

Adafruit Mini PiTFT - Color TFT Add-ons

for Raspberry Pi

Created by lady ada

https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi

Last updated on 2023-01-05 12:57:04 PM EST

©Adafruit Industries Page 1 of 40

3

6

7

11

14

17

21

26

39

Table of Contents

Overview

Pinouts

1.14" 240x135 Kernel Module Install

• Prepare the Pi!

1.3" 240x240 Kernel Module Install

• Prepare the Pi!

Kernel Module Troubleshooting

• Bullseye Desktop Version Breaking Changes

• Static Issue

• BrainCraft Audio Driver Reinstall

• Unpinning the Kernel

Python Setup

• Attaching

• Setup

• Python Installation of RGB Display Library

• DejaVu TTF Font

• Pillow Library

• NumPy Library

• Quickstart Button Test

Python Stats Example

• Modifications for the 1.3" Display

• Running Stats on Boot

• Troubleshooting Stats on Boot

Python Usage

• Turning on the Backlight

• Displaying an Image

• Drawing Shapes and Text

• Displaying System Information

Downloads

• Files

• Datasheets

• Schematic

• Schematic and Fab print for 1.3" MiniTFT

©Adafruit Industries Page 2 of 40

Overview

If you're looking for the most compact li'l color display for a Raspberry Pi () (most likely

a Pi Zero ()) project, this might be just the thing you need!

The Adafruit Mini PiTFT - 135x240 Color TFT Add-on for Raspberry Pi is your little TFT

pal, ready to snap onto any and all Raspberry Pi computers, to give you a little display.

The Mini PiTFT comes with a full color 240x135 pixel IPS display with great visibility at

all angles. The TFT uses only the SPI port so its very fast, and we leave plenty of pins

remaining available for buttons, LEDs, sensors, etc. It's also nice and compact so it will

fit into any case.

The Adafruit Mini PiTFT - 240x240 Color TFT Add-on for Raspberry Pi is a bit larger,

1.3" diagonal and has 240x240 pixels instead of 240x135

©Adafruit Industries Page 3 of 40

https://www.adafruit.com/category/361
https://www.adafruit.com/category/813

These display are super small, only about 1.14" or 1.3" diagonal, but since they are IPS

displays, both are very readable with high contrast and visibility. We had a little space

on the PCB so we give you two tactile buttons on GPIO pins so you can create a

simple user interface. On the bottom we have a Qwiic/STEMMA QT connector for I2C

sensors and device so you can plug and play any of our STEMMA QT devices ().

Using the display is very easy, we have a kernel driver and Python library for the

ST7789 chipset. You can set it up as a console output so you can have text and user

interface through the Raspberry Pi OS or you draw images, text, whatever you like,

©Adafruit Industries Page 4 of 40

https://www.adafruit.com/?q=stemma%20qt
https://www.adafruit.com/?q=stemma%20qt

using the Python imaging library. Our tests showed ~15 FPS update rates so you can

do animations or simple video.

Comes completely pre-assembled and tested so you don't need to do anything but

plug it in and install our Python code! Works with any Raspberry Pi computer.

©Adafruit Industries Page 5 of 40

Pinouts

Both the 1.3" and 1.14" versions of the Mini

PiTFT have the same 2x12 connector and

pinouts.

The mini PiTFT connects to the 'top' 2x12 headers on the Pi's 2x20 header

connection. It uses the following pins:

5.0V - Connected to the display backlight

3.3V - Connected to the display power and also the STEMMA QT / Qwiic

connector

•

•

©Adafruit Industries Page 6 of 40

https://learn.adafruit.com//assets/87539
https://learn.adafruit.com//assets/87539
https://learn.adafruit.com//assets/87540
https://learn.adafruit.com//assets/87540

GND - Ground for everything

SDA & SCL - I2C data for the STEMMA QT / Qwiic connector. Not used by

buttons or display

GPIO22 - Used to turn the backlight on and off. If you never want to turn the

backlight off, cut the small jumper on the bottom of the PiTFT to free up GPIO22

GPIO23 & GPIO24 - Connected to the two front buttons. These pins have 10K

pullups to 3.3V so when the button is pressed, you will read a LOW voltage on

these pins

SCK, MOSI, CE0 & GPIO25 - These are the display control pins. Note that MISO

is not connected even though it is a SPI pin because you cannot read back from

the display.

Not used: GPIO4, GPIO17, GPIO18, GPIO27

If you are using the 240x135 1.14" (small rectangular) Mini PiTFT, you can attach other

hardware to the Pi on those pins if you use a stacking header - it will go through the

2x12 connector on the Mini PiTFT. This wont work on the 1.3" because the holes don't

go through the PCB

GPIO Stacking Header for Pi A+/B+/Pi 2/Pi

3

Connect your own PCB to a Raspberry Pi

B+ and stack on top with this normal-

height female header with extra long pins.

 The female header part is about 8.5mm

tall, good for small...

https://www.adafruit.com/product/2223

1.14" 240x135 Kernel Module Install

There's two ways you can use the 240x135 display.

•

•

•

•

•

The 240x135 Mini PiTFT is so small, its not a default-supported resolution for

small TFTs. This technique will update your kernel to the latest, and if you

upgrade your Raspberry Pi which replaces the kernel you'll need to re-run the

instructions! You'll also need to re-run if you change from a Pi Zero / Pi 2 / Pi 3 /

Pi 4 as these all use different kernel types.

©Adafruit Industries Page 7 of 40

https://www.adafruit.com/product/2223
https://www.adafruit.com/product/2223
https://www.adafruit.com/product/2223

The easy way is to use 'pure Python 3' and Pillow library to draw to the display from

within Python. This is great for showing text, stats, images etc that you design

yourself. If you want to do that, skip this page and go to the Python install/usage page

The hard way is to install a kernel module to add support for the TFT display that will

make the console appear on the display. This is cute because you can have any

program print text or draw to the framebuffer (or, say, with pygame) and Linux will take

care of displaying it for you. If you don't need the console or direct framebuffer

access, please consider using the 'pure Python' technique instead as it is not as

delicate.

Prepare the Pi!

Before you begin, its a good idea to get your Pi completely updated and upgraded.

We assume you have burned an SD card and can log into the console to install stuff.

Run

sudo apt update -y

sudo apt-get update -y

sudo apt-get upgrade -y

Be aware that you can only choose to do one way at a time. If you choose the

hard way, it will install the kernel driver, which will prevent you from doing it the

easy way.

You will not get a GUI/LXDE display, this is only for text console usage. The

display is waaay too small for LXDE

©Adafruit Industries Page 8 of 40

To fully update and upgrade your Pi!

After that is complete run

sudo shutdown -h now

to shutdown the Pi safely. Remove power and attach the miniPiTFT. Watch that the

pins plug into the first 2x12 headers! The rounded corner and mounting hole should

line up.

Attach power to the Pi and re-log in. The PiTFT should be lit but nothing on the

screen.

Run the following at the terminal

cd ~

sudo pip3 install --upgrade adafruit-python-shell click

sudo apt-get install -y git

git clone https://github.com/adafruit/Raspberry-Pi-Installer-Scripts.git

cd Raspberry-Pi-Installer-Scripts

sudo python3 adafruit-pitft.py --display=st7789_240x135 --rotation=270 --install-

type=console

©Adafruit Industries Page 9 of 40

When you get asked to reboot, reboot!

Zat's it! You will now have the miniPiTFT with a console display on it

©Adafruit Industries Page 10 of 40

If you ever get a display like this, it means

your kernel changed - either due to an

upgrade/update or because you switched

Pi boards. The solution is to simply re-run

the scripts above!

1.3" 240x240 Kernel Module Install

There's two ways you can use the 1.3" 240x240 display.

The easy way is to use 'pure Python 3' and Pillow library to draw to the display from

within Python. This is great for showing text, stats, images etc that you design

yourself. If you want to do that, skip this page and go to the Python install/usage page

Be aware that you can only choose to do one way at a time. If you choose the

hard way, it will install the kernel driver, which will prevent you from doing it the

easy way.

©Adafruit Industries Page 11 of 40

https://learn.adafruit.com//assets/82855
https://learn.adafruit.com//assets/82855

The hard way is to install a kernel module to add support for the TFT display that will

make the console appear on the display. This is cute because you can have any

program print text or draw to the framebuffer (or, say, with pygame) and Linux will take

care of displaying it for you. If you don't need the console or direct framebuffer

access, please consider using the 'pure Python' technique instead as it is not as

delicate.

Prepare the Pi!

Before you begin, its a good idea to get your Pi completely updated and upgraded.

We assume you have burned an SD card and can log into the console to install stuff.

Run

sudo apt update -y

sudo apt-get update -y

sudo apt-get upgrade -y

To fully update and upgrade your Pi!

We don't recommend using the 240x240 display for GUI/PIXEL desktop, this is

only for text console usage. The display is waaay too small for a desktop

©Adafruit Industries Page 12 of 40

After that is complete run

sudo shutdown -h now

to shutdown the Pi safely. Remove power and attach the miniPiTFT. Watch that the

pins plug into the first 2x12 headers! The rounded corner and mounting hole should

line up.

Attach power to the Pi and re-log in. The PiTFT should be lit but nothing on the

screen.

Run the following at the terminal

cd ~

sudo pip3 install --upgrade adafruit-python-shell click

sudo apt-get install -y git

git clone https://github.com/adafruit/Raspberry-Pi-Installer-Scripts.git

cd Raspberry-Pi-Installer-Scripts

sudo python3 adafruit-pitft.py --display=st7789_240x240 --rotation=0 --install-

type=console

When you get asked to reboot, reboot!

©Adafruit Industries Page 13 of 40

Zat's it! You will now have the miniPiTFT with a console display on it

Kernel Module Troubleshooting

Bullseye Desktop Version Breaking Changes

Raspberry Pi recently release a new major version of Raspberry Pi OS called Bullseye.

In our testing the desktop version, which is the default installation with the Raspberry

Pi imager, it may not work.

The last known for-sure tested-and-working version is May 28, 2021 (https://

downloads.raspberrypi.org/raspios_armhf/images/raspios_armhf-2021-05-28/ ())

from https://downloads.raspberrypi.org/raspios_armhf/images/ ().

The latest Raspberry Pi Bullseye release is new and may have issues with the

PiTFT. In that case, you can try the previous buster release.

©Adafruit Industries Page 14 of 40

https://downloads.raspberrypi.org/raspios_armhf/images/raspios_armhf-2021-05-28/
https://downloads.raspberrypi.org/raspios_armhf/images/raspios_armhf-2021-05-28/
https://downloads.raspberrypi.org/raspios_armhf/images/

We have applied a fix, but it hasn't been thoroughly tested. Please let us know if you

are having issues and you can use the previous release in the meantime.

Static Issue

The Raspberry Pi Kernel sometimes updates firmware, which can which can break the

Frame Buffer Copy mechanism. In this particular case, it only seems to affect the

Raspberry Pi 4. The issue appears as a garbled screen that looks like static.

To check your kernel version, run the following command:

dpkg -l raspberrypi-kernel

You should see output similar to the following. If the kernel version is later than 1:1.20

210527, then the following fix should work.

We have a script that is able to set the kernel version to the kernel version prior to it

breaking. To "pin" the kernel version to an older version prior to it breaking, you'll

need to run a few commands. You can either SSH into the Pi or hook up an HDMI

cable, though the display may appear small.

©Adafruit Industries Page 15 of 40

Once you'd at a command prompt, run the following commands. Note that the 1:

prefix in the version number is on purpose because of the way that pinning was

recently changed.

cd ~

sudo pip3 install --upgrade adafruit-python-shell

wget https://raw.githubusercontent.com/adafruit/Raspberry-Pi-Installer-Scripts/main/

rpi_pin_kernel_firmware.py

sudo python3 rpi_pin_kernel_firmware.py 1:1.20210527-1

After it finishes, reboot the Pi.

Once the Pi is back up, the display may appear inverted. To fix this, just run the

Adafruit PiTFT script again and reboot a second time.

You can check the new kernel version by running the dpkg command again:

dpkg -l raspberrypi-kernel

This time, your version should be 1:1.20210527-1.

BrainCraft Audio Driver Reinstall

If your display is a BrainCraft HAT and you have pinned your kernel, you should be

running a kernel version of around 5.10. You can check this by typing uname -r .

If you pinned to an older version that uses a kernel of 5.4, you may need to reinstall

the audio drivers at this point to get sound working. Be sure to follow the BrainCraft

HAT Audio Setup instructions () for a kernel version around 5.4 when reinstalling.

Unpinning the Kernel

To unpin the kernel, just delete the file /etc/apt/preferences.d/99-adafruit-

pin-kernel and update the Pi with the following commands:

©Adafruit Industries Page 16 of 40

https://learn.adafruit.com/adafruit-braincraft-hat-easy-machine-learning-for-raspberry-pi/audio-setup
https://learn.adafruit.com/adafruit-braincraft-hat-easy-machine-learning-for-raspberry-pi/audio-setup

sudo apt update

sudo apt upgrade

Python Setup

Attaching

It's easy to use display breakouts with Python and the Adafruit CircuitPython RGB

Display () module. This module allows you to easily write Python code to control the

display.

Since the PiTFT comes preassembled, all you need to do is place it onto the GPIO

pins.

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

Connect the display as shown below to your Raspberry Pi.

For the 1.14":

You can use this technique with any PiTFT, from the 240x135 mini PiTFT up to the

320x480. It isn't as fast as the kernel module support version but it'll work no

matter what kernel/OS/version/etc and so is a lot less painful

Note this is not a kernel driver that will let you have the console appear on the

TFT. However, this is handy when you can't install an fbtft driver, and want to use

the TFT purely from 'user Python' code!

You can only use this technique with Linux/computer devices that have hardware

SPI support, and not all single board computers have an SPI device so check

before continuing

©Adafruit Industries Page 17 of 40

https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display
https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

For the 1.3":

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling SPI on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

©Adafruit Industries Page 18 of 40

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Python Installation of RGB Display Library

Once that's done, from your command line run the following commands:

pip3 install adafruit-circuitpython-rgb-display

pip3 install --upgrade --force-reinstall spidev

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't,

you can run the following to install it:

sudo apt-get install fonts-dejavu

This package was previously calls ttf-dejavu, so if you are running an older version of

Raspberry Pi OS, it may be called that.

Pillow Library

We also need PIL, the Python Imaging Library, to allow graphics and using text with

custom fonts. There are several system libraries that PIL relies on, so installing via a

package manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

If you have already installed the kernel module, you will need to remove it by

editing your /boot/config.txt file before proceeding.

•

•

•

•

•

©Adafruit Industries Page 19 of 40

NumPy Library

A recent improvement of the RGB_Display library makes use of NumPy for some

additional speed. This can be installed with the following command:

sudo apt-get install python3-numpy

That's it. You should be ready to go.

Quickstart Button Test

This button test demo will test to make sure you have everything setup correctly. Go

ahead and save the file to your Raspberry Pi in your home directory as rgb_display_m

inipitfttest.py.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import digitalio

import board

from adafruit_rgb_display.rgb import color565

from adafruit_rgb_display import st7789

Configuration for CS and DC pins for Raspberry Pi

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = None

BAUDRATE = 64000000 # The pi can be very fast!

Create the ST7789 display:

display = st7789.ST7789(

 board.SPI(),

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE,

 width=135,

 height=240,

 x_offset=53,

 y_offset=40,

)

backlight = digitalio.DigitalInOut(board.D22)

backlight.switch_to_output()

backlight.value = True

buttonA = digitalio.DigitalInOut(board.D23)

buttonB = digitalio.DigitalInOut(board.D24)

buttonA.switch_to_input()

buttonB.switch_to_input()

Main loop:

while True:

 if buttonA.value and buttonB.value:

 backlight.value = False # turn off backlight

 else:

•

©Adafruit Industries Page 20 of 40

 backlight.value = True # turn on backlight

 if buttonB.value and not buttonA.value: # just button A pressed

 display.fill(color565(255, 0, 0)) # red

 if buttonA.value and not buttonB.value: # just button B pressed

 display.fill(color565(0, 0, 255)) # blue

 if not buttonA.value and not buttonB.value: # none pressed

 display.fill(color565(0, 255, 0)) # green

Go ahead and run it with this command:

python3 rgb_display_minipitfttest.py

Once it is running, push the buttons. The top button should make the display light up

Red, the bottom Blue, and pressing both at the same time should make it Green.

Python Stats Example

We can also display some stats about your Pi such as the IP address, resource usage,

and even the CPU Temperature. Start by saving the code below as stats.py in your

home directory on your Raspberry Pi.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

-*- coding: utf-8 -*-

import time

import subprocess

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit_rgb_display import st7789

Configuration for CS and DC pins (these are FeatherWing defaults on M0/M4):

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = None

Config for display baudrate (default max is 24mhz):

BAUDRATE = 64000000

Setup SPI bus using hardware SPI:

spi = board.SPI()

Create the ST7789 display:

disp = st7789.ST7789(

 spi,

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE,

If you have previously installed the Kernel Driver with the PiTFT Easy Setup, you

will need to remove it first in order to run this example.

©Adafruit Industries Page 21 of 40

 width=135,

 height=240,

 x_offset=53,

 y_offset=40,

)

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

height = disp.width # we swap height/width to rotate it to landscape!

width = disp.height

image = Image.new("RGB", (width, height))

rotation = 90

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.

draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))

disp.image(image, rotation)

Draw some shapes.

First define some constants to allow easy resizing of shapes.

padding = -2

top = padding

bottom = height - padding

Move left to right keeping track of the current x position for drawing shapes.

x = 0

Alternatively load a TTF font. Make sure the .ttf font file is in the

same directory as the python script!

Some other nice fonts to try: http://www.dafont.com/bitmap.php

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 24)

Turn on the backlight

backlight = digitalio.DigitalInOut(board.D22)

backlight.switch_to_output()

backlight.value = True

while True:

 # Draw a black filled box to clear the image.

 draw.rectangle((0, 0, width, height), outline=0, fill=0)

 # Shell scripts for system monitoring from here:

 # https://unix.stackexchange.com/questions/119126/command-to-display-memory-

usage-disk-usage-and-cpu-load

 cmd = "hostname -I | cut -d' ' -f1"

 IP = "IP: " + subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"

 CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\",

$3,$2,$3*100/$2 }'"

 MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = 'df -h | awk \'$NF=="/"{printf "Disk: %d/%d GB %s", $3,$2,$5}\''

 Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = "cat /sys/class/thermal/thermal_zone0/temp | awk '{printf \"CPU Temp: %.

1f C\", $(NF-0) / 1000}'" # pylint: disable=line-too-long

 Temp = subprocess.check_output(cmd, shell=True).decode("utf-8")

 # Write four lines of text.

 y = top

 draw.text((x, y), IP, font=font, fill="#FFFFFF")

 y += font.getsize(IP)[1]

 draw.text((x, y), CPU, font=font, fill="#FFFF00")

 y += font.getsize(CPU)[1]

 draw.text((x, y), MemUsage, font=font, fill="#00FF00")

 y += font.getsize(MemUsage)[1]

 draw.text((x, y), Disk, font=font, fill="#0000FF")

 y += font.getsize(Disk)[1]

 draw.text((x, y), Temp, font=font, fill="#FF00FF")

©Adafruit Industries Page 22 of 40

 # Display image.

 disp.image(image, rotation)

 time.sleep(0.1)

Go ahead and run the script by typing:

python3 stats.py

It should display some system information.

Modifications for the 1.3" Display

To get the stats.py example to display properly on the 1.3" TFT Display, you will need

to make some changes due to the different geometry of the display. The parameters

you will need to adjust are the height, x_offset, y_offset, and rotation.

The new values should be:

height = 240

x_offset = 0

y_offset = 80

rotation = 180

The easiest way to replace them may be to copy the following code block and

replace it in the above code.

•

•

•

•

©Adafruit Industries Page 23 of 40

Create the ST7789 display:

disp = st7789.ST7789(

 spi,

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE,

 width=240,

 height=240,

 x_offset=0,

 y_offset=80,

)

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

height = disp.width # we swap height/width to rotate it to landscape!

width = disp.height

image = Image.new("RGB", (width, height))

rotation = 180

Running Stats on Boot

You can pretty easily make it so this handy program runs every time you boot your Pi.

The fastest/easiest way is to put it in /etc/rc.local

Run sudo nano /etc/rc.local and add the line

sudo python3 /home/pi/stats.py &

on its own line right before exit 0

Then save and exit. Reboot to verify that the screen comes up on boot!

©Adafruit Industries Page 24 of 40

For more advanced usage, check out our linux system services guide ()

Troubleshooting Stats on Boot

For the normal installation of Blinka on Raspberry Pi, we have you install stuff without

the sudo keyword, which will install the libraries locally. However, to have the script

run at boot, you will need to have the libraries available on a more system wide level.

You can test this out by running the following command and see if the the stats come

up:

sudo python3 /home/pi/stats.py

If you have any errors, most can be fixed by running the following command:

sudo pip3 install --upgrade adafruit-blinka adafruit-circuitpython-

rgb-display spidev

Once you can get it to come up, go ahead and press Control+C and reboot the

system. It should come up now.

Sometimes the Pi can boot too fast, so you may also need to add sleep 10 on the

line before the command you added in /etc/rc.local.

©Adafruit Industries Page 25 of 40

https://learn.adafruit.com/running-programs-automatically-on-your-tiny-computer/

Python Usage

Now that you have everything setup, we're going to look over three different

examples. For the first, we'll take a look at automatically scaling and cropping an

image and then centering it on the display.

Turning on the Backlight

On some displays, the backlight is controlled by a separate pin such as the 1.3" TFT

Bonnet with Joystick. On such displays, running the below code will likely result in the

display remaining black. To turn on the backlight, you will need to add a small snippet

of code. If your backlight pin number differs, be sure to change it in the code:

Turn on the Backlight

backlight = DigitalInOut(board.D26)

backlight.switch_to_output()

backlight.value = True

Displaying an Image

Here's the full code to the example. We will go through it section by section to help

you better understand what is going on. Let's start by downloading an image of

Blinka. This image has enough border to allow resizing and cropping with a variety of

display sizes and rations to still look good.

If you have previously installed the Kernel Driver with the PiTFT Easy Setup, you

will need to remove it first in order to run this example.

©Adafruit Industries Page 26 of 40

Make sure you save it as blinka.jpg and place it in the same folder as your script.

Here's the code we'll be loading onto the Raspberry Pi. We'll go over the interesting

parts.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

Be sure to check the learn guides for more usage information.

This example is for use on (Linux) computers that are using CPython with

Adafruit Blinka to support CircuitPython libraries. CircuitPython does

not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries

"""

import digitalio

import board

from PIL import Image, ImageDraw

from adafruit_rgb_display import ili9341

from adafruit_rgb_display import st7789 # pylint: disable=unused-import

from adafruit_rgb_display import hx8357 # pylint: disable=unused-import

from adafruit_rgb_display import st7735 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1351 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:

spi = board.SPI()

pylint: disable=line-too-long

Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54"

ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53,

y_offset=40, # 1.14" ST7789

disp = st7789.ST7789(spi, rotation=90, width=172, height=320, x_offset=34, #

1.47" ST7789

disp = st7789.ST7789(spi, rotation=270, width=170, height=320, x_offset=35, #

1.9" ST7789

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, #

1.44" ST7735R

disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT

ST7735R

disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE,

)

©Adafruit Industries Page 27 of 40

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

 height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.

draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))

disp.image(image)

image = Image.open("blinka.jpg")

Scale the image to the smaller screen dimension

image_ratio = image.width / image.height

screen_ratio = width / height

if screen_ratio < image_ratio:

 scaled_width = image.width * height // image.height

 scaled_height = height

else:

 scaled_width = width

 scaled_height = image.height * width // image.width

image = image.resize((scaled_width, scaled_height), Image.Resampling.BICUBIC)

Crop and center the image

x = scaled_width // 2 - width // 2

y = scaled_height // 2 - height // 2

image = image.crop((x, y, x + width, y + height))

Display image.

disp.image(image)

So we start with our usual imports including a couple of Pillow modules and the

display drivers. That is followed by defining a few pins here. The reason we chose

these is because they allow you to use the same code with the PiTFT if you chose to

do so.

import digitalio

import board

from PIL import Image, ImageDraw

import adafruit_rgb_display.ili9341 as ili9341

import adafruit_rgb_display.st7789 as st7789

import adafruit_rgb_display.hx8357 as hx8357

import adafruit_rgb_display.st7735 as st7735

import adafruit_rgb_display.ssd1351 as ssd1351

import adafruit_rgb_display.ssd1331 as ssd1331

Configuration for CS and DC pins

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

©Adafruit Industries Page 28 of 40

Next we'll set the baud rate from the default 24 MHz so that it works on a variety of

displays. The exception to this is the SSD1351 driver, which will automatically limit it to

16MHz even if you pass 24MHz. We'll set up out SPI bus and then initialize the display.

We wanted to make these examples work on as many displays as possible with very

few changes. The ILI9341 display is selected by default. For other displays, go ahead

and comment out the line that starts with:

disp = ili9341.ILI9341(spi,

and uncomment the line appropriate for your display. The displays have a rotation

property so that it can be set in just one place.

Config for display baudrate (default max is 24mhz):

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:

spi = board.SPI()

#disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

#disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54"

ST7789

#disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53,

y_offset=40, # 1.14" ST7789

#disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

#disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

#disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, #

1.44" ST7735R

#disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT

ST7735R

#disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

#disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

#disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(spi, rotation=90, # 2.2", 2.4",

2.8", 3.2" ILI9341

 cs=cs_pin, dc=dc_pin, rst=reset_pin, baudrate=BAUDRATE)

Next we read the current rotation setting of the display and if it is 90 or 270 degrees,

we need to swap the width and height for our calculations, otherwise we just grab the

width and height. We will create an image with our dimensions and use that to create

a draw object. The draw object will have all of our drawing functions.

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

 height = disp.height

image = Image.new('RGB', (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

©Adafruit Industries Page 29 of 40

Next we clear whatever is on the screen by drawing a black rectangle. This isn't

strictly necessary since it will be overwritten by the image, but it kind of sets the

stage.

Draw a black filled box to clear the image.

draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))

disp.image(image)

Next we open the Blinka image, which we've named blinka.jpg, which assumes it is in

the same directory that you are running the script from. Feel free to change it if it

doesn't match your configuration.

image = Image.open("blinka.jpg")

Here's where it starts to get interesting. We want to scale the image so that it matches

either the width or height of the display, depending on which is smaller, so that we

have some of the image to chop off when we crop it. So we start by calculating the

width to height ration of both the display and the image. If the height is the closer of

the dimensions, we want to match the image height to the display height and let it be

a bit wider than the display. Otherwise, we want to do the opposite.

Once we've figured out how we're going to scale it, we pass in the new dimensions

and using a Bicubic rescaling method, we reassign the newly rescaled image back to

image . Pillow has quite a few different methods to choose from, but Bicubic does a

great job and is reasonably fast.

Scale the image to the smaller screen dimension

image_ratio = image.width / image.height

screen_ratio = width / height

if screen_ratio < image_ratio:

 scaled_width = image.width * height // image.height

 scaled_height = height

else:

 scaled_width = width

 scaled_height = image.height * width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Next we want to figure the starting x and y points of the image where we want to

begin cropping it so that it ends up centered. We do that by using a standard

centering function, which is basically requesting the difference of the center of the

display and the center of the image. Just like with scaling, we replace the image

variable with the newly cropped image.

Crop and center the image

x = scaled_width // 2 - width // 2

©Adafruit Industries Page 30 of 40

y = scaled_height // 2 - height // 2

image = image.crop((x, y, x + width, y + height))

Finally, we take our image and display it. At this point, the image should have the

exact same dimensions at the display and fill it completely.

disp.image(image)

Drawing Shapes and Text

In the next example, we'll take a look at drawing shapes and text. This is very similar

to the displayio example, but it uses Pillow instead. Here's the code for that.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This demo will draw a few rectangles onto the screen along with some text

on top of that.

This example is for use on (Linux) computers that are using CPython with

Adafruit Blinka to support CircuitPython libraries. CircuitPython does

not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries

"""

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit_rgb_display import ili9341

from adafruit_rgb_display import st7789 # pylint: disable=unused-import

from adafruit_rgb_display import hx8357 # pylint: disable=unused-import

from adafruit_rgb_display import st7735 # pylint: disable=unused-import

©Adafruit Industries Page 31 of 40

from adafruit_rgb_display import ssd1351 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1331 # pylint: disable=unused-import

First define some constants to allow easy resizing of shapes.

BORDER = 20

FONTSIZE = 24

Configuration for CS and DC pins (these are PiTFT defaults):

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:

spi = board.SPI()

pylint: disable=line-too-long

Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54"

ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53,

y_offset=40, # 1.14" ST7789

disp = st7789.ST7789(spi, rotation=90, width=172, height=320, x_offset=34, #

1.47" ST7789

disp = st7789.ST7789(spi, rotation=270, width=170, height=320, x_offset=35, #

1.9" ST7789

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, #

1.44" ST7735R

disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT

ST7735R

disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE,

)

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

 height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a green filled box as the background

draw.rectangle((0, 0, width, height), fill=(0, 255, 0))

disp.image(image)

Draw a smaller inner purple rectangle

draw.rectangle(

 (BORDER, BORDER, width - BORDER - 1, height - BORDER - 1), fill=(170, 0, 136)

©Adafruit Industries Page 32 of 40

)

Load a TTF Font

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",

FONTSIZE)

Draw Some Text

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

draw.text(

 (width // 2 - font_width // 2, height // 2 - font_height // 2),

 text,

 font=font,

 fill=(255, 255, 0),

)

Display image.

disp.image(image)

Just like in the last example, we'll do our imports, but this time we're including the

ImageFont Pillow module because we'll be drawing some text this time.

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

import adafruit_rgb_display.ili9341 as ili9341

Next we'll define some parameters that we can tweak for various displays. The BORDE

R will be the size in pixels of the green border between the edge of the display and

the inner purple rectangle. The FONTSIZE will be the size of the font in points so that

we can adjust it easily for different displays.

BORDER = 20

FONTSIZE = 24

Next, just like in the previous example, we will set up the display, setup the rotation,

and create a draw object. If you have are using a different display than the ILI9341, go

ahead and adjust your initializer as explained in the previous example. After that, we

will setup the background with a green rectangle that takes up the full screen. To get

green, we pass in a tuple that has our Red, Green, and Blue color values in it in that

order which can be any integer from 0 to 255 .

draw.rectangle((0, 0, width, height), fill=(0, 255, 0))

disp.image(image)

Next we will draw an inner purple rectangle. This is the same color value as our

example in displayio quickstart, except the hexadecimal values have been converted

to decimal. We use the BORDER parameter to calculate the size and position that we

want to draw the rectangle.

©Adafruit Industries Page 33 of 40

draw.rectangle((BORDER, BORDER, width - BORDER - 1, height - BORDER - 1),

 fill=(170, 0, 136))

Next we'll load a TTF font. The DejaVuSans.ttf font should come preloaded on

your Pi in the location in the code. We also make use of the FONTSIZE parameter

that we discussed earlier.

Load a TTF Font

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf',

FONTSIZE)

Now we draw the text Hello World onto the center of the display. You may recognize

the centering calculation was the same one we used to center crop the image in the

previous example. In this example though, we get the font size values using the gets

ize() function of the font object.

Draw Some Text

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

draw.text((width//2 - font_width//2, height//2 - font_height//2),

 text, font=font, fill=(255, 255, 0))

Finally, just like before, we display the image.

disp.image(image)

©Adafruit Industries Page 34 of 40

Displaying System Information

In this last example we'll take a look at getting the system information and displaying

it. This can be very handy for system monitoring. Here's the code for that example:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This will show some Linux Statistics on the attached display. Be sure to adjust

to the display you have connected. Be sure to check the learn guides for more

usage information.

This example is for use on (Linux) computers that are using CPython with

Adafruit Blinka to support CircuitPython libraries. CircuitPython does

not support PIL/pillow (python imaging library)!

"""

import time

import subprocess

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit_rgb_display import ili9341

from adafruit_rgb_display import st7789 # pylint: disable=unused-import

from adafruit_rgb_display import hx8357 # pylint: disable=unused-import

from adafruit_rgb_display import st7735 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1351 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:

spi = board.SPI()

pylint: disable=line-too-long

Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54"

ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53,

y_offset=40, # 1.14" ST7789

disp = st7789.ST7789(spi, rotation=90, width=172, height=320, x_offset=34, #

1.47" ST7789

disp = st7789.ST7789(spi, rotation=270, width=170, height=320, x_offset=35, #

1.9" ST7789

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, #

1.44" ST7735R

disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT

ST7735R

disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

©Adafruit Industries Page 35 of 40

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE,

)

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

 height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.

draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))

disp.image(image)

First define some constants to allow easy positioning of text.

padding = -2

x = 0

Load a TTF font. Make sure the .ttf font file is in the

same directory as the python script!

Some other nice fonts to try: http://www.dafont.com/bitmap.php

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 24)

while True:

 # Draw a black filled box to clear the image.

 draw.rectangle((0, 0, width, height), outline=0, fill=0)

 # Shell scripts for system monitoring from here:

 # https://unix.stackexchange.com/questions/119126/command-to-display-memory-

usage-disk-usage-and-cpu-load

 cmd = "hostname -I | cut -d' ' -f1"

 IP = "IP: " + subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"

 CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\",

$3,$2,$3*100/$2 }'"

 MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = 'df -h | awk \'$NF=="/"{printf "Disk: %d/%d GB %s", $3,$2,$5}\''

 Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = "cat /sys/class/thermal/thermal_zone0/temp | awk '{printf \"CPU Temp: %.

1f C\", $(NF-0) / 1000}'" # pylint: disable=line-too-long

 Temp = subprocess.check_output(cmd, shell=True).decode("utf-8")

 # Write four lines of text.

 y = padding

 draw.text((x, y), IP, font=font, fill="#FFFFFF")

 y += font.getsize(IP)[1]

 draw.text((x, y), CPU, font=font, fill="#FFFF00")

 y += font.getsize(CPU)[1]

 draw.text((x, y), MemUsage, font=font, fill="#00FF00")

 y += font.getsize(MemUsage)[1]

 draw.text((x, y), Disk, font=font, fill="#0000FF")

 y += font.getsize(Disk)[1]

 draw.text((x, y), Temp, font=font, fill="#FF00FF")

 # Display image.

 disp.image(image)

 time.sleep(0.1)

©Adafruit Industries Page 36 of 40

Just like the last example, we'll start by importing everything we imported, but we're

adding two more imports. The first one is time so that we can add a small delay and

the other is subprocess so we can gather some system information.

import time

import subprocess

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

import adafruit_rgb_display.ili9341 as ili9341

Next, just like in the first two examples, we will set up the display, setup the rotation,

and create a draw object. If you have are using a different display than the ILI9341, go

ahead and adjust your initializer as explained in the previous example.

Just like in the first example, we're going to draw a black rectangle to fill up the

screen. After that, we're going to set up a couple of constants to help with positioning

text. The first is the padding and that will be the Y-position of the top-most text and

the other is x which is the X-Position and represents the left side of the text.

First define some constants to allow easy positioning of text.

padding = -2

x = 0

Next, we load a font just like in the second example.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 24)

Now we get to the main loop and by using while True: , it will loop until Control+C

is pressed on the keyboard. The first item inside here, we clear the screen, but notice

that instead of giving it a tuple like before, we can just pass 0 and it will draw black.

draw.rectangle((0, 0, width, height), outline=0, fill=0)

Next, we run a few scripts using the subprocess function that get called to the

Operating System to get information. The in each command is passed through awk in

order to be formatted better for the display. By having the OS do the work, we don't

have to. These little scripts came from https://unix.stackexchange.com/

questions/119126/command-to-display-memory-usage-disk-usage-and-cpu-

load

cmd = "hostname -I | cut -d\' \' -f1"

IP = "IP: "+subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"

CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")

©Adafruit Industries Page 37 of 40

cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,$2,$3*100/$2 }'"

MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "df -h | awk '$NF==\"/\"{printf \"Disk: %d/%d GB %s\", $3,$2,$5}'"

Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "cat /sys/class/thermal/thermal_zone0/temp | awk \'{printf \"CPU Temp: %.1f

C\", $(NF-0) / 1000}\'" # pylint: disable=line-too-long

Temp = subprocess.check_output(cmd, shell=True).decode("utf-8")

Now we display the information for the user. Here we use yet another way to pass

color information. We can pass it as a color string using the pound symbol, just like we

would with HTML. With each line, we take the height of the line using getsize()

and move the pointer down by that much.

y = padding

draw.text((x, y), IP, font=font, fill="#FFFFFF")

y += font.getsize(IP)[1]

draw.text((x, y), CPU, font=font, fill="#FFFF00")

y += font.getsize(CPU)[1]

draw.text((x, y), MemUsage, font=font, fill="#00FF00")

y += font.getsize(MemUsage)[1]

draw.text((x, y), Disk, font=font, fill="#0000FF")

y += font.getsize(Disk)[1]

draw.text((x, y), Temp, font=font, fill="#FF00FF")

Finally, we write all the information out to the display using disp.image() . Since we

are looping, we tell Python to sleep for 0.1 seconds so that the CPU never gets too

busy.

disp.image(image)

time.sleep(.1)

©Adafruit Industries Page 38 of 40

Downloads

Files

Mini PiTFT display EagleCAD files on GitHub ()

Datasheets

Display Module datasheet

ST7789VW datasheet 1.0

Schematic

•

©Adafruit Industries Page 39 of 40

https://github.com/adafruit/Adafruit-Mini-PiTFT-240x135-TFT-PCB
https://cdn-learn.adafruit.com/assets/assets/000/082/881/original/C13930-001_1.14__ZJY114IPS_datasheet.pdf?1571860941
https://cdn-learn.adafruit.com/assets/assets/000/082/882/original/ST7789VW_SPEC_V1.0.pdf?1571860977

Schematic and Fab print for 1.3" MiniTFT

©Adafruit Industries Page 40 of 40

	Adafruit Mini PiTFT - Color TFT Add-ons for Raspberry Pi
	Table of Contents
	Overview
	Pinouts
	1.14" 240x135 Kernel Module Install
	1.3" 240x240 Kernel Module Install
	Kernel Module Troubleshooting
	Python Setup
	Python Stats Example
	Python Usage
	Downloads

	Overview
	Pinouts
	1.14" 240x135 Kernel Module Install
	Prepare the Pi!
	1.3" 240x240 Kernel Module Install
	Prepare the Pi!
	Kernel Module Troubleshooting
	Bullseye Desktop Version Breaking Changes
	Static Issue
	BrainCraft Audio Driver Reinstall
	Unpinning the Kernel

	Python Setup
	Attaching
	Setup
	Python Installation of RGB Display Library
	DejaVu TTF Font
	Pillow Library
	NumPy Library

	Quickstart Button Test
	Python Stats Example
	Modifications for the 1.3" Display
	Running Stats on Boot
	Troubleshooting Stats on Boot

	Python Usage
	Turning on the Backlight
	Displaying an Image
	Drawing Shapes and Text
	Displaying System Information

	Downloads
	Files
	Datasheets
	Schematic
	Schematic and Fab print for 1.3" MiniTFT

