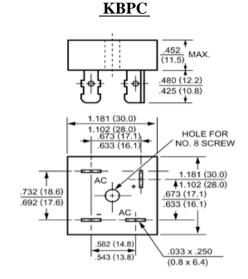


KBPC50005 THRU KBPC5010


Single Phase 50.0 Ampere Silicon Bridge Rectifier

Features

- · Electrically Isolated Metal Case for Maximum Heat Dissipation
- · Surge Overload Ratings to 500 Amperes
- · Low power loss, high efficiency
- · Low reverse leakage current
- · Case to terminal isolation voltage 2500V
- · UL Recognized File # E-216968

Mechanical Data

- · Case: Metal or molded plastic with heatsink integrally mounted in the bridge encapsulation
- . Suffix letter "P" added to indicate plastic
- · Terminals: Either plated 0.25" (6.35mm) Fasten lugs
- · Suffix letter "W" added to indicate leads
- Mounting position: Any Weight: 1.0ounce, 30.0gram

Dimensions in inches and (millimeters)

Maximum Ratings and Electrical Characteristics

Ratings at 25°C ambient temperature unless otherwise specified.

Single phase, half wave, 60Hz, resistive or inductive load.

For capacitive load, derate current by 20%.

	Symbols	KBPC50005	KBPC5001	KBPC5002	KBPC5004	KBPC5006	KBPC5008	KBPC5010	Units
Maximum Recurrent Peak Reverse Voltage	V _{RRM}	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	V_{RMS}	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	V _{DC}	50	100	200	400	600	800	1000	Volts
Maximum Average Forward	I _(AV) 50.0							Amp	
Rectified Current at T _C =55°C	(/								
Peak Forward Surge Current,									
8.3ms single half-sine-wave	I_{FSM} 400							Amp	
superimposed on rated load (JEDEC method)									
Maximum Forward Voltage	•	1.1							Volts
at 25.0A DC and 25℃	$\mathbf{V_F}$								
Maximum Reverse Current at T _A =25℃	I_R	10.0							uAmp
at Rated DC Blocking Voltage T _A =125℃	1 _R 1000							uznip	
Typical Junction Capacitance (Note 1)	C_{J}	300							pF
Typical Thermal Resistance (Note 2)	$R_{\theta JC}$	2.6							°C/W
Operating and Storage Temperature Range	T _J , Tstg	-55 to +150							${\mathfrak C}$

NOTES:

- 1- Measured at 1 MHz and applied reverse voltage of 4.0 VDC.
- 2- Thermal resistance from junction to case per leg

RATINGS AND CHARACTERISTIC CURVES

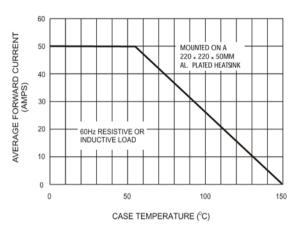


Figure 1. Forward Current Derating Curve

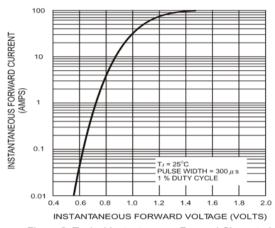


Figure 2. Typical Instantaneous Forward Characteristics Per Brdige Element

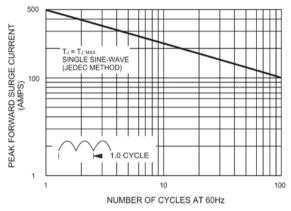


Figure 3. Maximum Non-repetitive Peak Forward Surge Current Per Bridge Element

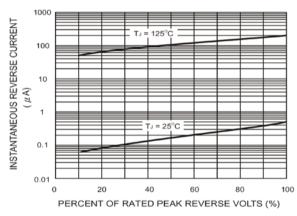


Figure 4. Typical Reverse Leakage Characteristics Per Bridge Element

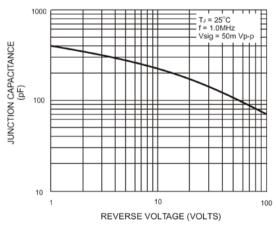


Figure 5. Typical Junction Capacitance Per Bridge Element

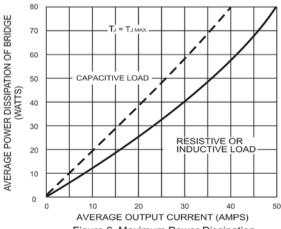


Figure 6. Maximum Power Dissipation