SKD 210

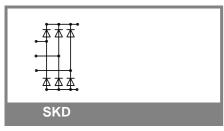
SEMIPONT[®] 4

Power Bridge Rectifiers

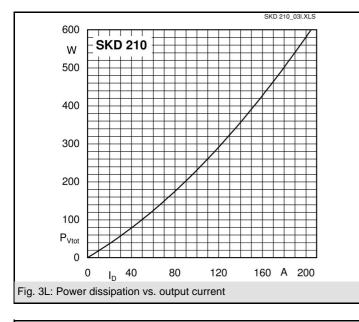
SKD 210

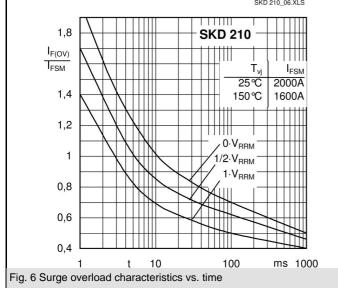
Preliminary Data

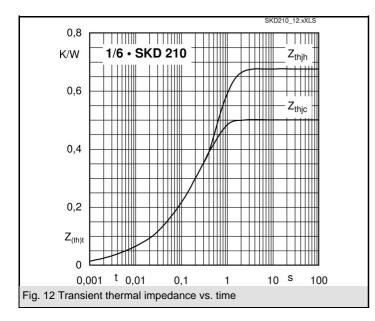
Features

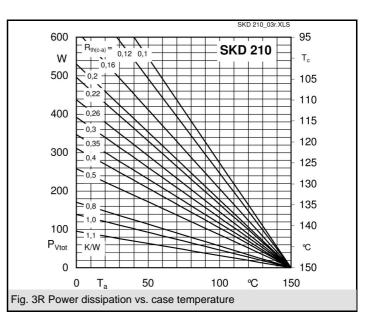

- Robust plastic case with screw terminals
- Large, isolated base plate
- Blocking voltage up to 1800 V
- High surge currents
- Three phase brige rectifier
- Easy chassis mounting
- UL recognition applied for file no. E 63 532

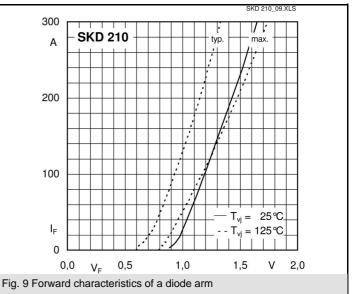
Typical Applications

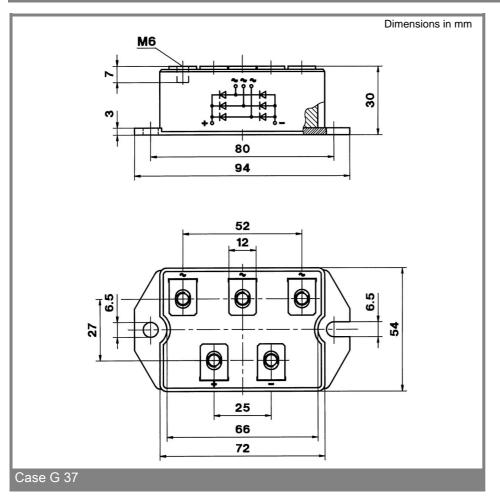

- Three phase rectifiers for power supplies
- Input rectifiers for variable frequency drives
- Rectifiers for DC motor field supplies
- Battery charger rectifiers
- 1) Max. output current limited by the terminals: 220A rms


V _{RSM} V	V _{RRM} , V _{DRM} V	$I_D = 210 \text{ A} \text{ (full conduction)}$ (T _c = 99 °C)
900	800	SKD 210/08
1300	1200	SKD 210/12
1700	1600	SKD 210/16
1900	1800	SKD 210/18


Symbol	Conditions	Values	Units
I _D	T _c = 100 °C	207	А
I _D	T _C = 95 °C	220 ¹⁾	А
I _{FSM}	T _{vi} = 25 °C; 10 ms	2000	Α
	T _{vi} = 150 °C; 10 ms	1600	А
i²t	T _{vi} = 25 °C; 8,3 10 ms	20000	A²s
	T _{vj} = 150 °C; 8,3 10 ms	12800	A²s
V _F	T _{vi} = 25 °C; I _F = 300 A	max. 1,65	V
V _(TO)	$T_{vi} = 150 \ ^{\circ}C$	max. 0,85	V
r _T	$T_{vi} = 150 \ ^{\circ}C$	max. 3	mΩ
I _{RD}	T_{vj}^{o} = 25 °C; V_{DD} = V_{DRM} ; V_{RD} = V_{RRM}	max. 0,5	mA
NB	$T_{vj} = 150 \text{ °C}, V_{RD} = V_{RRM}$	6	mA
R _{th(j-c)}	per diode	0,5	K/W
uii(j=C)	total	0,083	K/W
R _{th(c-s)}	total	0,03	K/W
T _{vj}		- 40 + 150	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	V
M _s	to heatsink	5 ± 15 %	Nm
M _t	to terminals	5 ± 15 %	Nm
m		270	g
Case		G 37	




SKD 210



SKD 210

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.