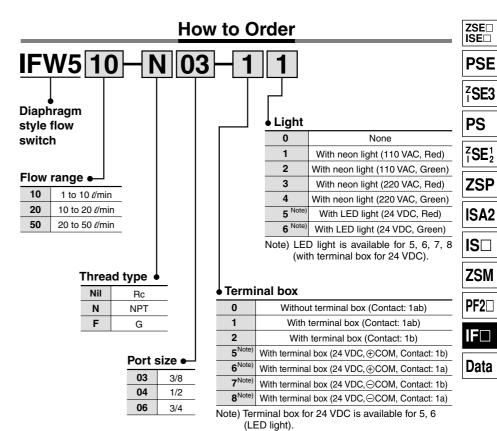
Diaphragm Style Flow Switch Series IFV5


The flow switch, series IFW is used for detection and confirmation of the flow as a relaying device for the general water applications in some various equipment such as cooling water fixture in the industrial machinery.

- Low flow setting possible (1 ℓ/min)
- Simple flow setting

Without removing the cover, you can set with a screwdriver from the outside.

PAT. PEND

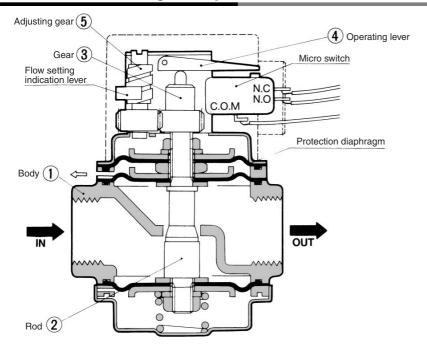
Specifications

Fluid	Water/Non-corrosive liquid *		
Operating pressure	0.1 to 0.6 MPa		
Water resistance	1.2 MPa		
Operating temperature range	−5 to 60°C (No freezing)		
Operation	Diaphragm style		
Insulation resistance	100 M Ω (500 DC by megameter)		
Withstand voltage	1500 VAC for one min.		
Contact	Without terminal box: 1ab		
Contact	With terminal box: 1a or 1b		
Port size	3/8, 1/2, 3/4		
Body material in contact with fluid material	Body	BC6	
	Rod	C3604B	
	Diaphragm	NBR	

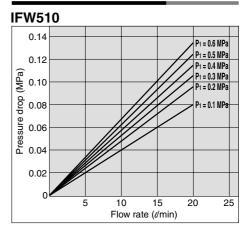
About the use of *, please confirm SMC.

Series IFW5

Micro Switch Ratings


	Non inductive load (A)			Inductive load (A)				
Voltage	Load resistance		Light load		Inductive load		Motor load	
	N.C.	N.O.	N.C.	N.O.	N.C.	N.O.	N.C.	N.O.
125 VAC	5	5	1.5	0.7	4	4	2.5	1.3
250 VAC	5	5	1	0.5	4	4	1.5	0.8
8 VDC	7	5	3	3	5	4	3	3
14 VDC	5	5	3	3	4	4	3	3
30 VDC	5	5	3	3	4	4	3	3
125 VDC	0.4	0.4	0.1	0.1	0.4	0.4	0.1	0.1
250 VDC	0.3	0.3	0.05	0.05	0.3	0.3	0.05	0.05

Model


Model	Flow range (/min)	Max. flow (//min)	Hysteresis (∉min)
IFW510	1 to 10	20	1 or less
IFW520	10 to 20	25	1.5 or less
IFW550	20 to 50	60	3 or less

Note) Hysteresis is the flow rate that is necessary for moving the microswitch from the operation position (ON signal) to the return position (OFF signal).

Construction/Working Principle

Flow Characteristics

0.12 P1=0.6 MPa P1=0.5 MPa P1=0.4 MPa P1=0.1 MPa P1=0.1

5 10 15 20 25 Flow rate (//min) IFW550 0.10 0.08 P1=0.6 MPa P1=0.5 MPa P1=0.3 MPa P1=0.2 MPa P1=0.1 MPa 0.02

30 40

Flow rate (∉min)

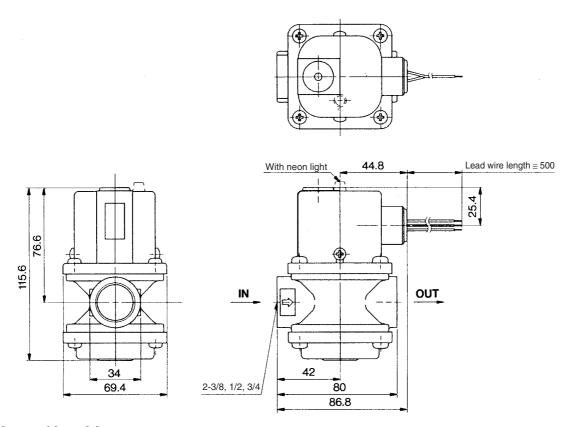
60 70

Working Principle

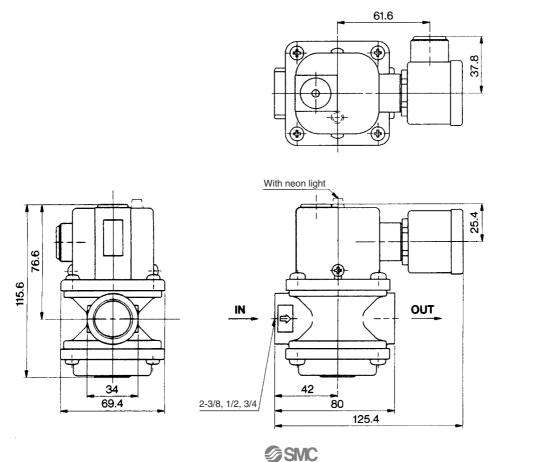
Liquid flow creates a pressure differential nearby the orifice of the port of the body 1. One set of diaphragms monitors the pressure differential and operates the micro switch through the rod 2 and operating lever 4.

The rod @ moves downward with increased flow, and upward with decreased flow. Moving the gear @ upward or downward by the adjusting gear @ manually offers an electric signal at various flow rates.

Component Parts


No.	Description	Material
1	Body	BC6
2	Rod	C3604B
3	Gear	POM

No.	Description	Material
4	Operating lever	SPCC
(5)	Adjusting gear	POM


Diaphragm Style Flow Switch Series IFW5

Dimensions

IFW5□0-□□-00 to 04 (Without terminal box)

IFW5□0-□□-10 to 24 (With terminal box)

ZSE□ ISE□

PSE

ZSE3

PS

ZSE₂

ZSP

ISA2

IS□


ZSM

PF2□

Data

Series IFW5

IFW5□0-□□-55 to 86 (With light, Terminal box for 24 VDC)

