MOSFET – Power, Single N-Channel 40 V, 0.72 mΩ, 368 A

NTMJS0D8N04CL

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- LFPAK8 Package, Industry Standard
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter		Symbol	Value	Unit
Drain-to-Source Voltage		V _{DSS}	40	V
Gate-to-Source Voltage		V _{GS}	20	V
Steady	$T_{C} = 25^{\circ}C$	۱ _D	368	А
State	T _C = 100°C		260	
	$T_{C} = 25^{\circ}C$	PD	180	W
	$T_{C} = 100^{\circ}C$		90	
Steady	$T_A = 25^{\circ}C$	۱ _D	56	А
Sidle	T _A = 100°C		40	
	$T_A = 25^{\circ}C$	PD	4.2	W
	$T_A = 100^{\circ}C$		2.1	
$T_A=25^\circ C,t_p=10\;\mu s$		I _{DM}	900	А
Operating Junction and Storage Temperature Range		T _J , T _{stg}	−55 to +175	°C
Source Current (Body Diode)		۱ _S	150	А
Single Pulse Drain-to-Source Avalanche Energy ($I_{L(pk)}$ = 32.8 A)		E _{AS}	1286	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C
	e Steady State Steady State T _A = 25 Storage T Storage T Source Av	e Steady State $T_{C} = 25^{\circ}C$ $T_{C} = 100^{\circ}C$ $T_{C} = 25^{\circ}C$ $T_{C} = 100^{\circ}C$ $T_{C} = 100^{\circ}C$ Steady State $T_{A} = 25^{\circ}C$ $T_{A} = 100^{\circ}C$ $T_{A} = 25^{\circ}C$ $T_{A} = 100^{\circ}C$ $T_{A} = 25^{\circ}C, t_{p} = 10 \ \mu s$ Storage Temperature iode) Source Avalanche Source Avalanche	e V_{DSS} Steady $T_C = 25^{\circ}C$ I_D $T_C = 100^{\circ}C$ P_D $T_C = 100^{\circ}C$ P_D $T_C = 100^{\circ}C$ P_D $T_C = 100^{\circ}C$ I_D Steady $T_A = 25^{\circ}C$ I_D $T_A = 100^{\circ}C$ I_D $T_A = 25^{\circ}C$ P_D $T_A = 100^{\circ}C$ P_D $T_A = 25^{\circ}C$ P_D $T_A = 100^{\circ}C$ I_D Storage Temperature T_J , T_{stg} source Avalanche I_S source Avalanche E_{AS}	$ \begin{array}{c c c c c c } e & V_{DSS} & 40 \\ \hline V_{QS} & 20 \\ \hline V_{QS} & 20 \\ \hline V_{QS} & 20 \\ \hline T_C = 25^\circ C & I_D & 368 \\ \hline T_C = 100^\circ C & P_D & 180 \\ \hline T_C = 100^\circ C & P_D & 180 \\ \hline T_C = 100^\circ C & I_D & 90 \\ \hline T_C = 100^\circ C & I_D & 56 \\ \hline T_A = 100^\circ C & I_D & 40 \\ \hline T_A = 25^\circ C & P_D & 4.2 \\ \hline T_A = 100^\circ C & P_D & 4.2 \\ \hline T_A = 100^\circ C & P_D & 4.2 \\ \hline T_A = 100^\circ C & P_D & 4.2 \\ \hline T_A = 100^\circ C & P_D & 4.2 \\ \hline T_A = 100^\circ C & P_D & 56 \\ \hline T_A = 100^\circ C & F_A & 56 \\ \hline T_A = 100$

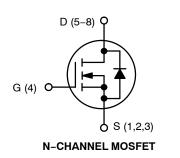
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

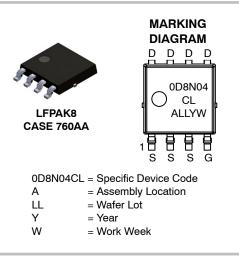
THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	0.83	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	35.9	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.


3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.



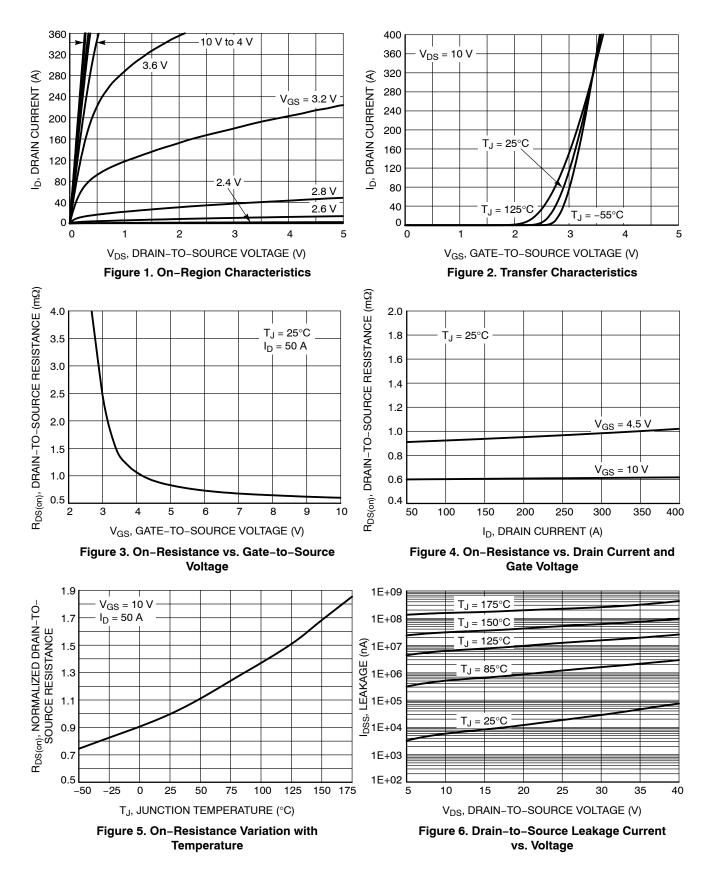
ON Semiconductor®

www.onsemi.com

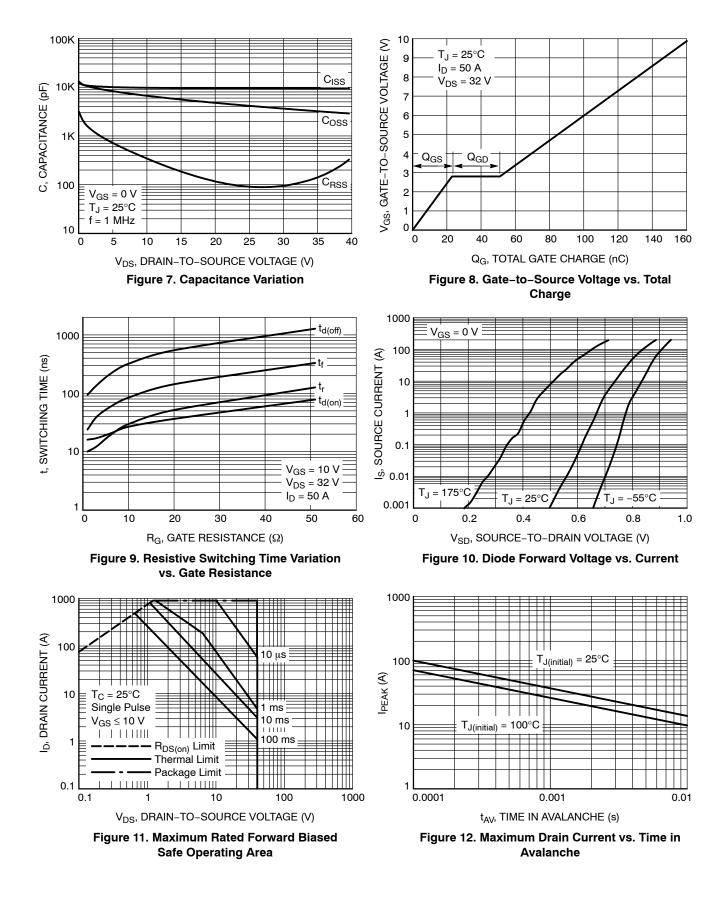
V _{(BR)DSS} R _{DS(ON)} MAX		I _D MAX	
40 V	$0.72~\mathrm{m}\Omega @~10~\mathrm{V}$	368 A	
	1.15 m Ω @ 4.5 V	300 A	

ORDERING INFORMATION

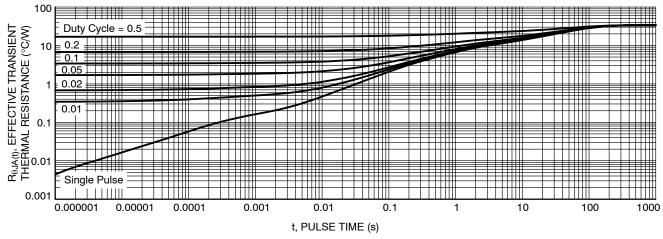
See detailed ordering, marking and shipping information on page 5 of this data sheet.


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 µA		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				18		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 40 V	$T_J = 25^{\circ}C$			10	μA
			T _J = 125°C			250	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = 20 V				100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D	= 250 μA	1.2		2.0	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-5.7		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 50 A		0.60	0.72	mΩ
		V _{GS} = 4.5 V	I _D = 50 A		0.91	1.15	
Forward Transconductance	9 _{FS}	V _{DS} =15 V, I	_D = 50 A		500		S
CHARGES, CAPACITANCES & GATE RE	SISTANCE						
Input Capacitance	C _{ISS}				9600		pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V			4690		
Reverse Transfer Capacitance	C _{RSS}				119		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 4.5 V, V_{DS} = 32 V; I_{D} = 50 A			78		nC
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 32 V; I_{D} = 50 A			162		
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} = 32 V; I _D = 50 A			14		
Gate-to-Source Charge	Q _{GS}				25		
Gate-to-Drain Charge	Q _{GD}				29		
Plateau Voltage	V _{GP}				2.7		V
SWITCHING CHARACTERISTICS (Note 5	5)				•		
Turn-On Delay Time	t _{d(ON)}				36		ns
Rise Time	t _r	V _{GS} = 4.5 V, V	ne = 32 V.		50		1
Turn-Off Delay Time	t _{d(OFF)}	$V_{GS} = 4.3 \text{ v}, V_{DS} = 32 \text{ v},$ $I_D = 50 \text{ A}, R_G = 2.5 \Omega$			81		1
Fall Time	t _f				37		
DRAIN-SOURCE DIODE CHARACTERIS	TICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.73	1.2	V
-		$I_{\rm S} = 50 \rm{A}$	T _J = 125°C		0.6		1
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dI _s /dt = 100 A/μs, I _S = 50 A			83		ns
Charge Time	ta				53		1
Discharge Time	t _b				30		1
Reverse Recovery Charge	Q _{RR}				163		nC

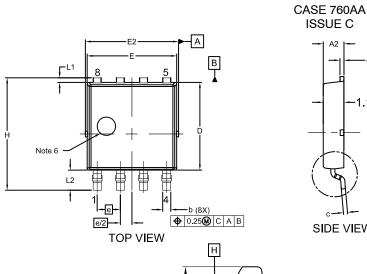

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: pulse width $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$. 5. Switching characteristics are independent of operating junction temperatures.


TYPICAL CHARACTERISTICS

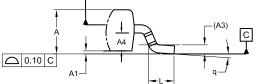
TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

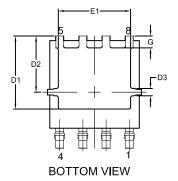

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTMJS0D8N04CLTWG	0D8N04CL	LFPAK8 (Pb–Free)	3000 / Tape & Reel

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


PACKAGE DIMENSIONS

LFPAK8 5x6



1.14 SIDE VIEW

c2

DETAIL 'A'

0.700 0.595 2.055 6.420 0.600 Ŧ 0.700 1.060 \otimes 1 150 0.700 (8X) 4 RECOMMENDED LAND PAD

510 4.060

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

NOTES:

- DIMENSIONING AND TOLERANCING 1. PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: 2. MILLIMETERS.
- DIMENSIONS D AND E DO NOT INCLUDE 3. MOLD FLASH, PROTRUSIONS, OR BURRS, MOLD FLASH PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.150mm PER SIDE.
- DIMENSIONS D AND E ARE 4 DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- DATUMS A AND B ARE DETERMINED AT 5. DATUM PLANE H.
- OPTIONAL MOLD FEATURE. 6.

	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	1.10	1.20	1.30		
A1	0.00	0.08	0.15		
A2	1.10	1.15	1.20		
A3	().25 REF			
A4	0.45	0.50	0.55		
b	0.40	0.45	0.50		
С	0.19	0.22	0.25		
c2	0.19	0.22	0.25		
D	4.70	4.80	4.90		
D1	3.80	4.00	4.20		
D2	3.00	3.10	3.20		
D3	0.30	0.40	0.50		
Е	4.80	4.90	5.00		
E1	3.90	4.00	4.10		
E2	5.00	5 <u>.</u> 15	5.30		
е		1 27 BSC			
G	0.55	0.65	0.75		
Н	6.00	6.15	6.30		
L	0.45	0.65	0.85		
L1	0.15	0.25	0.35		
L2	0.90	1.10	1.30		
q	0°	4°	8°		

ON Semiconductor and water trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even is such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative