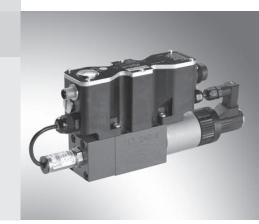
Proportional directional valve, direct operated, with *pQ* functionality

RE 29014/03.13 Replaces: 12.12

1/18


Type STW 0195, type STW 0196

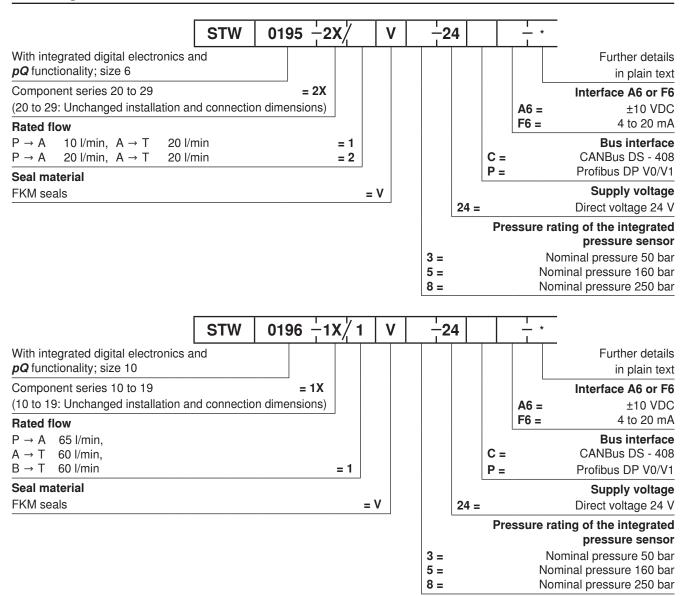
STW 0195: Size 6

Component series 2X

STW 0196: Size 10

Component series 1X

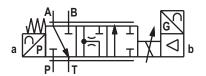
Table of contents

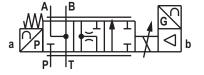

Contents	Page
Features	1
Ordering code, symbols	2
Set-up, function, section	3
Technical data	4, 5
Electrical connections, allocation	6, 7
Characteristic curves	8 13
Device dimensions	14 16
Accessories (not included in the scope of delivery)	16, 17
Project planning/maintenance instructions/ additional information	18

Features

- Direct operated 3-way proportional valve with integrated IAC-P digital control electronics, for controlling a pressure in port A
- Completely adjusted unit consisting of position-controlled valve, pressure sensor and field bus connection
- Operation via a proportional solenoid with central thread and detachable coil
- Valve spool, position-controlled
- Integrated pressure sensor plate (optional)
- For subplate mounting: Porting pattern according to ISO 4401
- Analog interfaces for command and actual values
- Design for CAN bus with CANopen protocol DS 408 or Profibus DP
- Separate connectors for power supply and bus connection
- Quick commissioning via PC and WINPED commissioning software

Information on available spare parts: www.boschrexroth.com/spc


Ordering code



Symbols

Type STW0195...

Type STW0196...

Set-up, function, section

Set-up

The IAC-P valve basically consists of:

- Housing (1) with connection surface
- Control spool (2) with compression spring (3)
- Solenoid and pole tube (4) with central thread
- Position transducer (5)
- Pressure sensor (6)
- Integrated IAC-P digital control electronics (7) with bus connection (X2) and central connector (X1).

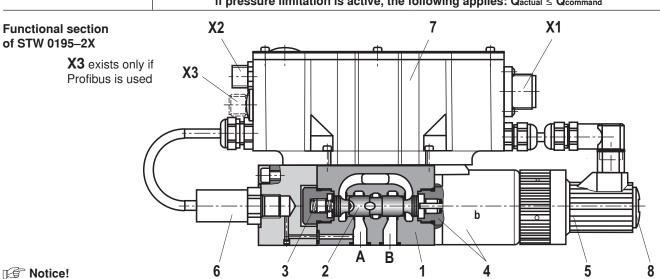
Functional description

- If solenoids (4) are not operated, spool position A → T (with type STW 0196-1X/1 additionally B → T)
- Functions:
 - Flow control (Q)
 - Pressure control (p)
 - Substitutional closed-loop control p/Q
- The command value can alternatively be specified via an analog interface (X1) or via the field bus interface (X2, X3).
- The actual value signals are provided via an analog interface (X1) and can additionally be read out via the field bus (X2, X3).
- The controller parameters are set via the field bus (X2, X3).
- Separate supply voltage for bus/controller and power part (output stage) for safety reasons.

The digital integrated control electronics enables the following fault detection: (diagnosis)

- Cable break of pressure sensor supply line (6)
- Undervoltage
- Cable break of position transducer (5)
- Communication error
- Watchdog
- Cable break of command value inputs

The following additional functions are available:


- Pressure ramp
- Internal command value profile
- Enable function analog/digital
- Error output 24 V

WINPED PC program

To implement the project planning task and to parameterize the IAC-P valves, the user may use the WINPED commissioning software (see accessories).

- Parameterization
- Diagnosis
- Comfortable data management on a PC
- PC operating systems: Windows 2000 or Windows XP

Q command	Q control	p closed-loop control	
< 12 mA	A → T	Inactive	
> 12 mA	Substitutional closed-loop control: (A → T or P → A)		
	Q control (Qcommand) with pressure limitation (pcommand)		
	if pressure limitation is active, the following applies: Qactual ≤ Qcommand		

Due to the design principle, internal leakage is inherent to the valves, which may increase over the life cycle.

The tank line must not be allowed to run empty. With corresponding installation conditions, a preload valve is to be installed.

Important notice!

The PG fitting (8) must not be opened. Mechanical adjustment of the adjustment nut located below is prohibited and damages the valve!

Technical data (For applications outside these parameters, please consult us.)

Valve type				STW	V195	STW	/196
Weight kg				2.	.4	6.	5
Installation position	on		-	Any, preferably h	orizontal	1	
Ambient tempera	ature range		°C	-20 +50			
Storage tempera	ture range		°C	-20 +80			
hydraulic (me	easured us	ing HLP 4	6; ປ _{oil} = 4	0 °C ±5 °C a	nd p = 100 ba	ar)	
Operating pressu		50 bar	bar	50			
Ports P, A, B	with senso	or 160 bar	bar	160			
		250 bar	bar	250			
		50 bar	bar	50			
Port T	with senso	r 160 bar	bar	160			
		250 bar	bar	210			
Rated flow $q_{V \text{ rated}}$ at $\Delta p = 5$ bar From P \rightarrow A I/min		Spool 1	Spool 2	6	5		
(see also flow che curve from page				10	20		
curve from page	10 onwarus)	From A \rightarrow T	l/min	20	20	$A \rightarrow T, B \rightarrow T$	60
Maximum flow				See characteristi	c curves performa	ance limit from pa	ge 11 onwards
Hydraulic fluid				See table below			
Hydraulic fluid ter (at the valve's wo		ge	°C	-20 to +80, prefe	erably +40 to +50		
Viscosity range			mm²/s	20 to 380, preferably 30 to 46			
Maximum admissible degree of contamination of the hydraulic fluid, cleanliness class according to ISO 4406 (c)			Class 20/18/15 ²³)			
Hysteresis %			≤ 0.1				
Range of inversion	on		%	≤ 0.05			
Response sensiti	ivity		%	≤ 0.05			
Zero shift			%10 K	≤ 0.15			
			%100 bar	≤ 0.1			

¹⁾ Operating pressure, dependent on valve and sensor

²⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components.

For the selection of the filters see www.boschrexroth.com/filter

Hydraulic fluid		Classification	Suitable sealing materials	Standards
Mineral oils and relate	ed hydrocarbons	HL, HLP	NBR, FKM	DIN 51524
Flame-resistant	containing water	HFC (Fuchs HYDROTHERM 46M, Petrofer Ultra Safe 620)	NBR	ISO 12922

Important information on hydraulic fluids!

- For more information and data on the use of other hydraulic fluids refer to data sheet 90220 or contact us!
- There may be limitations regarding the technical valve data (temperature, pressure range, life cycle, maintenance intervals, etc.)!
- The flash point of the process and operating medium used must be 40 K greater than the maximum solenoid surface temperature.
- Flame-resistant containing water: Maximum pressure differential per control edge 175 bar. Pressure pre-loading at the tank port > 20 % of the pressure differential; otherwise, increased cavitation.

Life cycle as compared to operation with mineral oil HL, HLP 50 % to 100 %

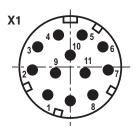
Technical data (For applications outside these parameters, please consult us.)

electric			
Supply voltage	Nominal voltage	VDC	24
	Lower limit value	VDC	19.4
	Upper limit value	VDC	35
Maximum admissible residual ripple Vpp		2	
Current consumption	I max	Α	2
	Pulse current	Α	3
Command value signal	S	mA	4 to 20 or via CAN bus
Duty cycle 1)		%	100
Maximum coil temperature ²⁾ °C		Up to 150	
Protection class of the valve according to EN 60529		IP 65 with mating connector correctly mounted and locked	

¹⁾ Connect the valve to the supply voltage only when this is required for the functional sequence of the machine.

Sensor technology

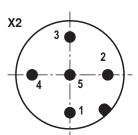
Value in a	<u>'</u>		OTW 405	(. ' 0) I OTM 104	2 (
Valve type			STW 195 (size 6) and STW 196 (size 10)		5 (SIZE 10)
Measurement range	$oldsymbol{ ho}_{N}$	bar	50	160	250
Overload protection	p _{max}	bar	120	320	500
Bursting pressure	р	bar	550	800	1200
Compensation error	Zero point		< 0.15 % of full scale)	
	End value		< 0.3 %		
Temperature coefficient	t in nominal temperature range				
Greatest temperature coefficient of zero point			< 0.2 % / 10 K		
Greatest temperature coefficient of the range			< 0.2 % / 10 K		
Characteristic curve de	viation		< 0.2 %		
Hysteresis			< 0.1 %		
Repetition accuracy			< 0.05 %		
Setting time (10 - 90 %)			t < 2 ms		
Long-term drift (1 year) at reference conditions			< 0.2 %		
Conformity		CE according to EMC directive 89/336/EEC, 93/68/EEC, 93/44/EEC			


²⁾ Due to the temperatures occurring at the surfaces of the solenoid coils, the European standards ISO 13732-1 and EN ISO 4413 need to be adhered to.

Electrical connections, allocation

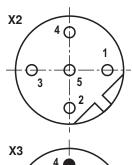
Connector allocation X1, 11-pole + PE according to DIN EN 175201-804

Pin	No. and/or litz wire color 1)	Interface A6 allocation	Interface F6 allocation				
1	1	24 VDC ($u(t) = 19.4 \text{ V}$.	24 VDC (<i>u</i> (t) = 19.4 V 35 V), <i>I</i> _{max} = 1.7 A (for output stage)				
2	2	0 V ≙ load ze	ro, reference for pins 1 and 9				
3	White	Enable inp	ut 9 35 V ≙ enable on				
4	Yellow	±10 V command value \mathbf{Q} $\mathbf{R}_{\rm e} > 50 \text{ k}\Omega$ 420 mA command value \mathbf{Q} $\mathbf{R}_{\rm e} = 100 \Omega$					
5	Green	Reference fo	Reference for command values Q and p				
6	Purple	±10 V actual value Q	420 mA actual value Q (load resistance max. 300 Ω)				
7	Pink	0 10 V command value p $R_e > 50 kΩ$	420 mA command value \mathbf{p} $\mathbf{R}_{\rm e}$ = 100 Ω				
8	Red	0 10 V actual value p	420 mA actual value p (load resistance max. 300 Ω)				
9	Brown	Control voltage, level same as pin 1, $I_{\text{max}} = 0.3 \text{ A}$ (for signal part and bus)					
10	Black	0 V reference potential for pins 3, 6, 8 and 11 (connected with pin 2 in valve)					
11	Blue	Error output 24 V (19.4 V 35 V), 200 mA max. load					
PE	Green-yellow	Connected to coo	oling element and valve housing				


Connect shield on PE only on the supply side!

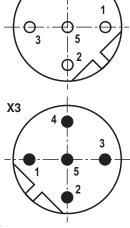
Connector allocation X2, CAN bus, (coding A), M12 x 1, 5-pole, pins

Pin	Allocation
1	n.c.
2	n.c.
3	CAN_GND
4	CAN_H
5	CAN L


Transmission rate kbit/s 20 to 1000 Bus address 1 to 127 CAN-specific settings: Baud rate and identifier must be set via the bus system.

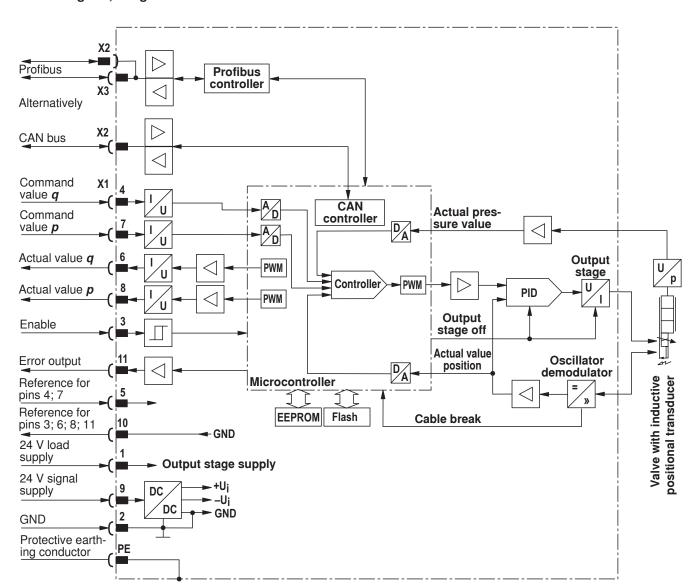
Connector allocation for Profibus DP, "X2"/"X3" (coding B), M12 x 1, 5-pole, socket/pins

Pin	Allocation
1	+5 V
2	RxD/TxD-N (A line)
3	D GND
4	RxD/TxD-P (B line)
5	Shield


Transmission rate up to 12 MBaud Bus address 1 to 126 Setting via DIL switch

The +5 V voltage of the IAC-P is available for an external terminating resistor.

Notice:


We recommend connecting the shields on both sides via the metal housings of the plug-in connectors. Using connector pins will affect the shielding effect! Internal screens are not required.

¹⁾ Litz wire colors of connection line for mating connector with cable set (see accessories)

Electrical connections, allocation

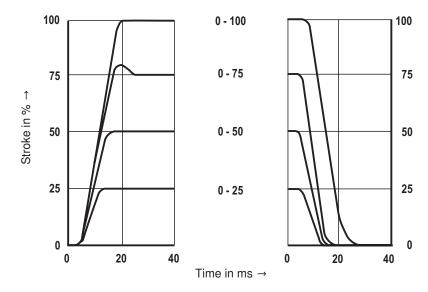
Block diagram, integrated control electronics

Command value: Command value 12 to 20 mA at pin 4 and reference potential at pin 5 result in flow from P → A.

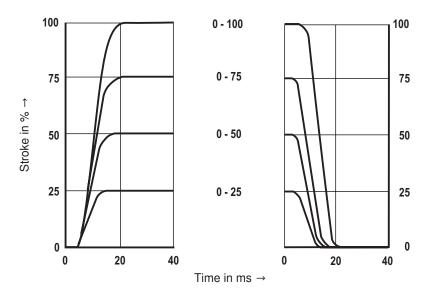
Command value 4 to 12 mA at pin 4 and reference potential at pin 5 result in flow from A \rightarrow T.

Actual value: Actual value 12 to 20 mA at pin 6 and reference potential at pin 10 result in flow from $P \rightarrow A$.

Actual value 4 to 12 mA at pin 6 and reference potential at pin 10 result in flow from A \rightarrow T.

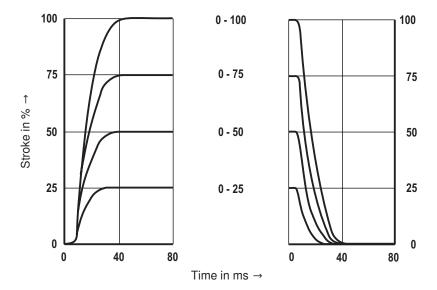

Connection line: Recommendation: - Up to 25 m line length for pins 1; 2 and PE: 0.75 mm², otherwise 0.25 mm²

- Up to 50 m line length for pins 1; 2 and PE: 1.00 mm²

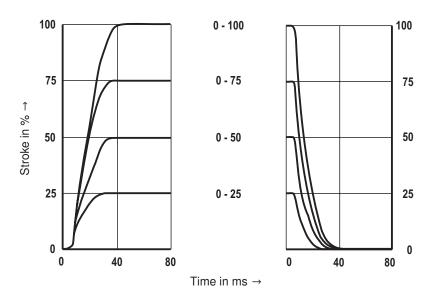

External diameter see sketch of mating connector

Characteristic curves: Type STW 0195-2X/1...

Transition function of type STW 0195-2X/1..., A \rightarrow T

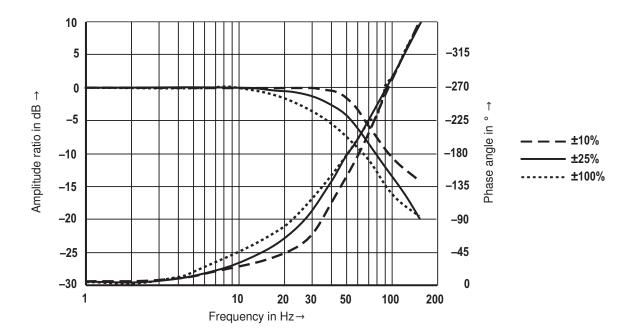


Transition function of type STW 0195-2X/1..., P \rightarrow A

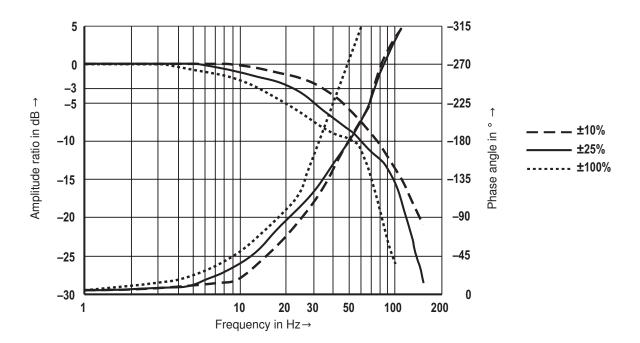


Characteristic curves: Type STW 0196-1X/1...

Transition function of type STW 0196-1X/1..., A \rightarrow T, B \rightarrow T

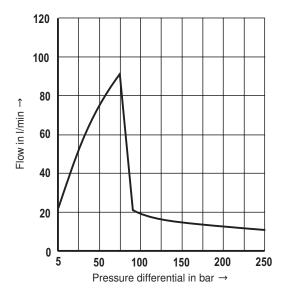


Transition function of type STW 0196-1X/1..., P \rightarrow A

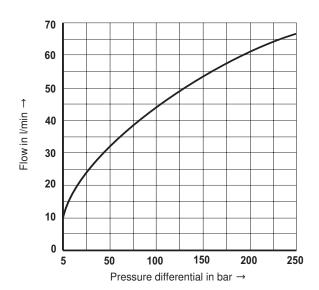


Characteristic curves: Type STW 0195-2X/1... and type STW 0196-1X/1...

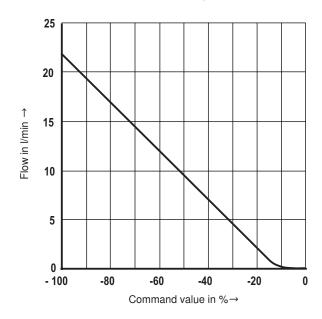
Frequency response of type STW 0195-2X/1...

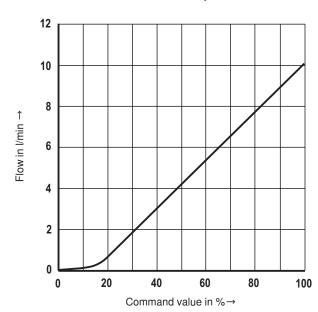


Frequency response of type STW 0196-1X/1...

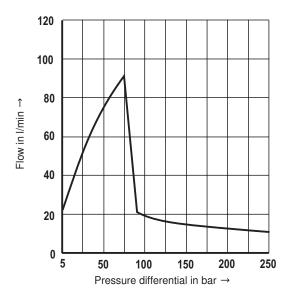


Characteristic curves: Type STW 0195-2X/1...

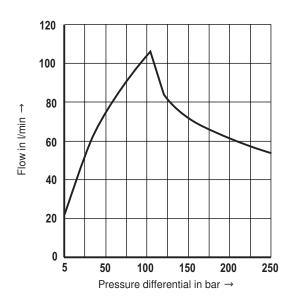

Performance limit $A \rightarrow T$, position-controlled


Performance limit $P \rightarrow A$, position-controlled

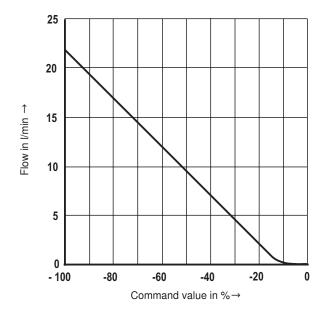
Flow characteristic curve A \rightarrow T, $\Delta p = 5$ bar

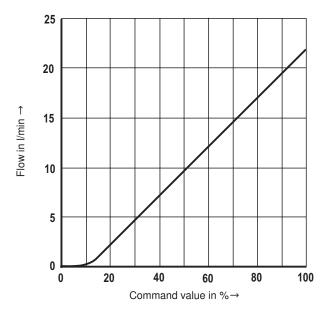


Flow characteristic curve $P \rightarrow A$, $\Delta p = 5$ bar

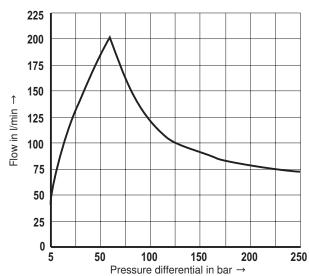


Characteristic curves: Type STW 0195-2X/2...

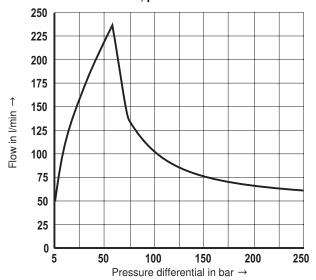

Performance limit $A \rightarrow T$, position-controlled


Performance limit $P \rightarrow A$, position-controlled

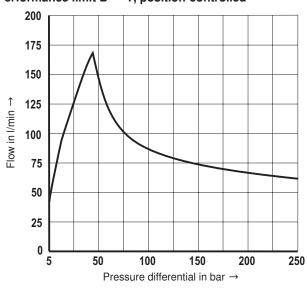
Flow characteristic curve A \rightarrow T, $\Delta p = 5$ bar

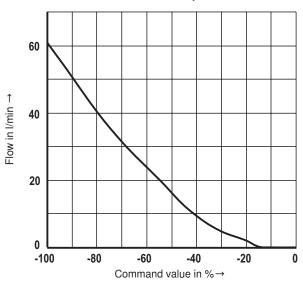


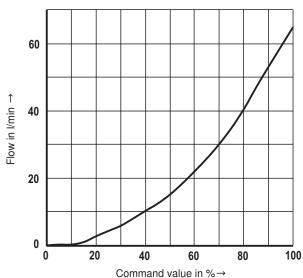
Flow characteristic curve $P \rightarrow A$, $\Delta p = 5$ bar

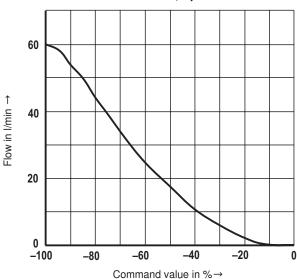


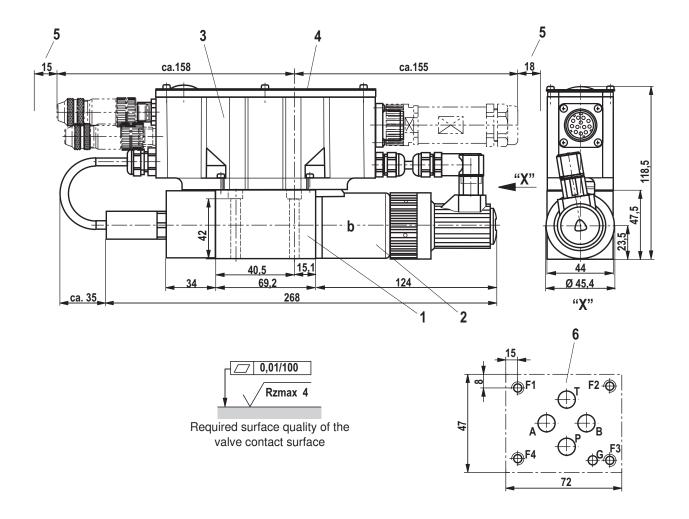
Characteristic curves: Type STW 0196-1X/1...


Performance limit $A \rightarrow T$, position-controlled


Performance limit $\mathbf{P} \rightarrow \mathbf{A}$, position-controlled

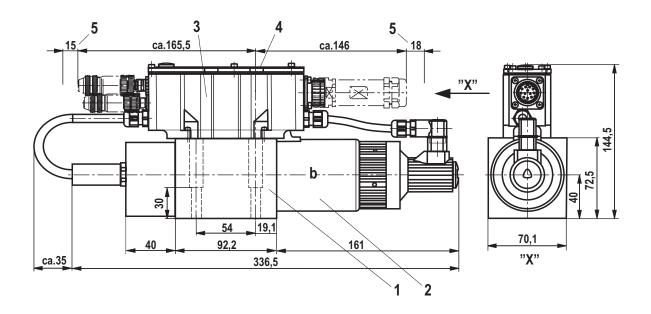

Performance limit $B \rightarrow T$, position-controlled

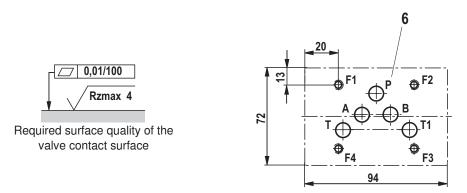

Flow characteristic curve A \rightarrow T, $\Delta p = 5$ bar


Flow characteristic curve P \rightarrow A, $\Delta p = 5$ bar

Flow characteristic curve B \rightarrow T, $\Delta p = 5$ bar

Dimensions: Type STW 0195-2X/1... (dimensions in mm)




Notice!

The dimensions are nominal dimensions which are subject to tolerances.

- 1 Valve housing
- 2 Proportional solenoid "b" with inductive position transducer
- 3 Integrated digital control electronics
- 4 Name plate
- 5 Space required to remove the connector
- 6 Machined valve contact surface, porting pattern according to ISO 4401-03-02-0-05 Deviating from the standard:
 - Ports P, A, B and T with Ø 8 mm
 - Bore B may not be required since there is no pin in the valve.

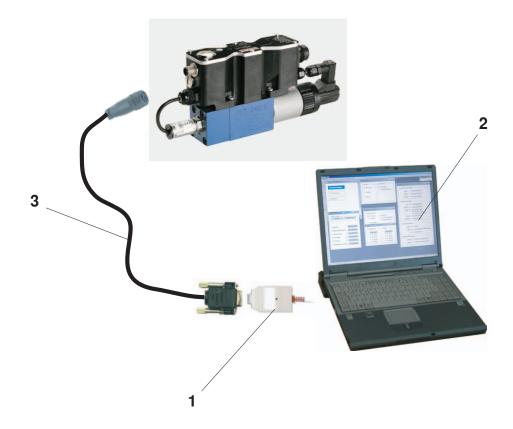
Dimensions: Type STW 0196-1X/1... (dimensions in mm)

Notice!

The dimensions are nominal dimensions which are subject to tolerances.

- 1 Valve housing
- 2 Proportional solenoid "b" with inductive position transducer
- 3 Integrated digital control electronics
- 4 Name plate
- 5 Machined valve contact surface, porting pattern according to ISO 4401-05-04-0-05 Deviating from the standard:
 - Port T1 exists additionally

Dimensions

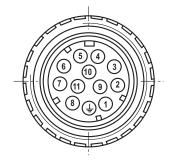

Hexagon socket he	ead cap screws	Material number	
Type STW0195	4x ISO 4762 - M5 x 50 - 10.9-flZn-240h-L Tightening torque M_A = 7 Nm ±10 % or 4x ISO 4762 - M5 x 50 Tightening torque M_A = 8.9 Nm ±10 %	R913000064	
Type STW0196	4x ISO 4762 - M6 x 40 - 10.9-fIZn-240h-L Tightening torque M_A = 12.5 Nm ±10 % or 4x ISO 4762 - M6 x 40 - 10.9 Tightening torque M_A = 15.5 Nm ±10 %	R913000058	

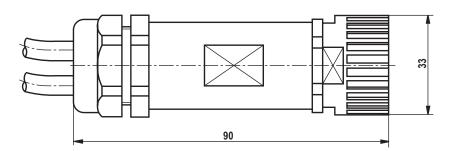
Notice: The tightening torque of the hexagon socket head cap screws refers to the maximum operating pressure!

Subplates	Data sheet
Type STW0195	45052
Type STW0196	45054

Accessories (not included in the scope of delivery)

The following is required for the parameterization with PC:		CANopen	Profibus DP	
1	Interface converter (USB)	VT-ZKO-USB/CA-1-1X/V0/0	VT-ZKO-USB/P-1-1X/V0/0	
		Mat.no. R901071963	Mat.no. R901071962	
2	Commissioning software	WINPED		
		Download via www.boschrexroth.de\IAC		
3	Connection cable, 3 m	D-Sub / M12, coding A	D-Sub / M12, coding B	
		Mat.no. R900751271	Mat.no. R901078053	

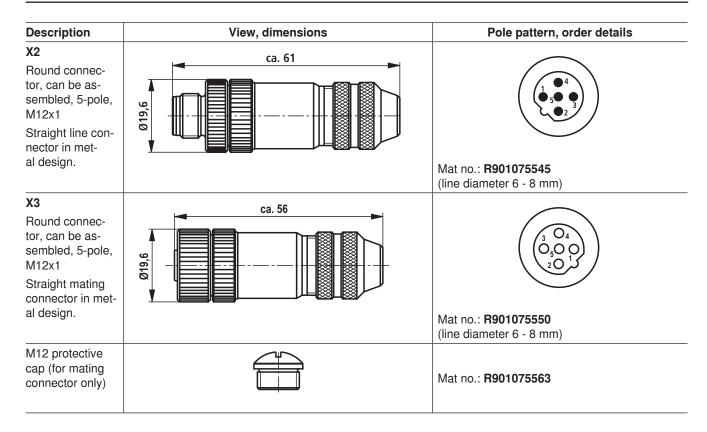

Material no. R900884671


Accessories, port X1 (not included in the scope of delivery)

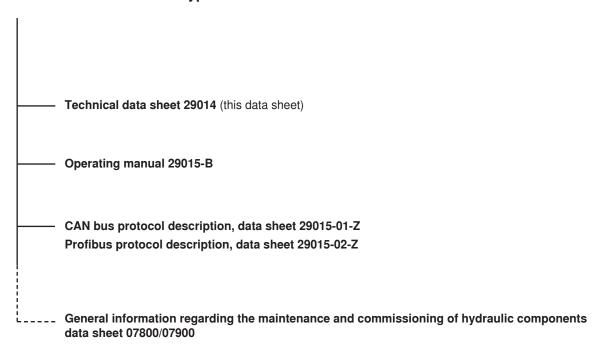
Mating connector for X1

Mating connector according to DIN EN17520-804 (11-pole + PE), plastic variant

- Mating connector without cable (assembly kit)
- Mating connector with cable set 2 x 5 m 12-pole Material no. R900032356
- Mating connector with cable set 2 x 20 m 12-pole Material no. R900860399



Accessories, CAN bus (A coding) (not included in scope of delivery)


Description
Round connector, can be assembled, 5-pole, M12x1 Straight mating connector in metal design.

Accessories, Profibus (B coding) (not included in scope of delivery)

Project planning/maintenance instructions/additional information

Product documentation for types STW0195 and STW0196

WINPED commissioning software and documentation on the Internet: www.boschrexroth.com/IAC

Maintenance instructions:

- The devices have been tested in the factory and are supplied with default settings.
- Only complete devices can be repaired. Repaired devices are returned with default settings. User-specific settings are not
 accepted. The machine end-user will have to retransfer the corresponding user parameters.

Notes:

- Connect the valve to the supply voltage only when this is required for the functional sequence of the machine.
- Do not use electrical signals led out of control electronics (e.g. "No error" signal) for switching safety-relevant machine functions (See also EN ISO 13849 "Safety of machinery – safety-related parts of control systems").
- If electro-magnetic interference must be expected, take appropriate measures to ensure the function (depending on the application, e.g. shielding, filtration)!

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.