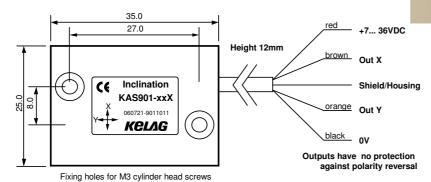
Telefon +41 (0)44 806 22 00 Fax


F-Mail www.accelerometer.ch/en

Single Axis Acceleration Sensor KAS901- 05 (Z-axis 8)

The sensors are based one an advanced "bulk micro machined" technology. The three dimensional structure of these sensors comprise a pendulum made of mono crystalline silicon. The pendulum is hermetically enclosed between two silicon discs. From this construction results a long term stable, high resolution und shock resistant sensor. A gas damping prevents overshooting and interfering resonance oscillation. An ASIC measures the capacitive change caused by the movement of the pendulum.

- senses in positive and negative direction
- static and dynamic acceleration measured
- high repeatability up to 0,05% over range
- high resolution: up to 0,005% over range
- shock resistance of the pendulum min. 50'000g
- temperature range -30 .. +85 °C
- passive temperature compensation
- small, solid brass housing with fixing holes
- rugged PVC cable
- large output span: 0.5 .. 4.5V output over measuring range
- power supply requirement: 7... 36 VDC, stabilized

Parameter	Conditions	KAS901-04	Unit
Measuring range 4)		+/- 1,7	G
		+/- 90	٥
Repeatability at 0°	at 040 ℃,	4	mg
(horizontal position) 1)	20°C typ	0,2	0
Resolution at 0° / 1g	DC 1Hz	0,2	mg
		0,01	0
typ. Offset temperature dependency	2060℃	0.6	mg/°
long term stability ⁶⁾	10 years ⁶⁾	approx. 1,5	mg
Measuring direction		z-axis ⁸⁾	
Cross axis sensitivity 2)		4	%
damping	-3 dB	50	Hz ⁵⁾
Operating temperature range		-30 ⁷⁾ +85	°C
Shock resistance (Chip)		20'000	g
Output signal Vout		0,5 4,5	V
Offset = V _{out} in 0 %position ⁸⁾		1,3 ⁸⁾	√ ⁸⁾
Sensitivity		4	V/g
Power supply 3)		7 36	VDC

Other versions:

- single and dual axis sensors in IP67 housing with cable or connector and standardized output 4... 20mA, 2...10V and Modbus
- smaller cases and sensors for higher temperatures ranges
 - 1) Repeatability: maximum offset occurring with position change after return to initial position (corresponds to achievable precision, including temperature hysteresis after temperature compensation and linearization).
 - 2) Cross axis sensitivity: maximum error occurring with (additional) inclination or acceleration from another direction than the measuring plane
 - Supply stabilized
 - **Measuring range:** Trigonometric function:

angle =
$$\arcsin\left(\frac{\text{Vout} - 2.5 \text{ (Offset)}}{\text{Sensitivity}}\right)$$

(paste values without units)

- 5) Typical values:
- 6) Long term stability: calculated values from HTB tests. Test results available at request.
- 7) Cable is specified for -15 °C for dynamic and -30 °C for static applications
- 8) In 0° (horizontal) position the proofmass (pendulum) is bending down (earth's gravitational force) If the sensor will be turned 90° to the side then the output will be nominal 2,5V