DENISON HYDRAULICS
Proportional Pressure Control Valves
Series 4VP01 – Cetop 03
FEATURES

- Direct operated pressure relief valve for flow up-to max. 5 l/min.
- Operation by proportional solenoid.
- Low hysteresis ± 1.5%.
- Four pressure ranges 50 / 105 / 210 or 350 bar available.
- Valve with Subplate configuration conform to ISO 4401.
- Amplifier EC01 available as rack mount board 3U, conforming to IEC 297.

SYMBOL

Option with integrated electronics:

- Linearised command-pressure characteristics.
- Integrated electronics (on-board) with three colour diagnostic LED.
- Factory-set and sealed.
 High grade of reproducibility from valve to valve (≤ 1%).
- Response time adjustable by integrated ramp time generators.
DESCRIPTION

Pressure relief valves of the series 4VP01 are direct operated by proportional solenoids. They can be applied as direct acting control valve for electrical remote functions and so also as pilot valve for larger sizes of pressure relief valve systems (e.g. DIN cartridges).

The valve consists of essential parts as body with the ports P and T, seat, cone and proportional solenoid. The electrical input to the solenoid produces a corresponding holding force on the valve cone. If the pressure in the working port exceeds the holding force, the proportional cone is lifted from its seat, releasing flow to tank. This maintains the pressure in the working port proportional to the electrical input to the solenoid.

In case the given command signal to the valve is reduced to null, a minimum setting pressure can be reached, see also page 5. The drain port T should be connected to a pressureless tank line with low pressure variation.

INTEGRATED ELECTRONICS

This valve series consists also of an amplifier-module located on top of the body. The integrated electronics are factory-set and sealed to ensure high grade of reproducibility from valve to valve. The response time of the valve is separately adjustable for pressure-rise and -fall. By selection of a second connector the integrated electronics optionally offer the functions “stop/fail-safe” and “ramps on/off” (see also page 12 and 13).

<table>
<thead>
<tr>
<th>Model Number: 4VP01</th>
<th>...</th>
<th>...</th>
<th>B</th>
<th>...</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Series</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2 Pressure Range</td>
<td>1 = 50 bar</td>
<td>2 = 105 bar</td>
<td>3 = 210 bar</td>
<td>5 = 350 bar</td>
<td></td>
</tr>
<tr>
<td>3 Orifice in P (optional)</td>
<td>1 = 0.6 mm dia.</td>
<td>2 = 0.8 mm dia.</td>
<td>3 = 1.0 mm dia.</td>
<td>4 = 1.2 mm dia.</td>
<td></td>
</tr>
<tr>
<td>4 Electrical Data</td>
<td>with integrated electronics:</td>
<td></td>
<td></td>
<td>without integrated electronics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4MA = 4...20 mA</td>
<td>G12 = 12 VDC</td>
<td>10V = 0...10 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Design Letter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Seal Class</td>
<td>1 = NBR-seals (standard)</td>
<td>4 = EPDM-seals</td>
<td>5 = FPM-seals (Viton ®)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Electrical Connection</td>
<td>w/o code = solenoid connector not supplied</td>
<td>C1 = with plug-in connector PG 11 for 12 V DC</td>
<td>CA = one connector-socket M12 (standard) for integrated electronics</td>
<td>CB = two connector-sockets M12 (second connector for external emergency stop and ramp on/off function)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Plug-in connectors must be ordered separately, see page 13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Modification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TECHNICAL DATA

GENERAL
- **Type of unit**: Proportional pressure relief valve, direct operated
- **Design**: Seat valve
- **Type of mounting**: Subplate mounting
- **Mounting position**: Horizontal mounting preferred, or vertical with the solenoid at underside
- **Direction of flow**: P → T
- **Ambient temperature range**: – 20…+50°C

HYDRAULIC CHARACTERISTICS
- **Operating pressure**
 - min. see curves on page 5
 - max. 350 / 210 / 105 / 50 bar
 - on port T 30 bar max.
- **Max. flow**
 - w/o integrated electronics 5 l/min
 - integrated electronics 5 l/min (optimum linearisation up to 3 l/min)
- **Linearity**: ± 2.8%
- **Hysteresis**: ± 1.5%
- **Fluid**: Mineral oil conform to DIN 51524/25 (other fluids on request)
- **Contamination level**: Fluid must be cleaned before and continuously during operation by filters that maintain a cleanliness level of NAS 1638 Class 8 (Class 9 for 15 Micron and smaller). This approximately corresponds to ISO 17/14. Better cleanliness levels will significantly extend the life of the components. As contaminant entrainment and contaminant generation may vary with each application, each must be analysed to determine proper filtration to maintain the required cleanliness level.
- **Recommended filtration**: 20 μm or better
- **Fluid temperature**: – 20…+80°C
- **Fluid viscosity**: 10…650 cSt; optimal 30 cSt

ELECTRIC CHARACTERISTICS

<table>
<thead>
<tr>
<th>w/o integrated electronics</th>
<th>integrated electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. coil temperature (temperature class H)</td>
<td>+180°C</td>
</tr>
<tr>
<td>Type of protection (DIN 40050)</td>
<td>IP 65</td>
</tr>
<tr>
<td>Relative operating period</td>
<td>100%</td>
</tr>
<tr>
<td>Supply voltage (DC)</td>
<td>24 V</td>
</tr>
<tr>
<td>Min. current</td>
<td>300 mA</td>
</tr>
<tr>
<td>Max. current</td>
<td>2400 mA</td>
</tr>
<tr>
<td>Dither frequency</td>
<td>270 Hz (recommended)</td>
</tr>
<tr>
<td>Dither amplitude</td>
<td>120 mA (recommended)</td>
</tr>
<tr>
<td>Coil resistance</td>
<td>4 Ω</td>
</tr>
<tr>
<td>Ramp time</td>
<td>Up to 10 s</td>
</tr>
</tbody>
</table>
p-Q-CURVES

Operating pressure is factory set at flow 1 l/min.

p-U-CURVES

4VP01 (w/o integrated electronics)
4VP01 OB (integrated electronics)

pmin-CURVES

The lowest pmin value can be achieved with the version w/o integrated electronics.
DIMENSIONS 4VP01 W/O INTEGRATED ELECTRONICS

Weight: 1.8 kg

Important:
On initial start up and after long shut down periods bleed air from this plug

In Combination with max. pressure adjustment ZDV-P01 (to be ordered separately):

4 screws M5 x 70, DIN 912-10.9
361-07303-8

ZDV-P01-1-S0-D1 (max. 70 bar), 098-91203-0
ZDV-P01-1-S0-D1 (max. 350 bar), 098-91202-0
DIMENSIONS 4VP01 WITH INTEGRATED ELECTRONICS

 CONNECTORS MUST BE ORDERED SEPARATELY (SEE PAGE 13)

Important:
On initial start up and after long shut down periods bleed air from this plug

Three colour diagnostic light (details see page 12)

In Combination with max. pressure adjustment ZDV–P01 (to be ordered separately):

4VP01

1.6 kg

ZDV

4 screws M5 x 70, DIN 912-10.9
361-07303-8
ZDV–P01–1–S0–D1 (max. 70 bar), 098–91201–0
ZDV–P01–5–S0–D1 (max. 350 bar), 098–91202–0
This proportional amplifier is designed to control directly operated pressure valves. It proportionally converts electrical input signals into solenoid current. This amplifier has reverse polarity protection and one short circuit protected PWM-output stage with max. current limit.

The command signal is always connected to the same input line. The different command signals are set by DIP-switches on the main board. Potentiometers are available for the adjustment of ramp circuits up/down (independently from each other), max. pressure (I_{max}) and min. pressure (I_{min}).

By changing the input signal from 0...2% of max. command signal, the amplifier passes over to the "I_{min}-leap"-function.

There are diagnostic LED's to display the working condition (POWER ON), ramp function (RAMP OFF) and "FAIL SAFE" in case of short circuit or external STOP of the card. Two measuring sockets are provided to measure either the nominal solenoid current or the command voltage.

Characteristics – Proportional Amplifiers

- **Supply voltage**
 - nominal 24 V DC
 - smoothed battery voltage 20...32 V DC

- **Reference voltage**
 - ± 15 V / 25 mA ± 5%
 - ± 10 V / 10 mA ± 0.5% stabilised

- **Solenoid nominal current**
 - $I_{max} = 2.3$ A

- **Current consumption max.**
 - 12 V solenoid approx. 2.5 A

- **Short circuit protection**
 - for solenoid

- **Inputs**
 1. 0...20 mA, 100 Ω input impedance
 2. 4...20 mA, 100 Ω input impedance
 3. 0...5 V, 50 kΩ input impedance
 4. 0...10 V, 100 kΩ input impedance

- **Outputs**
 - + = solenoid A

- **External stop**
 - illuminates on “Fail Safe”, implement as NC (normally closed circuit) connection with an input voltage of 24 V; input impedance 3.3 kΩ

- **Ramp off**
 - illuminates when "Ramp off", implement as NO (normally open circuit) connection with an input voltage of 24 V; input impedance 3.3 kΩ

- **Potentiometer for**
 - max. pressure (I_{max})
 - min. pressure (I_{min})
 - ramp up 0.1...10 s ± 20% \pm 1...100 V/s
 - ramp down 0.1...10 s ± 20% \pm 1...100 V/s

- **PWM-frequency**
 - 6.2 kHz ± 20%

- **Dither frequency**
 - 270 Hz

- **Measuring socket**
 - solenoid current 1 V Δ 1 A ± 5%
 - command voltage approx. 0...10 V at 100% command signal (depends on I_{max}-adjustment)

Note:

Power supply, Potentiometer, Card holder see page 14.

See publication 9–EN 6010 for further detail information on Proportional Amplifier 701–00600–8.
PROPORTIONAL AMPLIFIER WITH RAMPS

Dimensions Plug-in module 3U/8HP according to IEC 297

Details on the front plate

Schematic block diagram and terminal assignment

1) when the OP-AMP is not used as differential amplifier then b12 has to be connected to one analogue GND (e.g. b6 or z28 or z30).
This command card is designed to interface with all proportional amplifiers for DENISON proportional valves. Five multturn-potentiometers (P1...P5) allow different command signals. Selection is made by external energizing of the five selector relays on the command card. By moving the soldered bridges (+/-) it is possible to preset positive or negative commands for the desired level and direction.

In addition, the command card has a summing amplifier which enables the monitoring of the internal commands (soldered bridges 1...5), or additional external resistor array. These inputs (e.g. a 4) also make it possible to cascade further command cards if required.

The output signal to the servo amplifier is available "not inverted" (a2) and "inverted" (c2). The command card has a power rectifier with a 24 V DC output (input 24 V AC). Via the output c 30/32, the command relays can be energized. All potentiometers are adjustable on the front panel. The operating status of the corresponding command is indicated by an LED display on the front panel (K1...K5). LED on = Command level selected.

Characteristics – Command Card

- Supply voltage:
 - command card from proportional amplifier
 - rectifier 24 V AC (min. 19 V AC)
- Command potentiometer 5 potentiometers 0...10 V
- Command relays 5 potential free contacts
- Relay contacts:
 - max. current on contact (resistive load) 100 mA
 - max. switching voltage 30 V
 - coil voltage 24 V DC, approx. 30 mA incl. LED-display

Euro-Card-Holder

Order No. 701–00007–8
Holder for individual mounting according to DIN 41612 design D32
Dimensions Plug-in module 3U/4HP according to IEC 297

Schematic block diagram and terminal assignment

Proportional amplifier
(see pages 8 & 9)

Command card

Activating via relais (voltage 24 VDC approx. 30 mA for each relais solenoid).
The proportional amplifier located on top of the valve is specially adapted to control proportional pressure relief valves type 4VP01. It proportionally converts electrical input signals into adapted solenoid current to achieve a proportionality between command signal and pressure. The amplifier has a reverse polarity protection and one short circuit protected PWM-output stage with max. current limit.

Electronics for two different types of command signals are available – see ordering code on page 3 and below. The ramp up/down potentiometers can be adjusted after removing the top cap (see page 13 for details). The valves in combination with the electronics are factory set and sealed. The main board is equipped with a diagnostic LED to display the operational condition, “power on”, “valve energised” and “fail-safe” – please see below.

Characteristics – Proportional Amplifiers

- **Supply voltage**
 - nominal 24 V DC
 - smoothed battery voltage 18...32 V DC
- **Reference voltage from amplifier** ± 10 V (± 0.5%) @ 10 mA stabilised
- **Current consumption** I_{nom} approx. 2.0 A at 100% command signal (140 mA quiescent)
- **Short circuit protection** for the solenoid
- **Command signals**
 - 0...+10 V, 200 kΩ input impedance
 - 4...20 mA, 100 Ω input impedance
 - (4...20 mA command = 0...100% current at the solenoid)
- **External stop (nominal 24 V)**
 - implement as NC (normally closed circuit) connection with an input voltage of 2.5...24 V DC; input impedance 22 kΩ
 - (for electrical connector code CB only)
- **Potentiometer for**
 - ramp up up to 10s ± 20% (1...50 V/s)
 - ramp down up to 10s ± 20% (1...50 V/s)
- **Ramp off (nominal 24 V)**
 - implement as NO (normally open circuit) connection with an input voltage of 4...32 V DC; input impedance 22 kΩ
 - (for electrical connector code CB only)
- **PWM**
 - 190 Hz ± 10 %
- **Diagnostic LED**
 - red: power on + fail safe with ext. emergency stop (valves with second connector)
 - green: power on + solenoid de-energised (command signal setting zero)
 - yellow: power on + solenoid energised (with increasing command signal)
- **Wiring** due to EMC shielded cables are required

Note:
Power supply and potentiometer see page 14.
Schematic block diagram and terminal assignment

Colour	**Condition**
red | Power On + Stop*
green | Power On + enabled
yellow | Power On + Solenoid energised

* for valves with optional second connector

Details of potentiometers and connectors

Plug-in Connector B (male) Ordering No. 167–01116–8

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not used</td>
</tr>
<tr>
<td>2</td>
<td>External stop</td>
</tr>
<tr>
<td>3</td>
<td>External ramp off</td>
</tr>
<tr>
<td>4</td>
<td>Not used</td>
</tr>
</tbody>
</table>

Plug-in Connector A (female) Ordering No. 167–01112–8

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+10V Reference voltage</td>
</tr>
<tr>
<td>2</td>
<td>Command signal</td>
</tr>
<tr>
<td>3</td>
<td>−10V Reference voltage</td>
</tr>
<tr>
<td>4</td>
<td>0V</td>
</tr>
<tr>
<td>5</td>
<td>+24V Power supply</td>
</tr>
</tbody>
</table>

Note:
- Use screened cable only!
- Plug in connectors to be ordered separately.

Example: “CB” version
ACCESSORIES

Potentiometer-Adjusting knob
Order No. 701–00014–8

- View "A"
- Adjusting knob with scale 0...100 and with revolution counter. Adjustment is lockable.

Potentiometer

- Potentiometer is shown displaced through 90°.

Panel opening

Potentiometer Characteristics

<table>
<thead>
<tr>
<th>Potentiometer Characteristics</th>
<th>Potentiometer Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle of rotation</td>
<td>360°</td>
</tr>
<tr>
<td>Linearly</td>
<td>± 0.5%</td>
</tr>
<tr>
<td>Resolution-Drift</td>
<td>0.11% of 360°</td>
</tr>
<tr>
<td>Resistance</td>
<td>5 kΩ</td>
</tr>
</tbody>
</table>

Power supply
Order No. 701–00023–8
Weight: 0.25 kg

- 24 VDC/3A output (24...28 V adjustable)
- 0 VDC output

Euro-Card-Holder
Order No. 701–00066–8
Holder for individual mounting according to DIN 41612, design F48

- Clip for DIN-Rail mounting
- Voltage selector switch

Regulation

- Nominal frequency 50/60 Hz
- Nominal voltage 230 VAC or 115 VAC (pay attention to voltage selector setting)
- Neutral line
MOUNTING CONFIGURATION, SUBPLATES FOR 4VP01

MOUNTING CONFIGURATION (according to CETOP, ISO and DIN)

Block mounting face
Flatness 0.01 mm / 100 mm length
Surface finish 0,8

For valves ordered without subplate, mounting screws must be ordered separately.

<table>
<thead>
<tr>
<th>4 Mounting screws</th>
<th>Order-No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 5 x 30, DIN 912; 10.9</td>
<td>700–70834–8</td>
</tr>
<tr>
<td>10–24 UNC–2A x 1 ¼” (SAE)</td>
<td>358–10183–8</td>
</tr>
</tbody>
</table>

Torque 8.3 Nm

SUBPLATES

1/4” & 3/8” Subplates

(!) dimensions in brackets are for 3/8” subplates

Note:
Ports A & B not required

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Order No.</th>
<th>Weight</th>
<th>d1 (A, B, P, T)</th>
<th>d2</th>
<th>Thread for mount. screws d3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS–B–04–G 136</td>
<td>S26–32959–0</td>
<td>1.4 kg</td>
<td>G 1/4”</td>
<td>23 x 1</td>
<td>M 5</td>
</tr>
<tr>
<td>SS–B–06–G 136</td>
<td>S26–32960–0</td>
<td>1.4 kg</td>
<td>G 3/8”</td>
<td>26 x 1</td>
<td>M 5</td>
</tr>
<tr>
<td>SS–B–08–G 136</td>
<td>S26–32961–0</td>
<td>1.7 kg</td>
<td>G 1/2”</td>
<td>31 x 1</td>
<td>M 5</td>
</tr>
</tbody>
</table>

Mounting screws are included in subplate order.

The product described is subject to continual development and the manufacturer reserves the right to change the specifications without notice.