## Features

- 1-channel signal conditioner
- Universal usage at different power supplies
- 3-wire PNP/NPN sensor or push-pull input
- 2 relay contact outputs
- Adjustable energized/de-energized delay


## Function

This signal conditioner converts the state of 3-wire sensors (PNP or NPN) or sensors with push-pull output stages into two relay outputs.
It has one input and two form C changeover relay outputs.
The switch amplifier has an adjustable energized/deenergized delay for the relay outputs.
The start-up time of the device is as long as the time setting value +500 ms .

## Assembly



## C $\epsilon$

## Connection



| General specifications |  |
| :---: | :---: |
| Signal type | Digital Input |
| Supply |  |
| Connection | terminals 14, 15 |
| Rated voltage $\mathrm{Un}_{\mathrm{n}}$ | $20 . . .48 \mathrm{~V}$ DC or 90 ... 253 V AC , $45 \ldots 65 \mathrm{~Hz}$ |
| Rated current $I_{n}$ | $\leq 230 \mathrm{~mA}$ |
| Power loss | 2.3 W |
| Power consumption | $\leq 4.5 \mathrm{~W}$ |
| Input |  |
| Connection | terminals 1+, 2, 3- |
| Rated values | $22 . .24 \mathrm{~V}$ DC / 100 mA , see additional information |
| Short-circuit current | $\leq 125 \mathrm{~mA}$ |
| Switching point | PNP: <br> 0 -signal: < 12.5 V <br> 1-signal: > 13.5 V <br> NPN and push-pull output: <br> 0 -signal: <4.5 V <br> 1-signal: > 5.5 V |
| Output |  |
| Connection | output I: terminals $7,8,9$ output II: terminals 10, 11, 12 |
| Output I, II | signal, relay |
| Contact loading | $250 \mathrm{~V} \mathrm{AC} \mathrm{/} 2 \mathrm{~A} / \cos \phi \geq 0.7$; $125 \mathrm{~V} \mathrm{AC/4} \mathrm{A/} \cos \phi>0.7 ; 40 \mathrm{~V} \mathrm{DC} \mathrm{/} 2 \mathrm{~A}$ |
| Mechanical life | $20 \times 10^{6}$ switching cycles |
| Electrical life | $0.2 \times 10^{6}$ switching cycles ( $40 \mathrm{VDC}, 2 \mathrm{~A}$, ohmic) $0.4 \times 10^{6}$ switching cycles ( $253 \mathrm{~V} \mathrm{AC}, 2 \mathrm{~A}, \cos \phi=1$ ) $0.25 \times 10^{6}$ switching cycles ( $253 \mathrm{VAC}, 2 \mathrm{~A}, \cos \phi=0.7$ ) |
| Minimum load | $50 \mathrm{~mW}, 5 \mathrm{~V}$ DC |
| Energized/De-energized delay | $\leq 90 \mathrm{~ms} / \leq 90 \mathrm{~ms}$ |
| Transfer characteristics |  |
| Switching frequency | $\leq 5 \mathrm{~Hz}$ for delay 0 s adjustable energized/de-energized delay: 0 ... 79 s |
| Electrical isolation |  |
| Input/Output | reinforced insulation acc. to IEC 62103, rated insulation voltage $300 \mathrm{~V}_{\text {rms }}$ |
| Input/power supply | reinforced insulation acc. to IEC 62103, rated insulation voltage $300 \mathrm{~V}_{\text {rms }}$ |
| Output/power supply | reinforced insulation acc. to IEC 62103, rated insulation voltage $300 \mathrm{~V}_{\text {rms }}$ |
| Output/Output | reinforced insulation acc. to IEC 62103, rated insulation voltage $300 \mathrm{~V}_{\text {rms }}$ |
| Directive conformity |  |
| Electromagnetic compatibility |  |
| Directive 2004/108/EC | EN 61326-1:2006 |
| Low voltage |  |
| Directive 2006/95/EC | EN 61010-1:2001 |
| Conformity |  |
| Electromagnetic compatibility | NE 21:2006 |
| Degree of protection | IEC 60529 |
| Ambient conditions |  |
| Ambient temperature | $-20 \ldots 60^{\circ} \mathrm{C}\left(-4 \ldots 140^{\circ} \mathrm{F}\right)$ |
| Mechanical specifications |  |
| Degree of protection | IP20 |
| Mass | approx. 166 g |
| Dimensions | $20 \times 119 \times 115 \mathrm{~mm}(0.8 \times 4.7 \times 4.5 \mathrm{in})$, housing type B2 |
| General information |  |
| Supplementary information | Statement of Conformity, Declaration of Conformity, Attestation of Conformity and instructions have to be observed where applicable. For information see www.pepperl-fuchs.com. |

## Function

The single-channel switch amplifier has one input and two relay outputs (change-over contacts). The input circuit can process signals from sensors that have either PNP/NPN output transistors or push-pull outputs. If sensors have NPN or push-pull outputs, switch S1 must be set to position I. If sensors have PNP output transistors, switch S1 must be set to position II.
The output switching characteristics (switch S4 for output I, switch S5 for output II) can be selected:

- Relay activated for closed sensor contact (for pull-push outputs, contact between terminals 2 and 3 closed) - switch S4 or S5 in position I.
- Relay deactivated for open sensor contact (for pull-push outputs, contact between terminals 2 and 3 open) - switch S4 or S5 in position II.

The switch amplifier has an adjustable energized/de-energized delay for the relay outputs.
Switch S3 = I activates the energized delay and switch S3 = II activates the de-energized delay. Depending on switch S2 (default time setting $0.1 \mathrm{~s} / 1 \mathrm{~s}$ ), the delay time can be set to between approx. 0.1 s and 7.9 s (for $\mathrm{S} 2=\mathrm{I}$ ) or between approx. 1 s and 79 s for ( $\mathrm{S} 2=\mathrm{II}$ ) using switches S6 and S7.
The delay times add up to the shortest possible response times and have a tolerance of $10 \%$.
Switch S 6 has a value range of 0 to 7 , which is used to set the decimal power of the delay; switch S 7 has a value range of $0 \ldots 9$, which is used to set the single power of the delay. If the default time setting of $\mathrm{S} 2=\mathrm{I}, \mathrm{S} 6=0$ and $\mathrm{S} 7=0$, the response time constant of the switch amplifier for the undelayed slope (see switch position S 3 ) is $<20 \mathrm{~ms}$ and for the delayed slope $<90 \mathrm{~ms}$. These are the shortest possible response times.

Sensor connection

NPN output/contact
S1 $=1$


PNP output/contact
S1 = II


Push-pull output
$S 1=1$


## Note

The sensor currents are derated in line with the ambient temperature
The maximum value of the sensor currents is controlled by a thermal overload protection on the device.


The device measures the ambient temperature and limits the sensor currents accordingly (see figure). An inadmissibly high ambient temperature can limit the function of the sensors.


## Configuration

Function of the DIP switch


| $\mathbf{S}$ | Function | Input: Push-pull output, NO contact, NPN | Position |
| :--- | :--- | :--- | :---: |
|  | Input: PNP, NO contact | I |  |
| $\mathbf{3}$ | Sensor type | Default time | Default time $=0.1 \mathrm{~s} \times$ (time setting value of switches <br> S6 and S7) |
|  |  | Default time $=1 \mathrm{~s} \times$ (time setting value of switches S6 <br> and S7) | I |
| $\mathbf{3}$ | Operating mode | ON delay, minimum input pulse length |  |
|  |  | OFF delay, minimum output pulse length | I |
| $\mathbf{4}$ | Direction detection | Output I activated if sensor closed | II |
|  |  | Output I activated if sensor open | I |
| $\mathbf{5}$ | Direction detection | Output II activated if sensor closed | II |
|  |  | Output II activated if sensor open | II |

Default setting: switches 1, 3, 4 and 5 to position I and switch 2 to position II

## Function of the rotary switch



| $\mathbf{S}$ | Function | Position |  |
| :--- | :--- | :--- | :---: |
| $\mathbf{6}$ | Time setting | Decimal value $0 \ldots 7 \times 10 \times$ (default time setting value <br> of switch S2) | $\mathbf{0} \ldots \mathbf{7}$ |
| $\mathbf{7}$ | Time setting | Decimal value $0 \ldots 9 \times$ (default time setting value of <br> switch S2) | $\mathbf{0} \ldots 9$ |

Default setting: switches 6 and 7 to position 0

