

COMPLIANT

High Voltage 4-Ω Quad SPST CMOS Analog Switch

DESCRIPTION

The DG451 series has four independently selectable high voltage (44 V) SPST switches, each with a typical on resistance of 4 Ω and a typical flatness of 0.2 Ω , ideal parameters for low distortion audio signal switching.

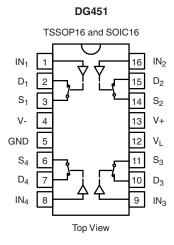
The DG451 (NC) and DG452 (NO) are identical except for the digital logic control input, which is inverted as shown in the Truth Table. The DG453 has two normally closed and two normally open switches.

These are high voltage switches that are fully specified with dual supplies at \pm 5 V and \pm 15 V and a single supply of 12 V and operating with ultra low power dissipation (18 μ W).

Fast switching speeds coupled with high signal bandwidth makes these parts suitable for video switching applications.

All digital inputs have 0.8 V and 2.4 V logic thresholds ensuring low voltage TTL/CMOS compatibility. Each switch conducts equally well in both directions when on and can handle an input signal range that extends to the supply voltage rails.

The DG451, DG452, and DG453 are pin compatible with the DG411, DG412, and DG413.


FEATURES

- Low on-resistance (4 Ω typical)
- On-resistance flatness (0.2 Ω typical)
- 100 mA continuous current
- 44 V supply maximum rating
- ± 15 V analog signal range
- Fully specified at supply voltages of ± 5 V, 12 V and ± 15 V
- Ultra low power dissipation of (18 μW)
- Fast switching speed:
 - t_{on} 80 ns
 - t_{off} 60 ns
- TTL/CMOS compatible
- ESD protection 2 kV
- Pin compatible with DG411, DG412, and DG413
- Compliant to RoHS directive 2002/95/EC

APPLICATIONS

- · Audio and video signal switching
- · Precision automatic test equipment
- · Precision data acquisition
- Relay replacement
- Communications systems
- Automotive and avionics applications
- Sample and hold systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE								
Logic	DG451	DG452						
0	On	Off						
1	Off	On						

TRUTH TABL	E	
Logic	SW ₁ , SW ₄	SW ₂ , SW ₃
0	Off	On
1	On	Off

Document Number: 74470 S09-2550-Rev. E, 30-Nov-09

DG451, DG452, DG453

Vishay Siliconix

ORDERING INFORMATION								
Temp. Range Package Part Number								
DG451, DG452, DG453								
40 00 to 405 008	16 Pin TSSOP	DG451EQ-T1-E3 DG452EQ-T1-E3 DG453EQ-T1-E3						
- 40 °C to 125 °C ^a	16 Pin Narrow SOIC	DG451EY-T1-E3 DG452EY-T1-E3 DG453EY-T1-E3						

Notes:

a. - 40 $^{\circ}$ C to 85 $^{\circ}$ C datasheet limits apply.

ABSOLUTE MAXIMUM RAT	FINGS T _A = 25 °C, unless oth	erwise noted			
Parameter		Limit	Unit		
V+ to V-		44			
GND to V-		25			
V _L		(GND - 0.3) to (V+) + 0.3	V		
Digital Inputs ^a , V _S , V _D		(V-) - 2 to (V+) + 2 or 30 mA, whichever occurs first			
Continuous Current (D, S only)		100	A		
Peak Current, S or D (Pulsed 1 ms, 10 %	6 Duty Cycle)	300	mA		
Storage Temperature		- 65 to 150	°C		
	16 Pin TSSOP ^c	450	\^/		
Power Dissipation (Package) ^b	16 Pin Narrow SOIC ^d	600	mW		
	16 Pin TSSOP	178	C/M/		
Thermal Resistance (Package) ^b 16 Pin Narrow SOIC		125	C/W		
ESD (HBM)	•	2	kV		

Notes:

- $a. \ Signals \ on \ S_X, \ D_X, \ or \ IN_X \ exceeding \ V+ \ or \ V- \ will \ be \ clamped \ by \ internal \ diodes. \ Limit forward \ diode \ current \ to \ maximum \ current \ ratings.$
- b. All leads welded or soldered to PC board.
- c. Derate 5.6 mW/°C above 70 °C.
- d. Derate 8.0 mW/°C above 75 °C.

SPECIFICATIONS FOR DUAL SUPPLIES									
		Test Conditions Unless Specified			- 40 °C t	°C to 125 °C - 40 °C to 85 °C		to 85 °C	
Parameter	Symbol	V+ = 15 V, V- = -15 V $V_L = 5 V, V_{IN} = 2.4 V, 0.8 V^a$	Temp.b	Typ. ^c	Min.d	Max.d	Min.d	Max. ^d	Unit
Analog Switch									
Analog Signal Range ^e	V _{ANALOG}		Full		- 15	15	- 15	15	V
On-Resistance	R _{ON}	$I_S = -10 \text{ mA}, V_D = -10 \text{ V to} + 10 \text{ V}$	Room Full	3.8		5.3 8.3		5.3 7.3	Ω
On-Resistance Match	ΔR _{ON}	$I_S = -10 \text{ mA}, V_D = \pm 10 \text{ V}$	Room Full	0.12		0.5 1		0.5 0.5	
On-Resistance Flatness	R _{FLATNESS}	I _S = - 10 mA, V _D = - 5 V, 0 V, + 5 V	Room Full	0.25		0.5 0.5		0.5 0.5	
Switch Off	I _{S(off)}	$V_D = \pm 10 \text{ V}, V_S = \mp 10 \text{ V}$	Room Full	± 0.1	- 0.5 - 20	0.5 20	- 0.5 - 2.5	0.5 2.5	
Leakage Current	I _{D(off)}	ν _D - ± 10 ν, ν _S - + 10 ν	Room Full	± 0.1	- 0.5 - 20	0.5 20	- 0.5 - 2.5	0.5 2.5	nA
Channel On Leakage Current	I _{D(on)}	$V_S = V_D = \pm 10 \text{ V}$	Room Full	± 0.1	- 0.4 - 40	0.4 40	- 1 - 5	1 5	

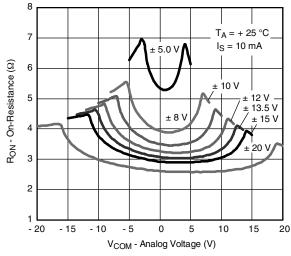
SPECIFICATIONS	SPECIFICATIONS FOR DUAL SUPPLIES								
		Test Conditions Unless Specified			- 40 °C to 125 °C		- 40 °C	to 85 °C	
Parameter	Symbol	$V_{+} = 15 \text{ V}, V_{-} = -15 \text{ V}$ $V_{L} = 5 \text{ V}, V_{IN} = 2.4 \text{ V}, 0.8 \text{ V}^{a}$	Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Digital Control	Cymbol	L 2 , IIV , 7 2 2	remp.	196.	1	mux.	141111	WIUX.) int
Input Current, V _{IN} Low	I _{IL}	V _{IN} Under Test = 0.8 V	Full	0.005	- 0.5	0.5	- 0.5	0.5	
Input Current, V _{IN} High	I _{IH}	V _{IN} Under Test = 2.4 V	Full	0.005	- 0.5	0.5	- 0.5	0.5	μΑ
Input Capacitance ^e	C _{IN}	f = 1 MHz	Room	7					pF
Dynamic Characteristics					•				
Turn-On Time	t _{ON}	$R_L = 300 \Omega$, $C_L = 35 pF$	Room Full	88		118 160		118 144	
Turn-Off Time	t _{OFF}	$V_S = \pm 10 \text{ V}$, See Figure 2	Room Full	69		97 120		97 112	ns
Break-Before-Make Time Delay	t _D	DG453 only, $V_S = 10 \text{ V}$ $R_L = 300 \Omega$, $C_L = 35 \text{ pF}$	Room	18					
Charge Injection ^e	Q	$V_g = 0 \text{ V, } R_g = 0 \Omega, C_L = 1 \text{ nF}$	Room	22					рC
Off Isolation ^e	OIRR	$R_L = 50 \Omega, C_L = 5 pF$	Room	- 60					
Channel-to-Channel Crosstalk ^e	X _{TALK}	f = 1 MHz	Room	- 85					dB
Source Off Capacitance ^e	C _{S(off)}		Room	31					
Drain Off Capacitance ^e	C _{D(off)}	f = 1 MHz	Room	34					рF
Channel On Capacitance ^e	C _{D(on)}		Room	103					
Total Harmonic Distortion ^e	THD	Signal = 5 V_{RMS} , 20 Hz to 20 kHz, $R_L = 600 \Omega$	Room	0.04					%
Power Supplies						L	L	l	
Power Supply Current	l+		Room Full	0.001		0.5 5		0.5 5	
Negative Supply Current	I-	V+ = 16.5 V, V- = - 16.5 V	Room Full	- 0.001	- 0.5 - 5		- 0.5 - 5		μΑ
Logic Supply Current	Ι _L	$V_L = 5 \text{ V}, V_{1N} = 0 \text{ or } 5 \text{ V}$	Room Full	0.001		0.5 5		0.5 5	μΑ
Ground Current	I _{GND}		Room Full	- 0.001	- 0.5 - 5		- 0.5 - 5		

SPECIFICATIONS FOR DUAL SUPPLIES									
		Test Conditions Unless Specified			- 40 °C t	o 125 °C	- 40 °C to 85 °C		
Parameter	Symbol	V+ = 5 V, V- = -5 V $V_L = 5 V, V_{IN} = 2.4 V, 0.8 V^a$	Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Analog Switch									
Analog Signal Range ^e	V _{ANALOG}		Full		- 5	5	- 5	5	V
On-Resistance	R _{ON}	V+ = + 5 V, V- = - 5 V I _S = - 10 mA, V _D = - 3.5 V to + 3.5 V	Room Full	3.8		11 15		11 12	Ω
On-Resistance Match	ΔR _{ON}	V+ = + 5 V, V- = -5 V, $I_S = -10 \text{ mA}, V_D = \pm 3.5 V$	Room Full	0.13		0.5 1		0.5 0.5	52
Dynamic Characteristics	3								
Turn-On Time ^e	t _{ON}	$R_L = 300 \Omega$, $C_L = 35 pF$	Room Full	170		200 296		200 256	
Turn-Off Time ^e	t _{OFF}	$V_S = 3 V$, See Figure 2	Room Full	66		96 124		96 113	ns
Break-Before-Make ^e Time Delay	t _D	DG451 only, $V_S = 3 \text{ V}$ $R_L = 300 \Omega$, $C_L = 35 \text{ pF}$	Room Full	98					
Charge Injection ^e	Q	$V_g = 0 \text{ V}, R_g = 0 \Omega, C_L = 1 \text{ nF}$	Full	8					рС

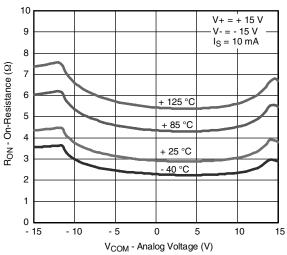
Vishay Siliconix

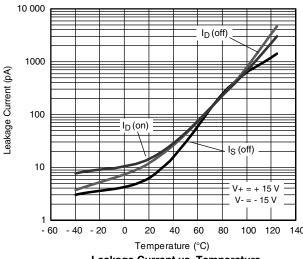
SPECIFICATIONS FOR DUAL SUPPLIES									
		Test Conditions Unless Specified V+ = 5 V, V- = - 5 V			- 40 °C to 125 °C		- 40 °C	to 85 °C	
Parameter	Symbol	$V_L = 5 \text{ V}, V_{IN} = 2.4 \text{ V}, 0.8 \text{ V}^a$	Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Power Supplies									
Power Supply Current	I+		Room Full	0.001		- 0.5 - 5		- 0.5 - 5	
Negative Supply Current	I-	V _I = 5 V, V _{IN} = 0 or 5 V	Room Full	- 0.001	- 0.5 - 5		- 0.5 - 5		
Logic Supply Current	Ι _L	VL = 3 V, VIN = 0 01 3 V	Room Full	0.001		- 0.5 - 5		- 0.5 - 5	μΑ
Ground Current	I _{GND}		Room Full	- 0.001	- 0.5 - 5		- 0.5 - 5		

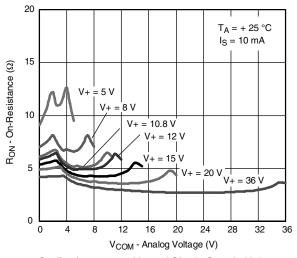
SPECIFICATIONS FOR UNIPOLAR SUPPLIES									
		Test Conditions Unless Specified V+ = 12 V. V- = 0 V			- 40 °C t	o 125 °C	- 40 °C	to 85 °C	
Parameter	Symbol	$V_L = 5 \text{ V}, V_{IN} = 2.4 \text{ V}, 0.8 \text{ V}^a$	Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Analog Switch									
Analog Signal Range ^e	V _{ANALOG}		Full			12		12	V
On-Resistance	R _{ON}	$I_S = -10 \text{ mA}, V_D = 0 \text{ V to} + 10 \text{ V}$	Room Full	5.5		8.1 12.4		8.1 10.4	
On-Resistance Match	ΔR _{ON}	I _S = - 10 mA, V _D = + 10 V	Room Full	0.14		0.5 1		0.5 0.5	Ω
On-Resistance Flatness	R _{FLATNESS}	$I_S = -10 \text{ mA},$ $V_D = 0 \text{ V}, +5 \text{ V}, +10 \text{ V}$	Room Full	0.94		1.5 1.7		1.5 1.5	
Dynamic Characteristics	+								
Turn-On Time	t _{ON}	$R_L = 300 \Omega$, $C_L = 35 pF$	Room Full	132		162 238		162 210	
Turn-Off Time	t _{OFF}	V _S = 8 V, See Figure 2	Room Full	61		91 117		91 105	ns
Break-Before-Make Time Delay	t _D	DG453 only, $V_S = 8 \text{ V}$ $R_L = 300 \Omega$, $C_L = 35 \text{ pF}$	Room	70					
Charge Injection ^e	Q	$V_g = 0 \text{ V}, R_g = 0 \Omega, C_L = 1 \text{ nF}$	Room	1					рС
Power Supplies	•				•				'
Power Supply Current	I+		Room Full	0.001		0.5 5		0.5 5	
Negative Supply Current	I-	V _I = 5 V, V _{IN} = 0 or 5 V	Room Full	- 0.001	- 0.5 - 5		- 0.5 - 5		μΑ
Logic Supply Current	IL	VL = 5 V, VIN = 0 01 5 V	Room Full	0.001		0.5 5		0.5 5	μΑ
Ground Current	I _{GND}		Room Full	- 0.001	- 0.5 - 5		- 0.5 - 5		

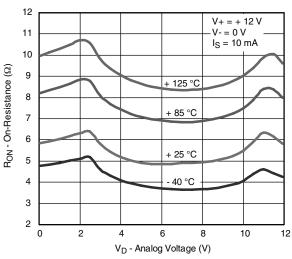

Notes:

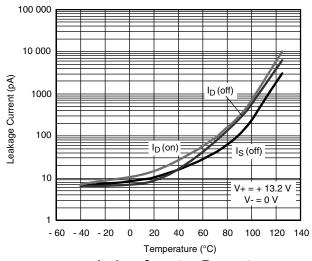
- a. V_{IN} = input voltage to perform proper function.
- b. Room = 25 °C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- e. Guaranteed by design, not subject to production test.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

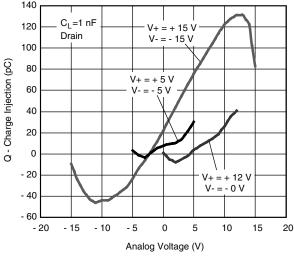

TYPICAL CHARACTERISTICS 25 °C, V_L = 5 V, unless otherwise noted

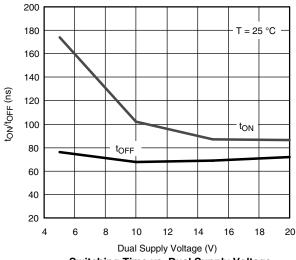

On-Resistance vs. V_D and Dual Supply Voltage


On-Resistance vs. V_{D} and Temperature

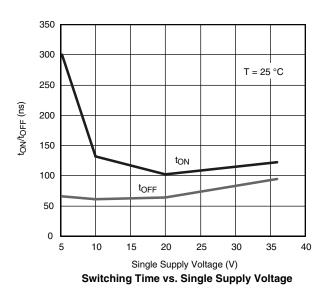

Leakage Current vs. Temperature

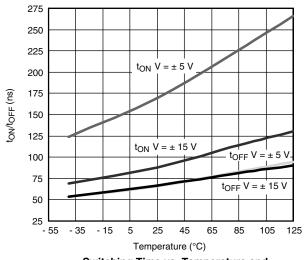
On-Resistance vs. $V_{\rm D}$ and Single Supply Voltage


On-Resistance vs. V_D and Temperature

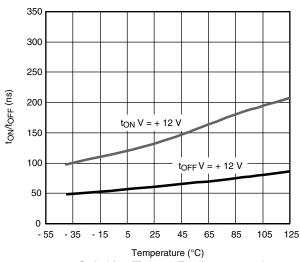

Leakage Current vs. Temperature

Vishay Siliconix

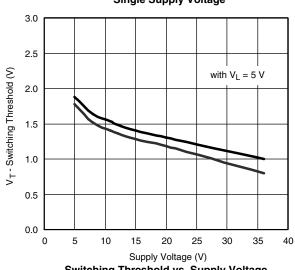

TYPICAL CHARACTERISTICS 25 °C, V_L = 5 V, unless otherwise noted



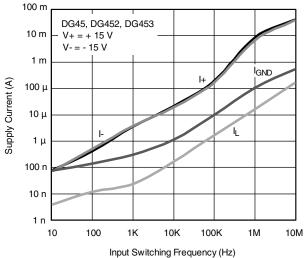
Charge Injection vs. Analog Voltage



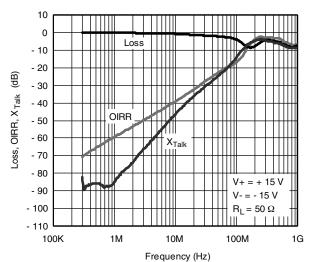
Switching Time vs. Dual Supply Voltage



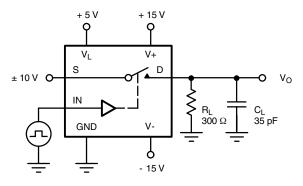
Switching Time vs. Temperature and **Dual Supply Voltage**



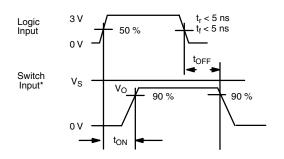
Switching Time vs. Temperature and Single Supply Voltage



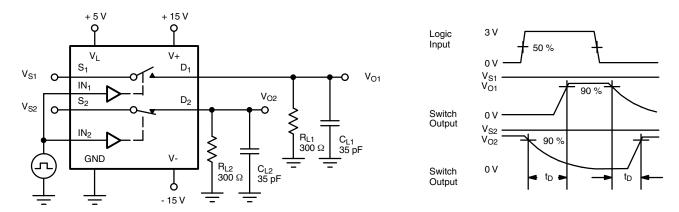
TYPICAL CHARACTERISTICS 25 °C, $V_L = 5 V$, unless otherwise noted



Supply Current vs. Input Switching Frequency


Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

TEST CIRCUITS


C_L (includes fixture and stray capacitance)

$$V_O = V_S$$

$$\frac{R_L}{R_L + R_{DS(on)}}$$

Note: Logic input waveform is inverted for switches that have the opposite logic sense control

Figure 1. Switching Time

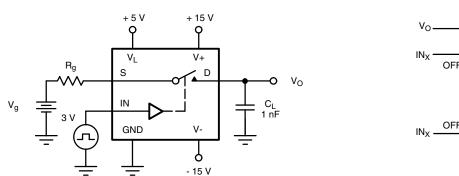

C_L (includes fixture and stray capacitance)

Figure 2. Break-Before-Make (DG453)

Vishay Siliconix

TEST CIRCUITS

 V_O IN_X OFF ON OFF OFF ON OFF OFF

Figure 3. Charge Injection

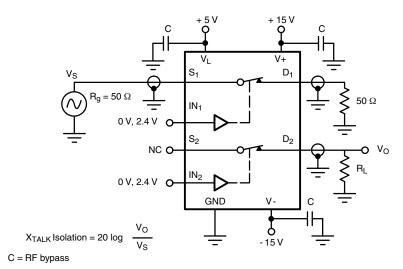
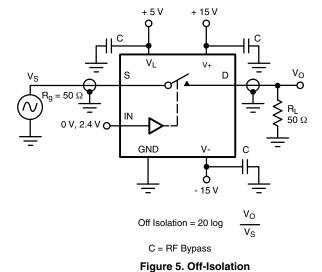
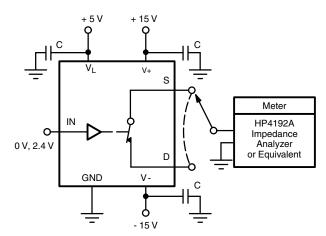
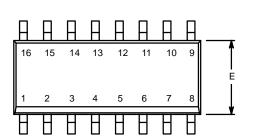
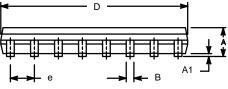



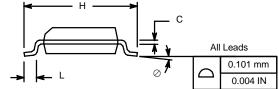
Figure 4. Crosstalk




Figure 6. Source/Drain Capacitances

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg274470.

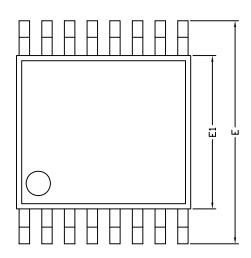

SOIC (NARROW): 16-LEAD JEDEC Part Number: MS-012

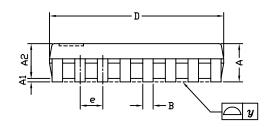


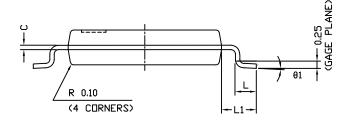
	MILLIMETERS		INC	HES			
Dim	Min	Max	Min	Max			
Α	1.35	1.75	0.053	0.069			
A ₁	0.10	0.20	0.004	0.008			
В	0.38	0.51	0.015	0.020			
С	0.18	0.23	0.007	0.009			
D	9.80	10.00	0.385	0.393			
E	3.80	4.00	0.149	0.157			
е	1.27	BSC	0.050	BSC			
Н	5.80	6.20	0.228	0.244			
L	0.50	0.93	0.020	0.037			
0	0°	8°	0°	8°			
FCN: S-03946—Rev. F. 09-Jul-01							

ECN: S-03946—Rev. F, 09-Jul-01

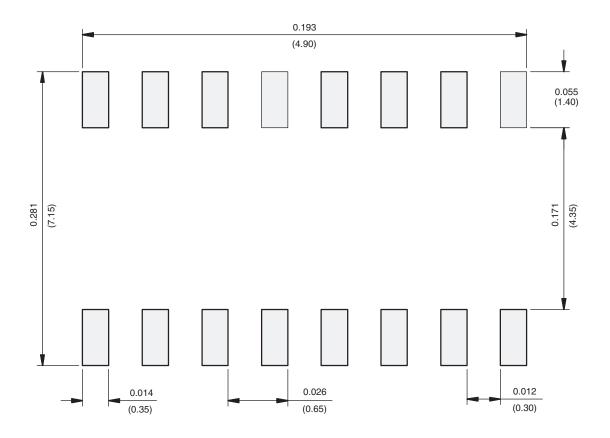
DWG: 5300





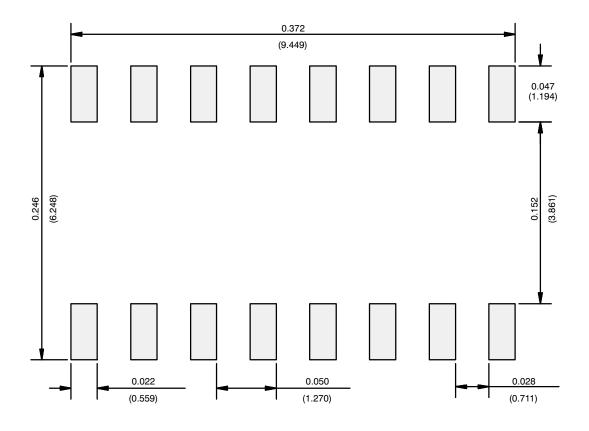

www.vishay.com 02-Jul-01

TSSOP: 16-LEAD


	DIMENSIONS IN MILLIMETERS							
Symbols	Min	Nom	Max					
А	=	1.10	1.20					
A1	0.05	0.10	0.15					
A2	=	1.00	1.05					
В	0.22	0.28	0.38					
С	=	0.127	-					
D	4.90	5.00	5.10					
E	6.10	6.40	6.70					
E1	4.30	4.40	4.50					
е	-	0.65	-					
L	0.50	0.60	0.70					
L1	0.90	1.00	1.10					
у	=	-	0.10					
θ1	0°	3°	6°					
ECN: S-61920-Rev. D. 23-0	Oct-06	<u> </u>						

DWG: 5624

Document Number: 74417 www.vishay.com 23-Oct-06


RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads Dimensions in inches (mm)

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000