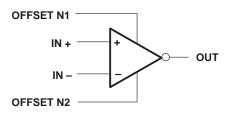
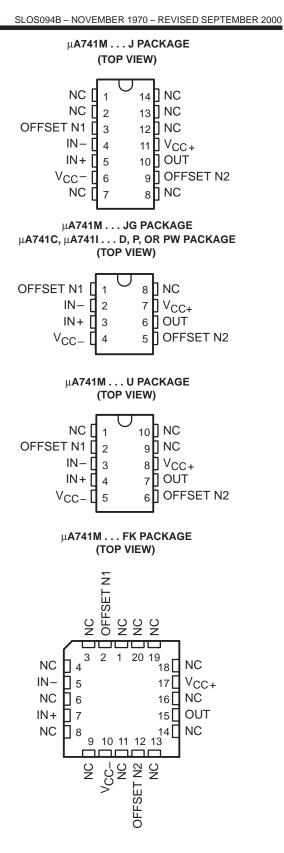
- Short-Circuit Protection
- Offset-Voltage Null Capability
- Large Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-Up
- Designed to Be Interchangeable With Fairchild μA741


description


The μ A741 is a general-purpose operational amplifier featuring offset-voltage null capability.

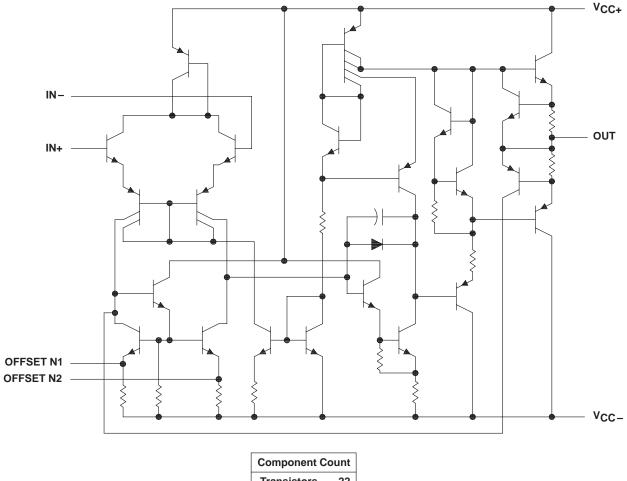
The high common-mode input voltage range and the absence of latch-up make the amplifier ideal for voltage-follower applications. The device is short-circuit protected and the internal frequency compensation ensures stability without external components. A low value potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 2.

The μ A741C is characterized for operation from 0°C to 70°C. The μ A741I is characterized for operation from -40°C to 85°C.The μ A741M is characterized for operation over the full military temperature range of -55°C to 125°C.

symbol

NC - No internal connection

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

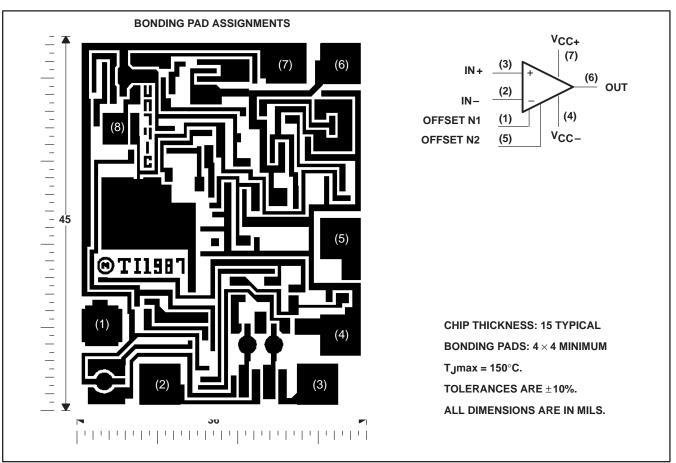

Copyright © 2000, Texas Instruments Incorporated

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

	AVAILABLE OPTIONS													
	PACKAGED DEVICES													
TA	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (J)	CERAMIC DIP (JG)	PLASTIC DIP (P)	TSSOP (PW) FLAT PACK (U)		CHIP FORM (Y)						
0°C to 70°C	μA741CD				μA741CP	μA741CPW		μA741Y						
-40°C to 85°C	μΑ741ID				μA741IP									
-55°C to 125°C		μA741MFK	μA741MJ	μA741MJG			μA741MU							

The D package is available taped and reeled. Add the suffix R (e.g., μ A741CDR).

schematic


-	
Transistors	22
Resistors	11
Diode	1
Capacitor	1

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

μ A741Y chip information

This chip, when properly assembled, displays characteristics similar to the μ A741C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

		μ Α741C	μ Α741Ι	μ Α741Μ	UNIT
Supply voltage, V _{CC+} (see Note 1)		18	22	22	V
Supply voltage, V _{CC-} (see Note 1)		-18	-22	-22	V
Differential input voltage, VID (see Note 2)	±15	±30	±30	V	
Input voltage, V _I any input (see Notes 1 and 3)	±15	±15	±15	V	
Voltage between offset null (either OFFSET N1 or OFFSET N2) a	±15	±0.5	±0.5	V	
Duration of output short circuit (see Note 4)		unlimited	unlimited	unlimited	
Continuous total power dissipation		See Dissipation Rating Table			
Operating free-air temperature range, TA		0 to 70	-40 to 85	-55 to 125	°C
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C
Case temperature for 60 seconds	FK package			260	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J, JG, or U package			300	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D, P, or PW package	260	260		°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-}.

2. Differential voltages are at IN+ with respect to IN-.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.

 The output may be shorted to ground or either power supply. For the μA741M only, the unlimited duration of the short circuit applies at (or below) 125°C case temperature or 75°C free-air temperature.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	500 mW	5.8 mW/°C	64°C	464 mW	377 mW	N/A
FK	500 mW	11.0 mW/°C	105°C	500 mW	500 mW	275 mW
J	500 mW	11.0 mW/°C	105°C	500 mW	500 mW	275 mW
JG	500 mW	8.4 mW/°C	90°C	500 mW	500 mW	210 mW
Р	500 mW	N/A	N/A	500 mW	500 mW	N/A
PW	525 mW	4.2 mW/°C	25°C	336 mW	N/A	N/A
U	500 mW	5.4 mW/°C	57°C	432 mW	351 mW	135 mW

$\mu \text{A741}, \mu \text{A741Y}$ GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

	PADAMETED	TEST	- +	ļ	ւ A741C		μ Α74	1Ι, μ Α7	41M		
	PARAMETER	CONDITIONS	TA [†]	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
Vie	Input offset voltage	$V_{O} = 0$	25°C		1	6		1	5	mV	
VIO	input onset voltage	AO = 0	Full range			7.5			6	mv	
$\Delta V_{IO}(adj)$	Offset voltage adjust range	$V_{O} = 0$	25°C		±15			±15		mV	
IIO	Input offset current	$V_{O} = 0$	25°C		20	200		20	200	nA	
10	input onset current	v0 = 0	Full range			300			500	117	
IIB	Input bias current	$V_{O} = 0$	25°C		80	500		80	500	nA	
чв		v0=0	Full range			800			1500		
VICR	Common-mode input		25°C	±12	±13		±12	±13		V	
VICR	voltage range		Full range	±12			±12			v	
		$R_L = 10 \text{ k}\Omega$	25°C	±12	±14		±12	±14			
Vом	Maximum peak output	$R_L \ge 10 \ k\Omega$	Full range	±12			±12			V	
	voltage swing	$R_L = 2 k\Omega$	25°C	±10	±13		±10	±13		v	
		$R_L \ge 2 \ k\Omega$	Full range	±10			±10				
A. (5)	Large-signal differential	$R_L \ge 2 \ k\Omega$	25°C	20	200		50	200		V/mV	
AVD	voltage amplification	V _O = ±10 V	Full range	15			25			V/IIIV	
r _i	Input resistance		25°C	0.3	2		0.3	2		MΩ	
r _o	Output resistance	$V_{O} = 0$, See Note 5	25°C		75			75		Ω	
Ci	Input capacitance		25°C		1.4			1.4		pF	
CMRR	Common-mode rejection	VIC = VICRmin	25°C	70	90		70	90		dB	
CIVILAT	ratio		Full range	70			70			uр	
kovo	Supply voltage sensitivity	$V_{CC} = \pm 9 V \text{ to } \pm 15 V$	25°C		30	150		30	150	μV/V	
ksvs	$(\Delta \Lambda^{IO}/\Delta \Lambda^{CC})$	VCC = ±9 V t0 ± 13 V	Full range			150			150	μν/ν	
los	Short-circuit output current		25°C		±25	±40		±25	±40	mA	
Icc	Supply current	$V_{O} = 0$, No load	25°C		1.7	2.8		1.7	2.8	mA	
			Full range			3.3			3.3		
PD	Total power dissipation	$V_{O} = 0$, No load	25°C		50	85		50	85	mW	
יטי			Full range			100			100	11174	

electrical characteristics at specified free-air temperature, $V_{CC\pm}$ = ±15 V (unless otherwise noted)

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for the μA741C is 0°C to 70°C, the μA741I is -40°C to 85°C, and the μA741M is -55°C to 125°C.

NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

operating characteristics, V_{CC\pm} = ± 15 V, T_A = 25°C

	PARAMETER	TEST	TEST CONDITIONS			μ Α741C			μ Α741Ι, μ Α741Μ		
	FARAMETER	TEST CO	MIN	TYP	MAX	MIN	TYP	MAX	UNIT		
tr	Rise time	V ₁ = 20 mV,	RL = 2 kΩ,		0.3			0.3		μs	
	Overshoot factor	C _L = 100 pF,	See Figure 1		5%			5%			
SR	Slew rate at unity gain	$V_{I} = 10 V,$ $C_{L} = 100 \text{ pF},$	$R_L = 2 k\Omega$, See Figure 1		0.5			0.5		V/µs	

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

electrical characteristics at specified free-air temperature, $V_{CC\pm}$ = ± 15 V, T_A = 25°C (unless otherwise noted)

		TEST CONDITIONS	ł	ι Α741Υ		LINUT
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	$V_{O} = 0$		1	6	mV
ΔV IO(adj)	Offset voltage adjust range	$V_{O} = 0$		±15		mV
1 ₁₀	Input offset current	$V_{O} = 0$		20	200	nA
I _{IB}	Input bias current	$V_{O} = 0$		80	500	nA
VICR	Common-mode input voltage range		±12	±13		V
\/	Maximum pack output valtage awing	$R_L = 10 \text{ k}\Omega$	±12	±14		V
Vом	Maximum peak output voltage swing	$R_L = 2 k\Omega$	±10	±13		v
A _{VD}	Large-signal differential voltage amplification	$R_L \ge 2 k\Omega$	20	200		V/mV
r _i	Input resistance		0.3	2		MΩ
r _o	Output resistance	$V_{O} = 0$, See Note 5		75		Ω
Ci	Input capacitance			1.4		pF
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$	70	90		dB
ksvs	Supply voltage sensitivity ($\Delta V_{IO}/\Delta V_{CC}$)	$V_{CC} = \pm 9 V \text{ to } \pm 15 V$		30	150	μV/V
los	Short-circuit output current			±25	±40	mA
ICC	Supply current	V _O = 0, No load		1.7	2.8	mA
PD	Total power dissipation	$V_{O} = 0$, No load		50	85	mW

[†] All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified.

NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

operating characteristics, V_{CC} \pm = ± 15 V, T_A = 25 $^{\circ}C$

	PARAMETER	TEST CONDITIONS	Ļ	UNIT		
	PARAIVETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tr	Rise time	$V_{I} = 20 \text{ mV}, R_{L} = 2 \text{ k}\Omega,$		0.3		μs
	Overshoot factor	$C_L = 100 \text{ pF}$, See Figure 1		5%		
SR	Slew rate at unity gain	$ \begin{array}{ll} V_I \ = \ 10 \ V, & R_L = 2 \ k\Omega, \\ C_L = \ 100 \ pF, & See \ Figure \ 1 \end{array} $		0.5		V/µs

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

PARAMETER MEASUREMENT INFORMATION

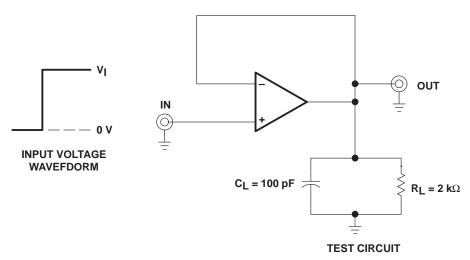


Figure 1. Rise Time, Overshoot, and Slew Rate

APPLICATION INFORMATION

Figure 2 shows a diagram for an input offset voltage null circuit.

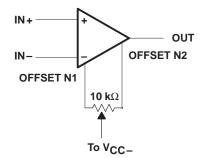
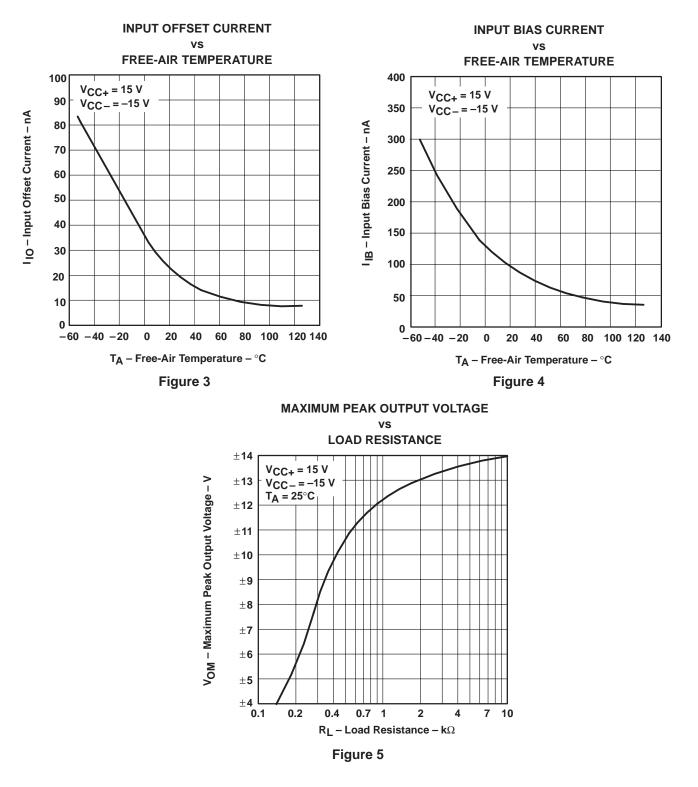
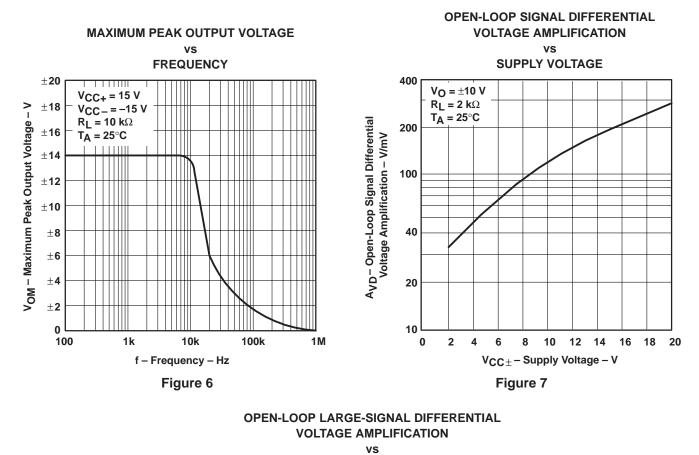
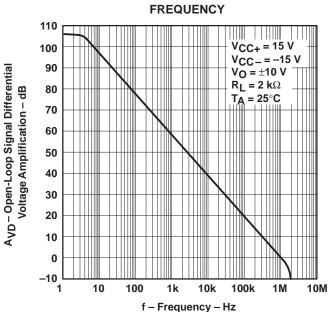



Figure 2. Input Offset Voltage Null Circuit

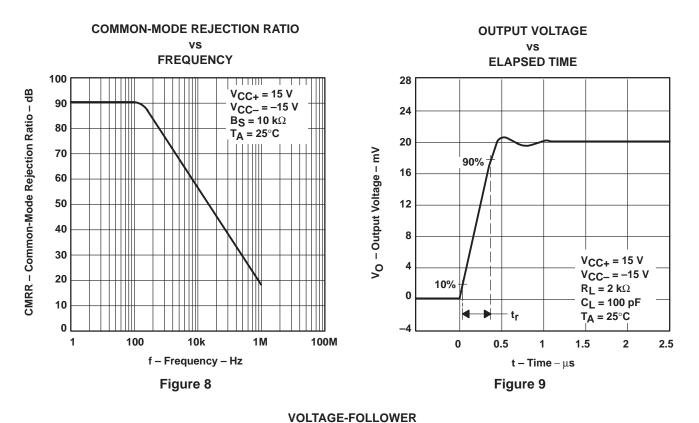
SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000



TYPICAL CHARACTERISTICS[†]


[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000



TYPICAL CHARACTERISTICS

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

TYPICAL CHARACTERISTICS

LARGE-SIGNAL PULSE RESPONSE 8 V_{CC+} = 15 V $V_{CC-} = -15 V$ 6 $R_L = 2 k\Omega$ $C_{L} = 100 \, pF$ nput and Output Voltage – V 4 $T_A = 25^{\circ}C$ ٧o 2 0 ٧ı I -2 -4 -6 -8 50 0 10 20 30 40 60 70 80 90 t – Time – μ s Figure 10

4-Jun-2007

PACKAGING INFORMATION

MENTS

www ti com

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Packag Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
UA741CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA741CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA741CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA741CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA741CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA741CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA741CJG	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI
UA741CJG4	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI
UA741CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
UA741CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
UA741CPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA741CPSRE4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA741CPSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA741MFKB	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
UA741MJ	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
UA741MJB	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
UA741MJG	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI
UA741MJGB	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

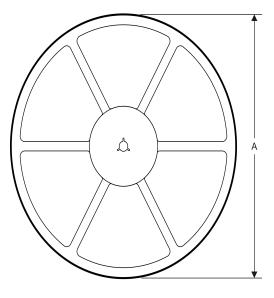
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

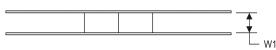
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

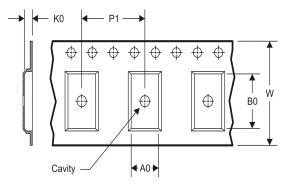
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

REEL DIMENSIONS


TEXAS INSTRUMENTS

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

*	All dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	UA741CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
	UA741CPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1

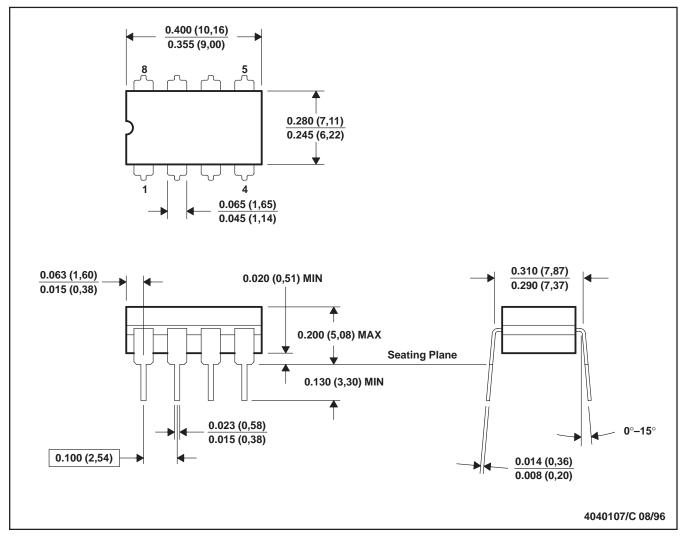
TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
UA741CDR	SOIC	D	8	2500	340.5	338.1	20.6
UA741CPSR	SO	PS	8	2000	367.0	367.0	38.0

MECHANICAL DATA

MCER001A - JANUARY 1995 - REVISED JANUARY 1997

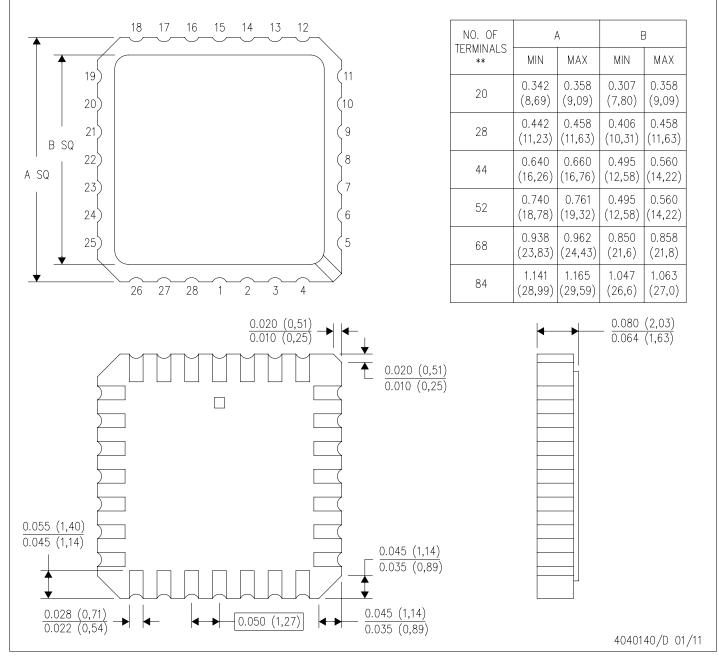
CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

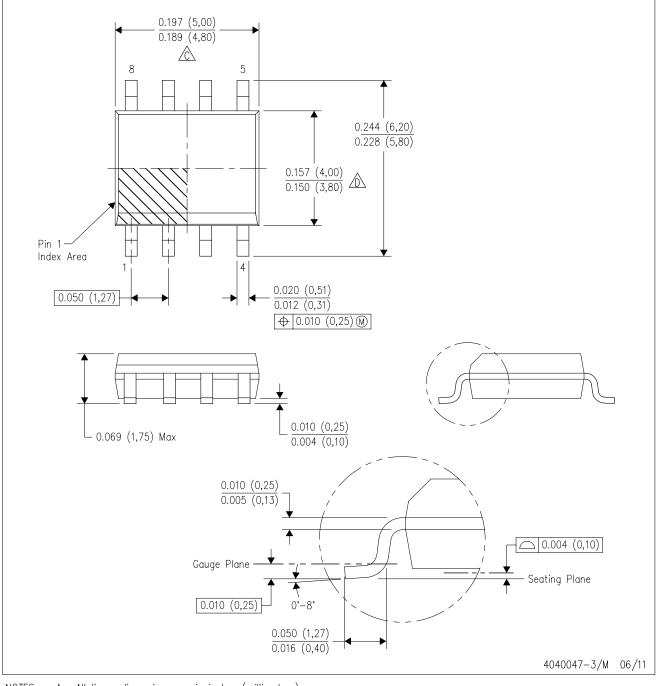
NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

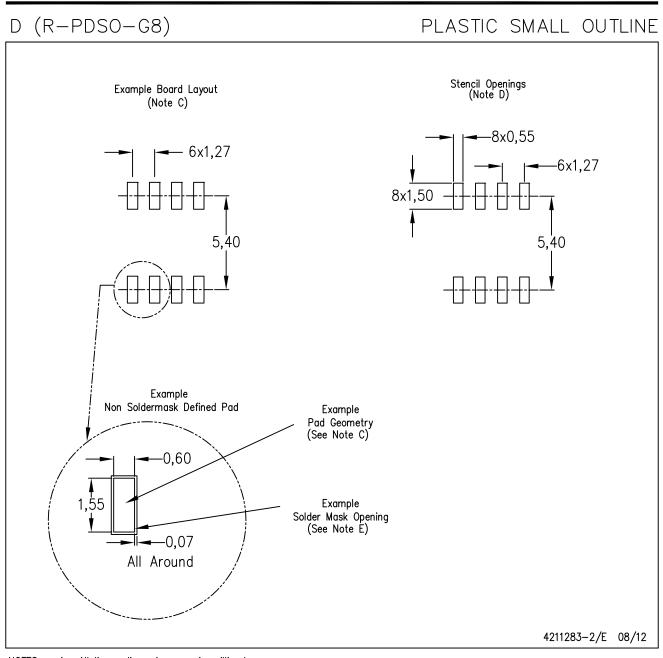
P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE



- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

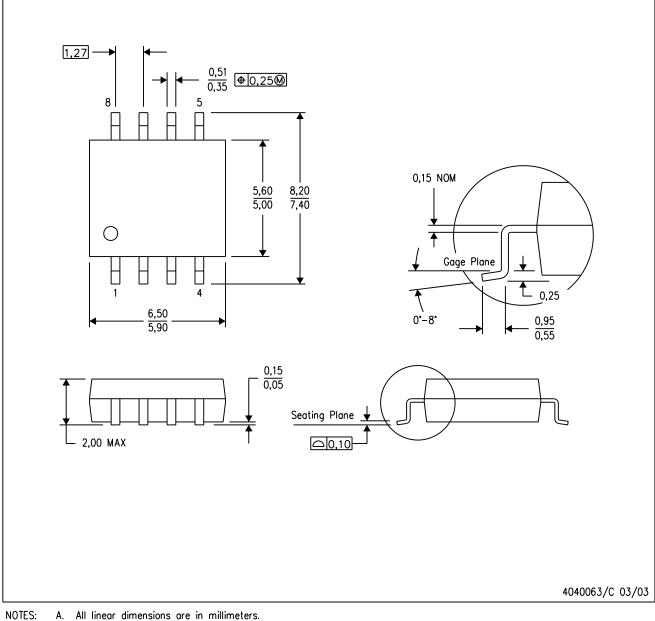
D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

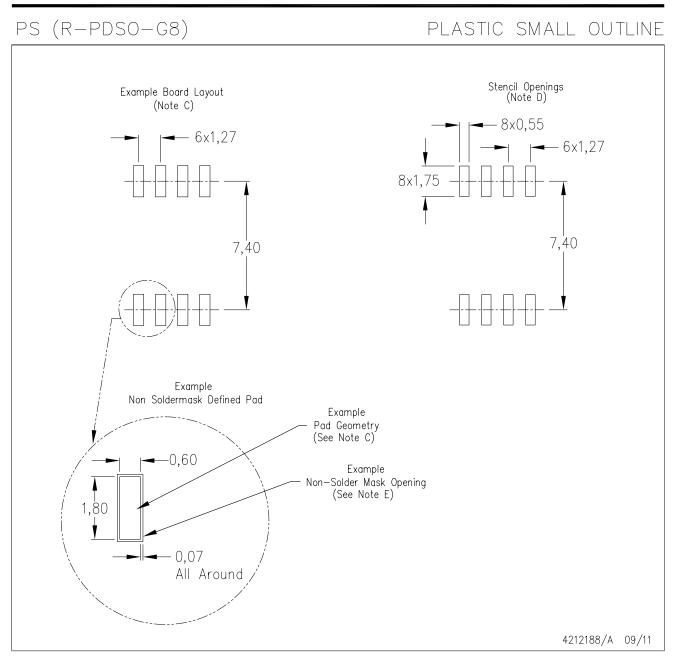
NOTES: A. All linear dimensions are in millimeters.


- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PS (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE



A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated