have V_{CC} and V_{IN} from -0.5 to +7.0 and all other devices have V_{CC} and V_{IN} limits from -0.5 to +6.5V.

Note that V_{ESD} now lists HBM, CDM and I_{Latchup} per JEDEC requirements

Note that OVT comments and SPECS are now consistent

Specifications listed as TBD are associated with new products/packages in development

MC74VHC1G125, MC74VHC1GT125

MAXIMUM RATINGS

CCU COUPLY INSP SC-74A, SC-88A, UDFN6, SOT-953, SOT-953 -0.5 to +6.5 V _{IN} DC Input Voltage TSOP-5, SC-88A, (NLV) -0.5 to +7.0 V VOUT DC Output Voltage Active-Mode (High or Low State) -0.5 to +7.0 V TSOP-5, SC-88A, (NLV) Active-Mode (High or Low State) -0.5 to +7.0 -0.5 to +7.0 V DC Output Voltage Active-Mode (High or Low State) -0.5 to +7.0 -0.5 to +7.0 -0.5 to +7.0 DC Output Voltage Active-Mode (High or Low State) -0.5 to +6.5 -0.5 to +6.5 V DC Output Voltage Active-Mode (High or Low State) -0.5 to +0.5 -0.5 to +6.5 V DC Output Dide Current VIN GND -5.0 m. -0.5 to +6.5 V INK DC Input Dide Current VIN GND -5.0 m. -0.5 to +6.5 -0.5 to +6.5 V Iou DC Output Dide Current VIN GND -5.0 m. -0.5 to +6.5	Symbol	Characteristics		Value	Unit
$\begin{tabular}{ c c c c c c } SC-74A, SC-88A, UDFN6, SOT-953 & -0.5 to +6.5 \\ \hline SC-74A, SC-88A, (UDFN6, SOT-553, SOT-953 & -0.5 to +6.5 \\ \hline TSOP-5, SC-88A (NLV) & TiriState Mode (High or Low State) TriState Mode (Note 1) Power-Down Mode (VCC = 0 V) & -0.5 to +7.0 \\ \hline DC Output Voltage Active-Mode (High or Low State) SC-74A, SC-88A, UDFN6, SOT-553, SOT-953 & Tri-State Mode (Note 1) & -0.5 to +6.5 \\ \hline DC Output Diode Current & V_{IN} < GND & -50 & m. \\ \hline I_{IK} & DC Input Diode Current & V_{IN} < GND & -50 & m. \\ \hline I_{OUT} & DC Output Source/Sink Current & & \pm50 & m. \\ \hline I_{OUT} & DC Output Source/Sink Current & & \pm50 & m. \\ \hline I_{OUT} & DC Supply Current per Supply Pin or Ground Pin & & \pm100 & m. \\ \hline T_{TG} & Storage Temperature, 1 mm from Case for 10 secs & 260 & even to the state of the state of$	V _{cc}				V
$ \begin{array}{c} \text{TSOP-5, SC-88A (NLV)} & \text{Tri-State Mode (Note 1)} & -0.5 \text{ to } 7.0 & -0.5 & -0.5 \text{ to } 7.0 & -0.5 & -0.5 & -0.5 $	V _{IN}				V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{OUT}	TSOP-5, SC-88A (NLV)	Tri-State Mode (Note 1)	-0.5 to +7.0	V
InstructionVointVoint-50min I_{OUT} DC Output Bource/Sink Current ± 50 min I_{OUT} DC Output Source/Sink Current ± 50 min C_{C} or I_{GND} DC Supply Current per Supply Pin or Ground Pin ± 100 min T_{STG} Storage Temperature Range -65 to ± 150 $\circ 0$ T_{L} Lead Temperature, 1 mm from Case for 10 secs260 $\circ 0$ T_{J} Junction Temperature Under Bias ± 150 $\circ 0$ θ_{JA} Thermal Resistance (Note 2)SC-88A SC-74A TBD SOT-953333 TBD TBD $\circ 0$ P_D Power Dissipation in Still AirSC-74A SC-74A TBDTBD TBDmin P_D Moisture SensitivityLevel 1 -6 MSL Moisture SensitivityLevel 1 -7 F_R Flammability RatingOxygen Index: 28 to 34UL 94 V-0 @ 0.125 in 1000 -7 V_{ESD} ESD Withstand Voltage (Note 3)Human Body Model Charged Device Model2000 1000V		SC-74A, SC-88A, UDFN6, SOT-553, SOT-953	Tri-State Mode (Note 1)	-0.5 to +6.5	V
InstructionDC output Source/Sink Current ± 50 m.IouTDC Output Source/Sink Current per Supply Pin or Ground Pin ± 100 m.TstGDC Supply Current per Supply Pin or Ground Pin ± 100 m.TstGStorage Temperature Range -65 to $+150$ \circ CTLLead Temperature, 1 mm from Case for 10 secs260 \circ CT_JJunction Temperature Under Bias $+150$ \circ C θ_{JA} Thermal Resistance (Note 2)SC-88A SC-74A TSDP-5333 333 TBD UDFN6333 TBDP_DPower Dissipation in Still AirSC-74A SC-74A TBD TSDP-5200 200 SOT-953 TBD TBDmtMSLMoisture SensitivityLevel 1- F_R Flammability RatingOxygen Index: 28 to 34 Human Body Model Charged Device Model2000 1000V	IIK	DC Input Diode Current	V _{IN} < GND	-50	mA
$\begin{array}{c cc} \operatorname{or I}_{\operatorname{GND}} & \operatorname{DC} \operatorname{Supply Current per Supply Pin or Ground Pin} & \pm 100 & \operatorname{m}. \\ \hline T_{STG} & \operatorname{Storage Temperature Range} & -65 \text{ to } +150 & \circ (C) \\ \hline T_L & \operatorname{Lead Temperature Range} & 260 & \circ (C) \\ \hline T_J & \operatorname{Junction Temperature Under Bias} & +150 & \circ (C) \\ \hline \theta_{JA} & \operatorname{Thermal Resistance} (\operatorname{Note 2}) & \operatorname{SC-88A} & 333 & \circ (C) \\ \hline \theta_{JA} & \operatorname{Thermal Resistance} (\operatorname{Note 2}) & \operatorname{SC-88A} & 333 & \circ (C) \\ \hline \theta_{JA} & \operatorname{Thermal Resistance} (\operatorname{Note 2}) & \operatorname{SC-88A} & 333 & \circ (C) \\ \hline \theta_{JA} & \operatorname{Thermal Resistance} (\operatorname{Note 2}) & \operatorname{SC-88A} & 333 & \circ (C) \\ \hline \theta_{JA} & \operatorname{Thermal Resistance} (\operatorname{Note 2}) & \operatorname{SC-88A} & 333 & \operatorname{TBD} \\ \hline \theta_{JA} & \operatorname{Thermal Resistance} (\operatorname{Note 2}) & \operatorname{SC-88A} & 200 & \operatorname{TBD} \\ \hline \theta_{JA} & \operatorname{Thermal Resistance} (\operatorname{Note 2}) & \operatorname{SC-74A} & \operatorname{TBD} \\ \hline \theta_{JA} & \operatorname{Thermal Resistance} (\operatorname{Note 2}) & \operatorname{SC-753} & \operatorname{TBD} \\ \hline \theta_{JA} & \operatorname{SC-74A} & \operatorname{SC-74A} \\ \hline \theta_{JA} & \operatorname{SC-74A} & \operatorname{SC-74A} \\ \hline \theta_{JA} & \operatorname{SC-74A} & \operatorname{SC-74A} \\ \hline \theta_{JA} & \operatorname{SC-74A} & SC-7$	IOK	DC Output Diode Current	V _{OUT} < GND	-50	mA
T_{STG} Storage Temperature Range-65 to +150 $^{\circ}C$ T_L Lead Temperature, 1 mm from Case for 10 secs260 $^{\circ}C$ T_J Junction Temperature Under Bias+150 $^{\circ}C$ θ_{JA} Thermal Resistance (Note 2)SC-88A SC-74A TSOP-5333 TBD UDFN6 $^{\circ}C$ P_D Power Dissipation in Still AirSC-88A SOT-553 TBD UDFN6200m1 P_D Power Dissipation in Still AirSC-88A SOT-553 TBD UDFN6200m1 MSL Moisture SensitivityLevel 1- F_R Flammability RatingOxygen Index: 28 to 34 Charged Device Model Charged Device Model2000 2000V	lout	DC Output Source/Sink Current		±50	mA
Composition Display and the second sec	I _{CC} or I _{GND}	DC Supply Current per Supply Pin or Ground Pin		±100	mA
$\begin{array}{c c c c c c c }\hline T_J & Junction Temperature Under Bias & +150 & \circ C \\ \hline \theta_{JA} & Thermal Resistance (Note 2) & SC-88A & 333 & SC-74A & TBD & TSOP-5 & 333 & SOT-553 & TBD & SOT-553 & TBD & SOT-953 & TBD & UDFN6 & TBD & SOT-953 $	T _{STG}	Storage Temperature Range		-65 to +150	°C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TL	Lead Temperature, 1 mm from Case for 10 secs		260	°C
Str SC-74A TSOP-5 333 SOT-553 TBD 333 TBD UDFN6 PD Power Dissipation in Still Air SC-88A SOT-953 200 TBD PD Power Dissipation in Still Air SC-74A TSOP-5 200 SOT-553 TBD TBD MSL Moisture Sensitivity Level 1 FR Flammability Rating Oxygen Index: 28 to 34 UL 94 V-0 @ 0.125 in VESD ESD Withstand Voltage (Note 3) Human Body Model Charged Device Model 2000 1000	TJ	Junction Temperature Under Bias		+150	°C
SC-74A TSOP-5 SOT-553 SOT-953 UDFN6 TBD 200 SOT-553 TBD TBD MSL Moisture Sensitivity Level 1 F _R Flammability Rating Oxygen Index: 28 to 34 UL 94 V-0 @ 0.125 in V _{ESD} ESD Withstand Voltage (Note 3) Human Body Model Charged Device Model 2000 1000 V	θ _{JA}	Thermal Resistance (Note 2)	SC-74A TSOP-5 SOT-553 SOT-953	TBD 333 TBD TBD	°C/W
FR Flammability Rating Oxygen Index: 28 to 34 UL 94 V-0 @ 0.125 in V _{ESD} ESD Withstand Voltage (Note 3) Human Body Model Charged Device Model 2000 1000 V	PD	Power Dissipation in Still Air	SC-74A TSOP-5 SOT-553 SOT-953	TBD 200 TBD TBD	mW
VESD ESD Withstand Voltage (Note 3) Human Body Model Charged Device Model 2000 1000 V	MSL	Moisture Sensitivity		Level 1	-
Charged Device Model 1000	F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
	V _{ESD}	ESD Withstand Voltage (Note 3)			V
I _{Latchup} Latchup Performance (Note 4) ± 100 m.	Latchup	Latchup Performance (Note 4)		±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality Applicable to devices with outputs that may be tri-stated.
 Applicable to devices with outputs that may be tri-stated.
 Measured with minimum pad spacing on an FR4 board, using 10mm-by-1inch, 2 ounce copper trace no air flow.
 HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-C101-F.

EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A.

4. Tested to EIA/JESD78 Class II.

MC74VHC1G125, MC74VHC1GT125

			Vcc	T _A = 25°C		°C	T _A ≤ 85°C		$-55 \leq T_{A} \leq 125^{\circ}C$		
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Мах	Min	Max	Uni
VIH	High-Level Input Voltage		2.0	1.5			1.5		1.5		V
			3.0	2.1			2.1		2.1		1
			4.5	3.15			3.15		3.15]
			5.5	3.85			3.85		3.85		
VIL	Low-Level Input Voltage		2.0			0.5		0.5		0.5	V
			3.0			0.9		0.9		0.9	
			4.5			1.35		1.35		1.35	
			5.5			1.65		1.65		1.65	
V _{он}	High-Level Output Voltage	$ \begin{array}{l} V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_{OH} = -50 \ \mu A \\ I_{OH} = -50 \ \mu A \\ I_{OH} = -50 \ \mu A \\ I_{OH} = -4 \ m A \\ I_{OH} = -8 \ m A \end{array} $	2.0 3.0 4.5 3.0 4.5	1.9 2.9 4.4 2.58 3.94	2.0 3.0 4.5		1.9 2.9 4.4 2.48 3.80		1.9 2.9 4.4 2.34 3.66		V
V _{OL}	Low-Level Output Voltage	$ \begin{array}{l} V_{IN} = V_{IH} \mbox{ or } V_{IL} \\ I_{OL} = 50 \ \mu A \\ I_{OL} = 50 \ \mu A \\ I_{OL} = 50 \ \mu A \\ I_{OL} = 4 \ m A \\ I_{OL} = 8 \ m A \end{array} $	2.0 3.0 4.5 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.36 0.36		0.1 0.1 0.44 0.44		0.1 0.1 0.52 0.52	V
I _{IN}	Input Leakage Current	V _{IN} = 5.5 V or GND	1.65 to 5.5			±0.1		±1.0		±1.0	μA
I _{OZ}	3-State Output Leakage Current	V _{OUT} = 0 V to 5.5 V	5.5			±0.25		±2.5		±2.5	μ/
IOFF	Power Off Leakage Current	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0			1.0		10		10	μ/
Icc	Quiescent Supply Current	VIN = VCC or GND	5.5			1.0		20		40	μA

MC74VHC1G125, MC74VHC1GT125

DC ELECTRICAL CHARACTERISTICS (MC74VHC1GT125)

			Vcc	T _A = 25°C		С	T _A ≤ 85°C		$-55 \le T_A \le 125^\circ C$		
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Uni
VIH	High-Level Input Voltage		2.0	1.0			1.0		1.0		V
			3.0	1.4			1.4		1.4		1
			4.5	2.0			2.0		2.0		1
			5.5	2.0			2.0		2.0		1
VIL	Low-Level Input Voltage		2.0			0.28		0.28		0.28	V
			3.0			0.45		0.45		0.45	1
			4.5			0.8		0.8		0.8	1
			5.5			0.8		0.8		0.8	1
V _{OH}	High-Level Output Voltage		2.0 3.0 4.5 3.0 4.5	1.9 2.9 4.4 2.58 3.94	2.0 3.0 4.5		1.9 2.9 4.4 2.48 3.80		1.9 2.9 4.4 2.34 3.66		~
Vol	Low-Level Output Voltage		2.0 3.0 4.5 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.36 0.36		0.1 0.1 0.4 0.44		0.1 0.1 0.52 0.52	V
I _{IN}	Input Leakage Current	V _{IN} = 5.5 V or GND	1.65 to 5.5			±0.1		±1.0		±1.0	μA
loz	3-State Output Leakage Current	V _{OUT} = 0 V to 5.5 V	5.5			±0.25		± 2.5		±2.5	μΑ
IOFF	Power Off Leakage Current	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0			1.0		10		10	μΑ
Icc	Quiescent Supply Current	VIN = VCC or GND	5.5			1.0		20		40	μA
ICCT	Increase in Quiescent Supply Current per Input Pin	One Input: V _{IN} = 3.4 V; Other Input at V _{CC} or GND	5.5			1.35		1.5		1.65	mA

Reliability Data Summary:

QV DEVICE NAME: MC74VHC1G14DFT2G
RMS: L40690
PACKAGE: SC88A (5ld)

Test	Specification	Condition	Interval	Results
HTOL	JESD22-A108	Ta=125°C, 100 % max rated Vcc	1008 hrs	0/288
HTSL	JESD22-A103	Ta= 150°C	1008 hrs	0/252
тс	JESD22-A104	Ta= -65°C to +150°C	500 сус	0/297
HAST	JESD22-A110	130°C, 85% RH, 18.8psig, bias	96 hrs	0/273
uHAST	JESD22-A118	130°C, 85% RH, 18.8psig, unbiased	96 hrs	0/234
РС	J-STD-020 JESD- A113	MSL 1 @ 260 °C		0/804
RSH	JESD22- B106	Ta = 265C, 10 sec		0/30

Electrical Characteristic Summary:

Electrical characteristics Available upon request.

List of Affected Parts:

Part Number	Qualification Vehicle				
M74VHC1G125DFT1G					
M74VHC1G125DFT2G					
M74VHC1G126DFT1G					
M74VHC1G126DFT2G					
M74VHC1G132DFT1G					
M74VHC1G132DFT2G					
M74VHC1G135DFT1G					
M74VHC1G135DFT2G					
M74VHC1GT00DFT1G					
M74VHC1GT00DFT2G	MC74VHC1G14DFT2G				
M74VHC1GT02DFT1G					
M74VHC1GT02DFT2G					
M74VHC1GT04DFT1G					
M74VHC1GT04DFT2G					
M74VHC1GT04DFT3G					
M74VHC1GT08DFT1G					
M74VHC1GT08DFT2G					
M74VHC1GT125DF1G					
M74VHC1GT125DF2G					

Final Product/Process Change Notification Document # : FPCN22038X

Issue Date: 25 May 2018

M74VHC1GT126DF1G
M74VHC1GT126DF2G
M74VHC1GT14DFT1G
M74VHC1GT14DFT2G
M74VHC1GT32DFT1G
M74VHC1GT32DFT2G
M74VHC1GT50DFT1G
M74VHC1GT50DFT2G
M74VHC1GT86DFT1G
M74VHC1GT86DFT2G
M74VHC1GU04DFT1G
M74VHC1GU04DFT2G
MC74HC1G00DFT1G
MC74HC1G00DFT2G
MC74HC1G02DFT2G
MC74HC1G04DFT1G
MC74HC1G04DFT2G
MC74HC1G08DFT1G
MC74HC1G08DFT2G
MC74HC1G14DFT1G
MC74HC1G14DFT2G
MC74HC1G32DFT1G
MC74HC1G32DFT2G
MC74HC1GU04DFT1G
MC74HC1GU04DFT2G
MC74VHC1G00DFT1G
MC74VHC1G00DFT2G
MC74VHC1G01DFT1G
MC74VHC1G01DFT2G
MC74VHC1G02DFT1G
MC74VHC1G02DFT2G
MC74VHC1G03DFT1G
MC74VHC1G03DFT2G
MC74VHC1G04DFT1G
MC74VHC1G04DFT2G
MC74VHC1G05DFT1G
MC74VHC1G05DFT2G

MC74VHC1G14DFT2G

Final Product/Process Change Notification Document #: FPCN22038X

Issue Date: 25 May 2018

MC74VHC1G07DFT1G	
MC74VHC1G07DFT2G	
MC74VHC1G08DFT1G	
MC74VHC1G08DFT2G	
MC74VHC1G09DFT1G	
MC74VHC1G09DFT2G	
MC74VHC1G125DFT1G	
MC74VHC1G14DFT1G	
MC74VHC1G14DFT2G	
MC74VHC1G32DFT1G	
MC74VHC1G32DFT2G	
MC74VHC1G50DFT1G	
MC74VHC1G50DFT2G	
MC74VHC1G86DFT1G	
MC74VHC1G86DFT2G	
MC74VHC1GU04DF1G	MC74VHC1G14DFT2G
NL17SZ00DFT2G	MC/4VHCIGI4DFI2G
NL17SZ02DFT2G	
NL17SZ04DFT2G NL17SZ06DFT2G	
NL17SZ07DFT2G	
NL17SZ08DFT2G	
NL17SZ125DFT2G	
NL17SZ126DFT2G	
NL17SZ14DFT2G	
NL17SZ16DFT2G	
NL17SZ17DFT2G	
NL17SZ32DFT2G	
NL17SZ86DFT2G	
NL17SZU04DFT2G	
NL17VHC1GT50DF1G	
NL18SZ125DFT2G	

Please be informed that there may be Customer Specific part/s impacted by this Notification, thus MPN & CPN info will not be reflected in the parts list of this Generic document. Instead please click the link to the addendum PCN copy provided in the email notification to see full list of affected products specific to your company.