The information contained in this documentation is the property of MAZeT. Photocopying or otherwise reproducing any part of the catalog, whether electronically or mechanically is prohibited, except by permission of MAZeT GmbH. In general, all company and brand names, as well as the names of individual products, are protected by brand, patent or product laws.

	VERSION					
NO	ISSUE	DATE				
1	V 2.2	2013-02-05				

Data Sheet

MTI04CS/MTI04CQ

MULTI-CHANNEL PROGRAMMABLE GAIN TRANSIMPEDANCE AMPLIFIER

Table of contents

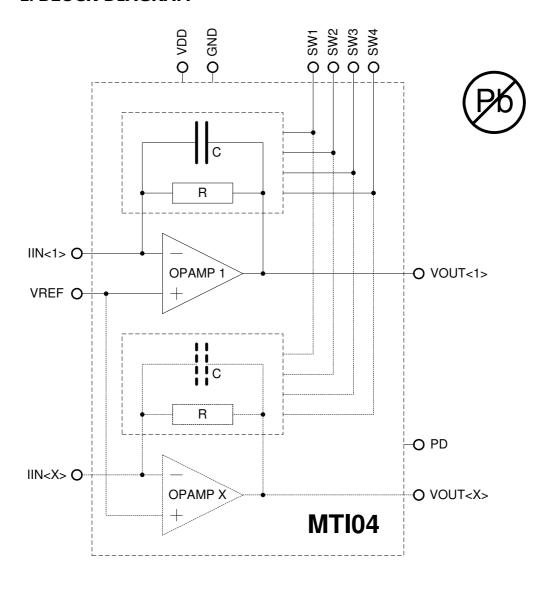
1. GENERAL DESCRIPTION	2
2. BLOCK DIAGRAM	2
3. DESCRIPTION OF INTERFACE	3 3
3.2 Adjustment of Transimpedance	3 3
4. DESCRIPTION OF FUNCTION	4
5. ELECTRICAL CHARACTERISTICS	
5.2 Operating Conditions	
6. PACKAGES 6.1 Shape And Dimensions 6.2 Pin Configuration 6.3 Soldering Information	7 7 8
7. APPLICATIONS	9 9
8. ORDERING INFORMATION	11
9 CONTACT	11

•	Approvals	Date	MAZeT GmbH		
07745 JENA / GERMANY	Compiled:	2013-02-05	Status: certified		
Phone: +49 3641 2809-0 Fax: +49 3641 2809-12	Checked:	2013-02-05			
E-Mail: sales@MAZeT.de Url: http://www.MAZeT.de	Released:	2013-02-05	DOC. NO: DB-05- 175e	Page 1 of 11	

VERSION				
NO.	ISSUE	DATE		
1	V 2.2	2013-02-05		

1. GENERAL DESCRIPTION

The MTI-devices are a family of integrated circuits of **programmable gain transimpedance amplifiers** with **4 channels** per IC (more custom specific, on request).


The MTI-devices are mainly used for **signal conditioning of sensors with current outputs**. They are especially suitable for connection of photodiodes of **array and row sensors**.

The possibility to **adjust the transimpedance in 8 stages** is a special feature

The adjustment is made by programming three pins and is valid for all channels together.

The device packages (naked chip on request) are ROHS conform and optimized for **COB- mounting and SMD**.

2. BLOCK DIAGRAM

The information in this publication is believed to be accurate in all respects at the time of publication. MAZeT reserves the right to make changes in its products without notice in order to improve design or performance characteristics.

DOC. NO: DB-05-175e

Page 2 of 11

	VERSION				
NO.	ISSUE		DATE		
1	V 2.2	_	2013-02-05		

3. DESCRIPTION OF INTERFACE

3.1 Pin Assignment

signal name	typ.	a/dª	function	
VDD	input	a/d	power supply	
GND	input	a/d	power supply	
VREF	input	а	reference voltage	
SW1	input	d	input 1 for adjustment of transimpedance of MTI-amplifier (pull down)	
SW2	input	d	input 2 for adjustment of transimpedance of MTI-amplifier (pull down)	
SW3	input	d	input 3 for adjustment of transimpedance of MTI-amplifier (pull down)	
SW4	input	d	switchable frequency range dependend on input capacitance of the photo-sensor (pull down)	
PD	input	d	power down mode (pull down)	
IIN <x></x>	input	а	analog current input of amplifier X	
VOUT <x></x>	output	а	analog voltage output of amplifier X	

a.) analog or digital

3.2 Adjustment of Transimpedance

settings of	digital inputs		
SW1	SW2	SW3	transimpedance R
VDD	VDD	VDD	20MΩ - stage 1
GND	VDD	VDD	10MΩ - stage 2
GND	VDD	GND	5MΩ - stage 3
VDD	GND	VDD	2MΩ – stage 4
GND	GND	VDD	1 Μ Ω – stage 5
VDD	GND	GND	500kΩ – stage 6
VDD	VDD	GND	100kΩ – stage 7
GND	GND	GND	25kΩ ^b – stage 8

b.) default by pull down

3.3 Switchable Frequency Range

settings of digital input	
SW4	Allowed capacitance of photo- sensor
VDD	< 5pF
GND	< 80pF ^c

c.) default by pull down

3.4 Power-down Mode

settings of digital input	
PD	bias current of the IC
VDD	< 8µA
GND	typical ^d

d.) default by pull down

The information in this publication is believed to be accurate in all respects at	DOC. NO:	Page 3 of 11
the time of publication. MAZeT reserves the right to make changes in its products with out notice in order to improve decime or notice that the contract of th	DB-05-175e	J
ucts without notice in order to improve design or performance characteristics.		

VERSION				
NO.	ISSUE	DATE		
1	V 2.2	2013-02-05		

4. DESCRIPTION OF FUNCTION

The MTI-devices are programmable gain transimpedance amplifiers with different numbers of channels (MTI04 – 4 channels). There is one transimpedance amplifier per channel between a current input IIN<X> and a voltage output² VOUT<X>. Its transimpedance is selectable in 8 stages. This adjustment can be effected by setting of digital inputs SW1, SW3 and SW4 and is valid for all channels simultaneously (headline 3.2).

Also simultaneously valid for all channels is a compensation of the input capacitance of photo-sensors for two possible frequency ranges (switchable by SW4, headline 3.3).

The pins SW1, SW2, SW3 and SW4 are pull down inputs.

The second input of all transimpedance amplifiers is used for a common supply by a reference voltage necessarily fed in through the pin VREF.

All channels are compensated for an external input capacitance of the photosensor of smaller than 80pF (SW4 = GND). The power supply for the MTIdevices is typical 3V to 5V between VDD and GND.

The power down mode is adjusted by PD = VDD and switches off the functionality. In that case it must be pointed out that the transimpedance resistor of stage 8 is between the particular inputs and outputs. The amplifiers are switched off (tristate).

5. ELECTRICAL CHARACTERISTICS

5.1 Maximum Conditions

Violations of absolute maximum conditions are not allowed under any circumstances, otherwise the IC can be destroyed.

All voltages are referenced to GND = 0V.

parameter	name	min.	max.	unit
power supply	VDD	0.3	7.0	V
input and output voltages	⇒ IC-pinning	0.3	VDD+0.3	V
power dissipation	P_{OP}		0.025	W
operating temperature	T_OP	□40	125	°C
storage temperature	T_{STG}	□55	155	°C

 2 $V_{OUT} = V_{REF} - I_{In} * R$

The information in this publication is believed to be accurate in all respects at the time of publication. MAZeT reserves the right to make changes in its prod-DB-05-175e ucts without notice in order to improve design or performance characteristics.

DOC. NO:

Page 4 of 11

¹ work as inverted amplifiers

		VERSION	
NO.	ISSUE		DATE
1	V 2.2		2013-02-05

5.2 Operating Conditions

All voltages are referenced to GND = 0V.

parameter	nam	min.	typ.	max.	unit	condition
	е					
supply voltage	VDD	2.7	3 to 5	5.5	٧	
bias current MTI04	I(VDD		2.5	4.0	mA	27°C,
)					VDD=5.5V
bias current MTI04	I(VDD			8	μA	PD=VDD
)					
operating tempera-	T _{OP}	□40	27	125	°C	
ture						
input high level	V_{IH}	0.7-		VDD+0.3	V	
		VDD				
input low level	V_{IL}	□0.3		0.8	V	
reference voltage	VREF	0.4		VDD-0.4	V	

5.3 AC/DC-Characteristics

Unless otherwise specified the data in this table is valid for T_{OP} = 27°C and VDD = 5V.

All voltages are referenced to GND = 0V.

parameter	Name	min.	typ.	max.	unit	condition
			0.025		μA	stage 1
			0.05		μΑ	stage 2
			0.1		μΑ	stage 3
			0.25		μΑ	stage 4
input current	I(IIN <x< td=""><td></td><td>0.5</td><td></td><td>μΑ</td><td>stage 5</td></x<>		0.5		μΑ	stage 5
	>)		1		μΑ	stage 6
			5		μΑ	stage 7
			20		μΑ	stage 8
		14000	20000	26700	kΩ	stage 1
		7000	10000	13350	kΩ	stage 2
		3500	5000	6700	kΩ	stage 3
		1400	2000	2670	kΩ	stage 4
feedback resistor	R	700	1000	1335	kΩ	stage 5
		350	500	670	kΩ	stage 6
		70	100	133	kΩ	stage 7
		17	25	34	kΩ	stage 8
		4	6	16	kHz	stage 1, T _{OP} (5.2)
		7	11	28	kHz	stage 2, T _{OP} (5.2)
		11	16	42	kHz	stage 3, T _{OP} (5.2)
signal frequency at		18	26	66	kHz	stage 4, T _{OP} (5.2)
input	f _{3dB}	25	35	95	kHz	stage 5, T _{OP} (5.2)
SW4 = GND		35	50	130	kHz	stage 6, T _{OP} (5.2)
$(C_{PHOTO-SENSOR} < 80pF)$		80	120	280	kHz	stage 7, T _{OP} (5.2)
		160	300	580	kHz	stage 8, T _{OP} (5.2)
		4	6	16	kHz	stage 1, T _{OP} (5.2)
		7	11	28	kHz	stage 2, T _{OP} (5.2)
		14	21	45	kHz	stage 3, T _{OP} (5.2)
signal frequency at		35	54	130	kHz	stage 4, T _{OP} (5.2)
input	f _{3dB}	70	110	260	kHz	stage 5, T _{OP} (5.2)
SW4 = VDD		100	160	360	kHz	stage 6, T _{OP} (5.2)
$(C_{PHOTO-SESNOR} < 5pF)$		260	380	780	kHz	stage 7, T _{OP} (5.2)
		500	800	1700	kHz	stage 8, T _{OP} (5.2)

The information in this publication is believed to be accurate in all respects at the time of publication. MAZeT reserves the right to make changes in its products without notice in order to improve design or performance characteristics.

DOC. NO: DB-05-175e

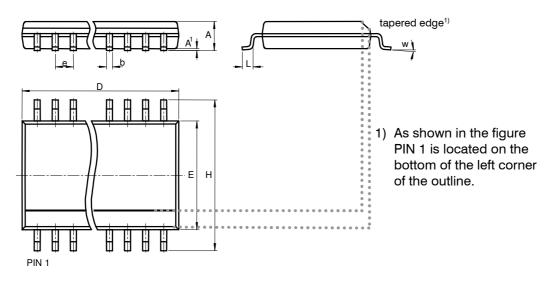
Page 5 of 11

	VERSION	
NO.	ISSUE	DATE
1	V 2.2	2013-02-05

parameter	Name	min.	typ.	max.	unit	condition
temperature coeffi- cient of the feedback resistor ³	TC_R		-3300		ppm /K	
offset voltage	$V_{\rm OFF}^{4}$	-10		10	mV	$T_{OP}(5.2)$
capacitive load at VOUT <x></x>	C _{LOAD}			50	pF	I _{LOAD} < 0.5mA per output
pull down current SW1, SW2, SW3, SW4, PD	${ m I}_{ m PDPAD}$			200	μΑ	digital inputs
input capacitance of external connected photo-sensors	C _{PHOTO} - SENSOR			80	pF	per input SW4 = GND
input capacitance of external connected photo-sensors	C _{PHOTO} - SENSOR			5	pF	per input SW4 = VDD
tolerance of the feed- back resistors be- tween the four chan- nels	TOL _R ⁵	1		10	%	DC input cur- rent; for all stages

The information in this publication is believed to be accurate in all respects at the time of publication. MAZeT reserves the right to make changes in its products without notice in order to improve design or performance characteristics.

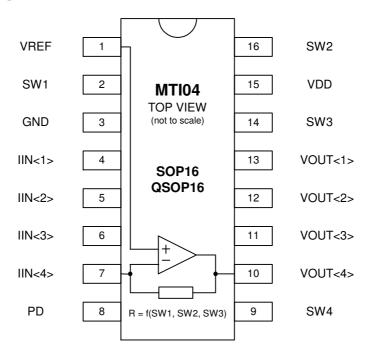
DOC. NO: DB-05-175e


Page 6 of 11

 $^{^3}$ see also chapter 7.2 4 V_{OFF} = VOUT<X> (VREF; results from input offset voltage and input leakage current 5 up to max. 1% available on request

		VERSION	
NO.	ISSUE		DATE
1	V 2.2		2013-02-05

6. PACKAGES


6.1 Shape And Dimensions

dimensions - mm

ТҮР	PACKAG E	D	E	н	A	A1	е	b	L	w
MTI04CS	SOP16	9.90	3.80	6.00	1.75	0.15	1.27	0.41	0.72	4°
MTI04CQ	QSOP16	4.90	3.80	6.00	1.75	0.15	0.635	0.38	0.72	4°

6.2 Pin Configuration

The information in this publication is believed to be accurate in all respects at the time of publication. MAZeT reserves the right to make changes in its products without notice in order to improve design or performance characteristics.

DOC. NO: DB-05-175e

Page 7 of 11

DATA	CHEET	NATIOACC	/NATTO 4CO
DATA	SHEEL	M1104C5	/MTI04CQ

	VERSION	
NO.	ISSUE	DATE
1	V 2.2	2013-02-05

6.3 Soldering Information

The solder reflow profile should fulfil the specifications for the reflow profile parameters given in **Fehler! Verweisquelle konnte nicht gefunden werden.**These parameters follow the IPC/JEDEC standard J-STD-020D.1. The temperature should be measure at the top of the package.

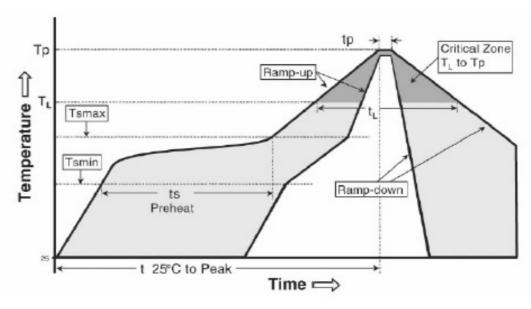
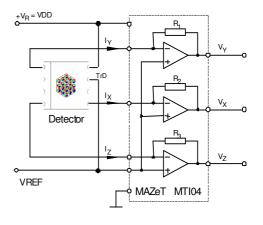


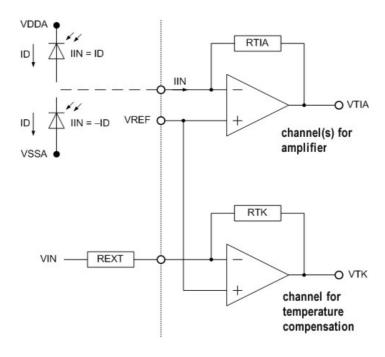
Figure 1: Recommended reflow profile

Table 1: Reflow profile parameters


Profile Parameter	Assembly, Convection
ramp-up rate (Tsmax to Tp)	2-3°C/second
preheat temperature (Tsmin to Tsmax)	150°C to 200°C
preheat time (ts)	60 - 120 seconds
time above T _L , 217°C (t _L)	60 - 150 seconds
peak temperature (Tp)	260°C
time within 5°C of peak temperature (tp)	20 - 40 seconds
ramp-down rate	6°C/second
time 25°C to peak temperature	8 minutes max.

		VERSION	
NO.	ISSUE		DATE
1	V 2.2	_	2013-02-05

7. APPLICATIONS


7.1 Connection of MAZeT Color Sensor

Opposite figure shows a circuit for the conversion of sensor's photo current to an equivalent voltage by using the amplifier MTIO4. The resulted voltage can be processed e.g. with an ADC. By the selection of suitable resistors / amplifying stage the output voltage range can be adjusted to the photo current value by programming the pin-programmable transimpedance amplifier $R_x \approx \frac{V_{Out}}{I_{Photo}}$

7.2 Temperature compensation of MTI04 via reference method

The following description shows a possible approach for reduction the temperature dependency of amplifier via reference channel (use the 4th channel of MTI04).

The input of the reference channel is connected with an external resistor that will load with an input voltage which is different to VREF.

The output voltage of the measuring channel is explained in the coming formula:

(1)
$$VTIA(T) = VREF(T) - IIN * RTIA(T)$$

The information in this publication is believed to be accurate in all respects at
the time of publication. MAZeT reserves the right to make changes in its prod-
ucts without notice in order to improve design or performance characteristics.

VERSION				
NO.	ISSUE	DATE		
1	V 2.2	2013-02-05		

IIN is the input current, which is supplied by the external sensor. The output voltage of the channel for the temperature compensation is defined:

(2)
$$VTK(T) = VREF(T) - \frac{VIN(T) - VREF(T)}{REXT(T)} * RTK(T)$$

The following voltages will calculate for temperature compensation with a resistor.

(3)
$$\Delta VTIA(T) = VREF(T) - VTIA(T)$$

(4)
$$\Delta VTK(T) = VREF(T) - VTK(T)$$

For example the voltage $\Delta VTK(T0)$ will detect during the initialization of the system. The value is equivalent to a constant for the temperature T0, which prevailed at the time of initialization. All further measurements will calibrate by this value.

(5)
$$\Delta VTIAkorrigiert(T) = \Delta VTIA(T) * \frac{\Delta VTK(T0)}{\Delta VTK(T)}$$

All variables of the channel for temperature compensation are affected by temperature effects. Therefore there is an additional coefficient necessary. That coefficient should be highly reduced opposite to the named above value of the RTIA (typical -3300ppm/K).

(6)
$$TK = TK(REXT) - \frac{VIN}{VIN - VREF} * TK(VIN) + \frac{VREF}{VIN - VREF} * TK(VREF)$$

"TK(REXT)" is the temperature coefficient of the external resistor, "TK(VIN)" is the temperature coefficient of the input voltage and "TK(VREF)" is the temperature coefficient of the reference voltage.

Please consider the following interrelationship by the choice of resistors REXT and RTK in term of the selected voltages VIN and VREF(values from (2) and (4)).

$$(7) \frac{REXT}{RTK} > \left| \frac{VIN}{VREF} - 1 \right|$$

The adherence of this non-equation ensures, that the voltage VTK is located in the working range. That means the amplifier of the channel for temperature compensation doesn't go into saturation.

Furthermore you can calculate the absolute value of the transimpedance resistor RTK for a certain actual existing temperature.

(8)
$$RTK(T) = REXT(T) * \frac{VREF(T) - VTK(T)}{VIN(T) - VREF(T)}$$

The information in this publication is believed to be accurate in all respects at
the time of publication. MAZeT reserves the right to make changes in its prod-
ucts without notice in order to improve design or performance characteristics.

	VERSION	
NO.	ISSUE	DATE
1	V 2.2	2013-02-05

7.3 Output Signals Vout

MTI04 works by the principle of a connected op-amp:

$$V_{OUT} = V_{REF} - I_{In} * R$$
 {limited by GROUND ...VREF}

a.
$$I_{IN}=0$$
 \Rightarrow $V_{OUT}=V_{REF}$ b. $I_{IN}=max$. \Rightarrow $V_{OUT}=0$

o.
$$I_{IN} = max$$
. $\rightarrow V_{OUT} = 0$

8. ORDERING INFORMATION

NAME OF PRODUCT PACKAGE NUMBER OF CHANNELS

MTI04CS SOP16 MTI04CQ QSOP16

9. CONTACT

For further information, please feel free to contact:

MAZeT GmbH Sales office:

Göschwitzer Straße 32 07745 JENA **GERMANY**

Phone: +49 3641 2809-0 Fax: +49 3641 2809-12 E-Mail: sales@MAZeT.de Url: www.MAZeT.de

WARNINGS

Personal Injury - Do not use these products as safety or emergency stop devices or in any other applications where failure of the product could result in personal injury. Failure to comply with these instructions could result in death or serious injury.

Misuse of Documentation - The information presented in this data sheet is for reference only. Because these products are under development do not use this document as product installation quide. Before you start any development ask your supplier for the latest version of this sheet. Failure to comply with these instructions could result in death or serious injury.

ESD Warning - Standard CMOS handling precautions should be observed to avoid static discharge