embOS

Real-Time
Operating System

CPU-independent

User & Reference Guide

Document: UM01001

Software version 4.06b
Revision: O
Date: March 24, 2015

O
/ SEGGER

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

2 CHAPTER

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (SEGGER) assumes no responsibil-
ity for any errors or omissions. SEGGER makes and you receive no warranties or con-
ditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particu-
lar purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of SEGGER. The software described in this document is
furnished under a license and may only be used or copied in accordance with the
terms of such a license.

© 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany
Trademarks
Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address
SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0

Fax.+49 2103-2878-28

E-mail: support@segger.com
Internet: http://www.segger.com

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

Manual versions

This manual describes the current software version. If any error occurs, inform us
and we will try to assist you as soon as possible.
Contact us for further information on topics or routines not yet specified.

Print date: March 24, 2015

Software | Revision| Date | By Description
4.06b 0 150324 MC | Minor spelling and wording corrections.
4.062 0 | 150318 | MC| g eling and wording corrections.
4.06 0 150312 | TS | Update to latest software version.
4.04a 0 141201 TS | Update to latest software version.
Chapter "Tasks"
4.04 0 141112 | Ts ghlii‘;r‘f.rgggzg‘é?s;ﬁ'pt'°” updated.
* New error number
4.02a 0 140918 TS Update to Iatgst software version.
Minor corrections.
New functions in chapter Time Measurement added:
0OS_Config_SysTimer
4.02 0 140818 | TS OS:GetTi?n—e_yus() 0
0S_GetTime_us64()
New function added in chapter SystemTick:
0OS_StopTicklessMode()
4.00a 0 140723 TS cN)gv_vSf_ILj:_I(_:iig?a?tcégied in chapter Profiling:
OS_STAT_Stop()
OS_STAT_GetTaskExecTime()
4.00 0 140606 TS | Tickless suppport added.
3.90a 0 140410 | AW | Software-Update, OS_TerminateTask() modified / corrected.
3.90 1 140312 SC | Added cross-references to the API-lists.
New functions to globally enable / diasble Interrupts:
OS_INTERRUPT_MaskGlobal()
OS_INTERRUPT_UnmaskGlobal
3.90 0 140303 | AW OSZINTERRUPT:PreserveGIobaI(())
OS_INTERRUPT_RestoreGlobal()
OS_INTERRUPT_PreserveAndMaskGlobal()
New functions added, chapter "Sytem tick":
OS_GetNumldleTicks();
3.88h 0 131220 | AW | OS_AdjustTime();
Chapter "System variable"
Description of internal variable OS_Global.TimeDex corrected
3.88¢g 1 131104 TS | Corrections.
3.88g 0 131030 TS Update to Iatgst software version.
Minor corrections.
3.88f 0 130922 TS | Update to latest software version.
3.88e 0 130906 TS | Update to latest software version.
3.88d 0 130904 | AW | Update to latest software version.
3.88c 0 130808 TS | Update to latest software version.
3.88b 0 130528 TS | Update to latest software version.
Software update.
Event handling modified, the reset behaviour of events can be
controlled. New functions added, chapter "Events":
3.88a 0 130503 | AW | OS_EVENT_CreateEx();
OS_EVENT_SetResetMode();
OS_EVENT_GetResetMode();
Mailbox message size limits enlarged.
3.88 0 130219 TS | Minor corrections.
3.86n 0 121210 }A‘_IYé Update to latest software version.
Software update
3.86l 0 121122 | AW | OS_AddTickHook() function corrected.
Several functions modified to allow most of MISRA rule checks
Chapter "Queue"
3.86k 0 121004 | TS | OpS_Q_%etMessageSize() and OS_Q_PeekPtr() added.

UMO01001 User & Reference Guide for embOS

© 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

CHAPTER

Software

Revision

Date

By

Description

3.86i

0

120926

TS

Update to latest software version.

3.86h

0

120906

AW

Software update,
OS_EVENT handling with timeout corrected.

3.869

120806

AW

Software update, OS_RetriggerTimer() corrected.
Task events explained more in detail. Additional software
examples in the manual.

3.86f

120723

AW

Task events modified, default set to 32bit on 32bit CPUs.
Chapter 4: New API function OS_AddOnTerminateHook()
OS_ERR_TIMESLICE removed. A time slice value of zero is
legal when creating tasks.

3.86e

120529

AW

Update to latest software version with corrected functions:
OS_GetSysStackBase()
0S_GetSysStackSize()
0OS_GetSysStackSpace()
OS_GetSysStackUsed()
0OS_GetIntStackBase()

0OS_GetIntStackSize()
OS_GetIntStackSpace()
0OS_GetIntStackUsed()

could not be used in release builds of embOS.
Manual corrections:

Several index entries corrected.
OS_EnterRegion() described more in detail.

3.86d

120510

TS

Update to latest software version.

3.86¢C

120508

TS

Update to latest software version.

3.86b

120502

TS

Chapter "Mailbox"

* OS_PeekMail() added.

Chapter "Support" added.

Chapter "Debugging":

* Application defined error codes added.

3.86

120323

AW

Timeout handling for waitable objects modified. A timeout will
be returned from the waiting function, when the obeject was
not avaialbale during the timeout time. Previous implementa-
tion of timeout functions might have returned a signaled state
when the object was signaled after the timeout when the call-
ing task was blocked for a longer period by higher priorized
tasks.

Modified functions:

0OS_UseTimed(), Chapter 6.2.3

OS_WaitCSemaTimed(), Chapter 7.2.6

0S_GetMailTimed(), Chapter 8.5.8

0S_WaitMailTimed(), Chapter 8.5.10

0S_Q_GetPtrTimed(), Chapter 9.3.7
OS_EVENT_WaitTimed(), Chapter 11.2.4
OS_MEMF_AllocTimed(), Chapter 13.2.4

New Chapter 4.3. "Extending the task context" added.

New functions added and described in the manual:
Chapter 4.4.14: OS_GetTaskName()
Chapter 4.4.14: OS_GetTimeSliceRem()

Handling of queues described mor in detail:
Chapter 9.3.5: OS_Q_GetPtr()

Chapter 9.3.6: OS_Q_GetPtrCond()
Chapter 9.3.7: OS_Q_GetPtrTimed()
Chapter 9.3.8: OS_Q_Purge()

Chapter 10, Task Events:

Type for task events OS_TASK_EVENT introduced. This type is
used for all events and event masks. it defaults to unsigned
char.

Chapter 2.4.3 "Priority inversion / inheritance" updated

Chapter 17.3.1 function names OS_Timing_Start() and
OS_Timing_End() corrected in the API table.

UMO01001 User & Reference Guide for embOS

© 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

Software

Revision

Date

By

Description

3.84c

120130

AW
/TS

Since version 3.82w of embOQS, all pointer parameter pointing
to objects which were not modified by the function were
declared as const, but the manual was not updated accord-
ingly.

The prototype descriptions of the following API functions are
corrected now:

0OS_GetTimerValue()

OS_GetTimerStatus()

0S_GetTimerPeriod()

0S_GetSemaValue()

OS_GetResourceOwner()

0S_Q _IsInUse()

0S_Q_GetMessageCnt()

0OS_IsTask()

0S_GetEventsOccurred()

0S_GetCSemaValue()

OS_TICK_RemoveHook()

OS_MEMF_IsInPool()

OS_MEMF_GetMaxUsed()

OS_MEMF_GetNumBIlocks()

OS_MEMF_GetBlockSize()

0S_GetSuspendCnt()

OS_GetPriority()

OS_EVENT_Get()

0OS_Timing_Getus()

Chapter "Preface"

* Segger Logo replaced.

Chapter "Mailbox"

* OS_CREARTEMB() changed to OS_CreateMB().
Chapter "Queues"

* Typos corrected.

3.84c

120104

TS

Chapter "Events"
* Return value of OS_EVENT_WaitTimed() explained in more
detail

3.84b

111221

TS

Chapter "Queues"
* OS_Q_PutBlocked() added.

3.84a

111207

TS

General updates and corrections.

3.84

110927

TS

Chapter "Stacks"

* OS_GetSysStackBase() added.
* OS_GetSysStackSize() added.
* OS_GetSysStackUsed() added.
* OS_GetSysStackSpace() added.
* OS_GetIntStackBase() added.
* OS_GetIntStackSize() added.

* OS_GetIntStackUsed() added.
* OS_GetIntStackSpace() added.

3.82x

110829

TS

Chapter "Debugging"
* New error code "OS_ERR_REGIONCNT" added.

3.82w

110812

TS

New embOS generic sources.
Chapter 24 "Debugging" updated.

3.82v

110715

AW

OS_Terminate() renamed to OS_TerminateTask().

3.82u

110630

TS

New embOS generic sources.
Chapter 13: Fixed size memory pools modified.

3.82t

o| ©o |[Oo|] ©

110503

TS

New embOS generic sources. Trial time limitation increased.

3.82s

110318

AW

Chapter 5.2, "Timer" API functions table corrected.

All functions can be called from main(), task, ISR or Timer.
Chapter 6: OS_UseTimed() added.

Chapter 9: OS_Q_IsInUse() added.

3.82p

110112

AW

Chapter "Mailboxes"

* OS_PutMail()

* OS_PutMailCond()

* OS_PutMailFront()

* OS_PutMailFrontCond()

parameter declaration changed.

Chapter 4.3 API functions table corrected.
0OS_Suspend() cannot be called from ISR or Timer.

3.820

110104

AW

Chapter "Mailboxes"
* OS_WaitMailTimed() added.

UMO01001 User & Reference Guide for embOS

© 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

6 CHAPTER
Software | Revision Date By Description
Chapter "Taskroutines"
* OS_ResumeAllSuspendedTasks() added.
* OS_SetlnitialSuspendCnt() added.
3.82n 0 101206 | AW * OS_Su"sp_endAIITasks() add“ed.
Chapter "Time Measurement
* Description of OS_GetTime32() corrected.
Chapter "List of error codes"
* New error codes added.
Chapter "Taskroutines"
3.82k 0 100927 TS | * OS_Delayus() added
* OS_Q_Delete() added
3.82i 0 100917 TS | General updates and corrections.
Chapter Event objects: Samples added.
3.82h 0 100621 | AW | Chapter: Configuration of target system: Detailed description
of OS_idle() added
Chapter Profiling added
3.82f 1 100505 TS Chapter SystemTick: OS_TickHandleNoHook() added.
Chapter Tasks: New function OS_IsRunning()added.
3.82f 0 100419 | AW Chapter Tasks: Description of OS_Start() added.
Chapter "Working with embOS - Recommendations" added
Chapter Basics
* Priority inversion image added
Chapter Interrupt
3.82e 0 100309 TS * subchapter "Using OS functions from high priority inter-
rupts"
added
Added text at chapter 22 "Performance and resource usage"
API function overview now contains information about allowed
3.82 0 090922 TS | context of function usage (main, task, ISR or timer)
TOC format corrected
3.80 0 090612 | AW | Scheduler optimized for higher task switching speed.
Chapter structure updated.
Chapter "Interrupts":
* OS_LeaveNestablelnterruptNoSwitch() removed.
3.62.c 0 080903 SK1 « OS_LeavelnterruptNoSwitch() removed.
Chapter "System tick":
* OS_TICK_Config() added.
3.60 2 080722 SK | Contact address updated.
General updates.
3.60 1 080617 SK | Chapter "Mailboxes":
- OS_GetMailCond() / OS_GetMailCond1() corrected.
General updates.
3.60 0 080117 | 0O Chapter "System tick" added.
3.52 1 071026 | AW | Chapter "Task routines": Added OS_SetTaskName().
Chapter "Task routines": Added OS_ExtendTaskContext().
3.52 0 070824 | OO | Chapter "Interrupts": Updated, added OS_CallISR() and
OS_CallNestableISR().
3.50c 0 070814 | AW | Chapter "List of libraries" updated, XR library type added.
3.40C 3 070716 | OO | Chapter “Performance and resource usage" updated,
Chapter “Debugging®, error codes updated:
- OS_ERR_ISR_INDEX added.
- OS_ERR_ISR_VECTOR added.
- OS_ERR_RESOURCE_OWNER added.
- OS_ERR_CSEMA_OVERFLOW added.
3.40C 2 070625 SK | Chapter “Task routines™:
- OS_Yield() added.
Chapter “Counting semaphores" updated.
- OS_SignalCSema(), additional information adjusted.
Chapter “Performance and resource usage" updated:
- Minor changes in wording.
Chapter “Counting semaphores" updated.
- OS_SetCSemaValue() added.
- OS_CreateCSema(): Data type of parameter InitValue
3.40A 1 070608 SK changed from unsigned char to unsigned int.
- OS_SignalCSemaMax(): Data type of parameter MaxValue
changed from unsigned char to unsigned int.
- OS_SignalCSema(): Additional information updated.

UMO01001 User & Reference Guide for embOS

© 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

Software

Revision

Date

By

Description

3.40

070516

SK

Chapter “Performance and resource usage" added.

Chapter “Configuration of your target system (RTOSInit.c)"
renamed to “Configuration of your target system®".

Chapter "STOP\WAIT\IDLE modes" moved into

chapter “Configuration of your target system®.

Chapter “time-related routines" renamed to “Time measure-
ment".

3.320

070422

SK

Chapter 4: OS_CREATETIMER_EX(), additional information
corrected.

3.32m

070402

AW

Chapter 4: Extended timer added.
Chapter 8: API overview corrected,
0S_Q_GetMessageCount()

3.32j

070216

AW

Chapter 6: OS_CSemaRequest() function added.

3.32e

061220

SK

About: Company description added.
Some minor formatting changes.

3.32e

061107

AW

Chapter 7: OS_GetMessageCnt() return value corrected to
unsigned int.

3.32d

061106

AW

Chapter 8: OS_Q_GetPtrTimed() function added.

3.32a

061012

AW

Chapter 3: OS_CreateTaskEx() function, description of
parameter pContext corrected.

Chapter 3: OS_CreateTaskEx() function, type of parameter
TimeSlice corrected.

Chapter 3: OS_CreateTask() function, type of parameter
TimeSlice corrected.

Chapter 9: OS_GetEventsOccured() renamed to
OS_GetEventsOccurred().

Chapter 10: OS_EVENT_WaitTimed() added.

3.32a

060804

AW

Chapter 3: OS_CREATETASK_EX() function added.
Chapter 3: OS_CreateTaskEx() function added.

3.32

060717

00

Event objects introduced. Chapter 10 inserted which
describes event objects.
Previous chapter "Events" renamed to "Task events"

060519

00

New software version.

060223

00

All chapters: Added API tables.
Some minor changes.

051109

AW

Chapter 7: OS_SignalCSemaMax() function added.
Chapter 14: Explanation of interrupt latencies and high / low
priorities added.

050926

AW

Chapter 6: OS_DeleteRSema() function added.

050707

AW

Chapter 4: OS_GetSuspendCnt() function added.

050425

AW

Version number changed to 3.28 to fit to current ombOS ver-
sion.

Chapter 18.1.2: Type of return value of OS GetTime32() cor-
rected

050209

AW

Chapter 4: OS_Terminate() modified due to new features of
version 3.26.

Chapter 24: Source code version: additional compile time
switches and build process of libraries explained more in
detail.

041115

AW

Chapter 6: Some prototype declarations showed in OS_SEMA
instead of OS_RSEMA. Corrected.

040816

AW

Chapter 8: New Mailbox functions added
0OS_PutMailFront()

OS_PutMailFront1()
OS_PutMailFrontCond()
0OS_PutMailFrontCond1()

040621

RS
AW

Software timers: Maximum timeout values and
OS_TIMER_MAX_TIME described.

Chapter 14: Description of rules for interrupt handlers
revised.

OS_LeaveNestableInterruptNoSwitch() added which was
not described before.

UMO01001 User & Reference Guide for embOS

© 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

8 CHAPTER
Software | Revision Date By Description

3.20 4 040329 | AW | OS_CreateCSema() prototype declaration corrected.
Return type is void.
0S_Q_GetMessageCnt() prototype declaration corrected.
0S_Q_Clear() function description added.
OS_MEMF_FreeBlock() prototype declaration corrected.

3.20 2 031128 | AW | OS_CREATEMB() Range for parameter MaxnofMsg cor-
rected. Upper limit is 65535, but was declared 65536 in
previous manuals.

3. 1 040831 | AW | Code samples modified: Task stacks defined as array of
int, because most CPUs require alignment of stack on inte-
ger aligned addresses.

3.20 1 031016 | AW | Chapter 4: Type of task priority parameter corrected to
unsigned char.
Chapter 4: OS_DelayUntil(): Sample program modified.
Chapter 4: OS_Suspend() added.
Chapter 4: OS_Resume() added.
Chapter 5: OS_GetTimerValue(): Range of return value
corrected.
Chapter 6: Sample program for usage of resource sema-
phores modified.
Chapter 6: OS_GetResourceOwner(): Type of return value
corrected.
Chapter 8: OS_CREATEMB(): Types and valid range of
parameter corrected.
Chapter 8: OS_WaitMail() added
Chapter 10: OS_WaitEventTimed(): Range of timeout
value specified.
3.12 1 021015 | AW | Chapter 8: OS_GetMailTimed() added
Chapter 11 (Heap type memory management) inserted
Chapter 12 (Fixed block size memory pools) inserted
3.10 3 020926 | KG | Index and glossary revised.
020924 KG | Section 16.3 (Example) added to Chapter 16 (Time-related
020910 | KG | routines).
Revised for language/grammar.
Version control table added.
Screenshots added: superloop, cooperative/preemptive multi-
tasking, nested interrupts, low-res and hi-res measurement.
Section 1.3 (Typographic conventions) changed to table.
Section 3.2 added (Single-task system).
Section 3.8 merged with section 3.9 (How the OS gains con-
trol).
Chapter 4 (Configuration for your target system) moved to
after Chapter 15 (System variables).
Chapter 16 (Time-related routines) added.

UMO01001 User & Reference Guide for embOS

© 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

e The software tools used for building your application (assembler, linker, C com-
piler)
The C programming language
The target processor

e DOS command line

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.
How to use this manual

This manual explains all the functions and macros that the product offers. It assumes
you have a working knowledge of the C language. Knowledge of assembly program-
ming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keyword Text t.hat you entt_ar at the comm_and-pr_ompt or that appears on
the display (that is system functions, file- or pathnames).
Parameter Parameters in API functions.
Sample Sample code in program examples.

Sample comment | Comments in programm examples.

Reference to chapters, sections, tables and figures or other docu-

Reference
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections.

Table 1.1: Typographic conventions

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

10

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI C
software components (middleware) for embedded sys-
tems in several industries such as telecom, medical
technology, consumer electronics, automotive industry
and industrial automation.

/ SEGGER
SEGGER'’s intention is to cut software development time

for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embQOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash micro controllers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for

debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com

EMBEDDED SOFTWARE
(Middleware)

emWin

Graphics software and GUI

emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.

embOS

Real Time Operating System

embOS is an RTOS designed to offer
the benefits of a complete multitasking

system for hard real time applications
with minimal resources.

embOS/IP

TCP/IP stack

embOS/IP a high-performance TCP/IP
stack that has been optimized for
speed, versatility and a small memory
footprint.

emfFile

File system

emFile is an embedded file system with
F. FAT12, FAT16 and FAT32 support. Var-
ious Device drivers, e.g. for NAND and
NOR flashes, SD/MMC and Compact-
Flash cards, are available.

USB-Stack

USB device/host stack

A USB stack designed to work on any
embedded system with a USB control-
ler. Bulk communication and most stan-
dard device classes are supported.

ED

i

SEGGER TOOLS

Flasher

Flash programmer

Flash Programming tool primarily for micro con-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace

JTAG emulator with trace

USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER’s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

UMO01001 User & Reference Guide for embOS

© 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

11

Table of Contents

1 Introduction t0 eMBDOS o 19
1.1 What IS €mMbDOS .. e e e 20
1.2 ST L 1 < 21

P Y- L (ol oo (o =T o) £ RSP PPPPRTPPRTRPP 23
2.1 L=] G 24
2.1.1 LI (=T 1o 3 24
2.1.2 e (Y0 =T 24
2.2 Single-task systems (SUPEIIOOP) .uiiiiiiii i i e e e e 25
2.2.1 Advantages & disadvantagesoviiiiiiiiiii i 25
2.2.2 Using embOS in super-loop applications.......ccoiiiiiiiiiiiic i e 26
2.2.3 Migrating from superloop to multi-taskingccoiiiiiiiiiiii i 26
2.3 MUIEIEASKING SYSEOMIS . it e e as 27
2.3.1 TaSK SWIECNES . .t e 27
2.3.2 Cooperative task SWILCh......iiiiiii e 27
2.3.3 Preemptive task SWItCh......coiiiiiii e 27
2.3.4 Preemptive multitasking ..o e 28
2.3.5 Cooperative MUItItasKing ..oivii i i i e 29
2.4 1Y | =T 1] 1.9 T 30
2.4.1 Round-robin scheduling algorithm ... 30
2.4.2 Priority-controlled scheduling algorithm ... 30
2.4.3 Priority inversion / priority inheritance......c.oooiiiiiiiiii i 31
2.5 Communication between taskscciiiiiiiiiiii s 33
2.5.1 PeriodiC POIING .. i e 33
2.5.2 Event-driven communication mechanisSmsc.coviiiiiiiiiiii i e naeas 33
2.5.3 MailbOXES AN QUEUES 1 vttt it ettt aae e e e e 33
2.5.4 Y=] 0 =] 0 5 0 1P 33
2.5.5 BV BNt S ottt e 33
2.6 How task switChing WOrKsS ..o e 34
2.6.1 SWIECHING STACKS ..ttt e i e 35
2.7 Change of task StatusS.....ciiiiiiiii i e e e 36
2.8 How the OS gains CONTIol ...oiiiiiii i e e e 37
2.9 Different builds of @mbOSc.i i s 38
2.9.1 o) 111 o Vo PP 38
2.9.2 LISt Of DrariEs e 38
2.9.3 embOS fUNCLIONS CONtEXE . vt e e neeaes 39

3 Working With @mBDOS ... 41
3.1 (1< =T =1 = T AV Tl 42
3.1.1 B 1= =0 T i o= =] PP 42

N I 1] &SR 43
4.1 |l Yo [T o o P 44
4.1.1 Example of a task routine as an endless 100p......cccviiiiiiiiiiii i 44
4.1.2 Example of a task routine that terminates itself ..o 44
4.2 Cooperative vs. preemptive task switches ..o 45
4.2.1 Disabling preemptive task switches for tasks of equal priorityccviiveinen. 45
4.2.2 Completely disabling preemptions for a task.......cooviiiiiiiiiiiii i 45
4.3 Extending the task conteXt ..o 46
4.3.1 Passing one parameter to a task during task creationc.coooiiiiinnn, 46

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

12

4.3.2 Extending the task context individually at runtime ..., 46
4.3.3 Extending the task context by using own task structuresc.covvivviinnnnns 46
4.4 AP fUNCHIONS ¢ttt e 48
4.4.1 OS_AddONTerminateHOOK() . .vuriiieiiii i e s e e e reaas 50
4.4.2 O S CREATETASK() +tuttutttttteae et ateataeeaeeeataaeee s e aeaeee e aneaseaeeae e anennanens 51
4.4.3 (@ ST O ==Y =l = 1] () PP 53
4.4.4 OS _CREATETASK _EX() +erttttitiniite ettt et s e e e e e e e e e e e e s e aneneenees 55
4.4.5 OS_Creat@TasKEX() «voeeruerieeieiiiaiiiatestraseseraaesaesaassarsasssanessesnesanssneannsannsns 57
4.4.6 (@ I D11 = 1V () TP 58
4.4.7 (@ ST B =1 = 10 1o 1 1 (P 59
4.4.8 (@ I D 1! F= 1 1=) L PP 60
4.4.9 OS_ExtendTaskConteXt() .ovvveiiiiiiiiii i e e e e aeas 61
4.4.10 OS _GetpCUurrentTask() . e eoe e e e e eeaas 64
4.4.11 (@ I 1) o o oo o1 Y/ () I P 65
4.4.12 (@ ST €11 oY U] 0 1= o [o) o () TR PP 66
4.4.13 (O I 1] o =11 4 5 1 T PR 67
4.4.14 (@I =] =11 140 =T 1.2 L= () PP 68
4.4.15 OS_GetTimeSHCEREM() 1.uiei i e e e e aaeaeaas 69
4.4.16 (@ TN] 2B [o1 11 o T | () PP 70
4.4.17 (@ T K= =11 () 1 PP 71
4.4.18 (@I =T U 0 1 1= () 1 72
4.4.19 OS_ResumeAllSUsSpendedTasksS (). .uuueereerireriiiiariararesieraes s raassesaesaneannns 73
4.4.20 OS_SetInitialSuspendCnt() .oo.e i e 74
4.4.21 (O TS = o o] 10 V7 () TR PP 75
4.4.22 (@ TS o =1 1A =T 2 =T () P 76
4.4.23 (O SIS ol 0 0 1= [T =T () 77
4.4.24 (@ TS] = o o () P 78
4.4.25 (@IS ¥ 1] 011 o o () T 79
4.4.26 OS _SUSPENAAITASKS() 1 ueintiieiiii it rir e ar e s e e s e e saneanans 80
4.4.27 (O ST =T 1T F= L= =] () T 81
4.4.28 (O ST V=1 = =] () 82
4.4.29 (@ 1T 1= [[T PP 83
5 SOMWANE TIMEIS ...ttt ettt e e e e e e e e e e e e e e e e e e e s e e e bbb b abeeee e 85
5.1 INErOdUCEHION L s 86
5.2 AP fUNCHIONS ¢ttt e e e 87
5.2.1 OS_CREATETIMER() -euueitieiie it e e e e ettt et et e e et e e e e e e n e e eneens 88
5.2.2 (O IOl =) =0 N 0 1= o I PP 89
5.2.3 (O S = o ol 10 4 U= () I PR 90
5.2.4 (@ ST o] o 11 4 T=1 () PP 91
5.2.5 (O I I = e o =T ol W T 0 =T of () TP 92
5.2.6 (@ Y= o W g 1= g 2= T o o T PR 93
5.2.7 (@ ST =] (= W=l W 0 1] o PP 94
5.2.8 (@ S 1= Nl g (=] 2= T o T I () T PR 95
5.2.9 (O S 1= N g (=T V= LU =T () T PP 96
5.2.10 OS _GetTimerStatus() «vveiiei ittt r e e ra e ar e s are e e nneaneans 97
5.2.11 (O I CT=]ws 10U g =T a1l W la o T=1 ol () PP 98
5.2.12 OS_CREATETIMER _EX() +tueueiueanieee et et et e e e e et e e e e e rn e neeeneenenes 99
5.2.13 (O I Ol =) =l N 0 (=T o = () T PP 100
5.2.14 (O IS =L ol 10 g =1 = PP 101
5.2.15 OS _StOPTIMEIEX() ettt i i e e e s s r s anean e aneans 102
5.2.16 OS _RetriggerTimMeEIrEX () «ueuuue ittt e e e e e e e eeenens 103
5.2.17 OS_SetTimerPeriodEX() +uureiieiiriieiise i i i s it a s a e ae s e s sareaeannennens 104
5.2.18 (O ST D=1 (= W=l W 0[] o = () T PP 105
5.2.19 OS_GetTimerPerioAEX() «uvueiireiiriise i i iesate s e rase s easeaeeaeeaneannans 106
5.2.20 OS_GetTimerValUEEX() «.vviriii it s e e e eaeaas 107
5.2.21 OS_GetTimerSTatUSEX() rvureiiriiiiiiee it eiee it se s ar s s e rareaneeaeenneaneans 108
5.2.22 OS_GetpCUrrentTiMErEX() . euer e et iieia i iitaateaesare s rase s sareaeennerneannans 109
6 RESOUICE SEMAPNOIES.....cciiiiiiie et 111

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.1 | g} o [T o] o PP 112
6.2 AP fUNCHIONS ettt e 114
6.2.1 OS _CREATERSEMA () ttttiittitiitt ittt ate e a e st a e st e e e st a e ea e e naeaaeans 115
6.2.2 (O T U =11 () RPN 116
6.2.3 L@ ST U == I 0 1T 1 ISP 118
6.2.4 L@ T U 1 [11T () 1P 119
6.2.5 L@ T ST LU= o (PP 120
6.2.6 O ST €= oY =T o F= V4= 1 U L= () 121
6.2.7 OS_GetRESOUNCEOWNEI() 1uviiueieiiiiite it r et e et rar s rae s e e s saeransaneanens 122
6.2.8 L@ ST =] [=] ST =] o 0 1=) P 123
7 CouNtiNg SEMAPNOIESooiiiiiiiie ettt e e e e e e e e 125
7.1 INErOdUCEION e s 126
7.2 APT fUNCHIONS ettt e e 127
7.2.1 OS _CREATECSEMA() e ttttitttittitt it aatetiesatesieeasesaeaasesaesanesaeeanesansseannenneannans 128
7.2.2 (O I O =T =TGRS o o 1= 1 T PP 129
7.2.3 O I (o[F= 1 LOISY=T 0 =) I PP 130
7.2.4 O SIS (o[=1 [OISY=T 0 = | = D () T PP 131
7.2.5 OS_WaltCSEMA() tttrtittineiiee ittt sttt sttt asetane e aansanesaneaneeaneseenneaneannans 132
7.2.6 OS_WaitCSemaTimeEd() «uur e sttt ate e et a e e aseraes e raesaneeeanneanans 133
7.2.7 OS_CSEMAREGUESE() +iureirtiitiiitiitt ittt eate it s aesar e aeraneseaanereannernenn 134
7.2.8 O I C =1 (O 0 o = A= 1 [V =T () T TP 135
7.2.9 08 _SetCSemMaValue() tove ittt e a e e 136
7.2.10 (O ST D= [=T @RS < 1 a1 PP 137
8 MaAUIDOXES ... e e e e e e et aaan 139
8.1 1l o Yo [U T o o TP 140
8.2 1=] o 141
8.3 Typical @ppliCatioNS . .ciii i 142
8.3.1 A Keyboard DUFfEr 142
8.3.2 YN o T U i (=T ol o T Y] = I 74 1, 142
8.3.3 A buffer for commands sent to @ task.......coviiiiiiii i 142
8.4 Single-byte mailboxX fuNCiONS....ci i 143
8.5 Y o I 11 o o 1= 144
8.5.1 L@ ST O = 1= =] 1 T () PP 145
8.5.2 OS_PutMail() / OS_PUEMAITL() teveiriiieiie i i s nesae e s ransseennerneanneenens 146
8.5.3 OS_PutMailCond() / OS_PUtMailCondL() «cevvrerierineierineiieranerernnesnesnnennernnans 147
8.5.4 OS_PutMailFront() / OS_PutMailFrontl () ...cccviiiiiiiiiii i e 148
8.5.5 OS_PutMailFrontCond() / OS_PutMailFrontCond1()...ccvviiiiiiiiiiiiiiiiiiiiiiinenn, 149
8.5.6 0OS_GetMail() / OS_GetMailL().eeierireiieiiniriia s i rane s raneserarereannenneans 150
8.5.7 0S_GetMailCond() / OS_GetMailCondl1() «ivoviiiiiiiiiiiii i e 151
8.5.8 (O CI C 1= =1 I T g 1= [TP 152
8.5.9 L ST LT T = 1 1 PP 153
8.5.10 OS_WaitMailTimeEd() ceveeeiieii i e e a e e r e e s sar e a e aaneaneas 154
8.5.11 OS _PEEKMAII() turiieiitiii et i i 155
8.5.12 (O S O 1= T 17 = () TP 156
8.5.13 0S_GetMESSAGECNT() +eureiirt ittt ittt r e r e e e 157
8.5.14 OS _DElEEEMBI() ettt it ittt 158
S T 11 1= PPN 159
9.1 |l o Yo [U T o o TP 160
9.2 1=] o 161
9.3 Y o I 11 o o 1= 162
9.3.1 L@ T O T O /<= 1 =T () PP 163
9.3.2 L@ T T 22 () T PP 164
9.3.3 OS_Q_PUEBIOCKEA() +rtvurenernerneiinenneianssnesanesnesanssneranssnesanssneranssnernnsanernnens 165
9.3.4 (O T O T U o 0 9 T=To 1 () TSP 166
9.3.5 L@ ST T €= o 4 ol () 1 PP 167
9.3.6 L@ ST O T €= o 24 . @ T [() I PP 168
9.3.7 (O ST O I €= o 4w ol I 0 1= 1 () PP 169

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

14

9.3.8 (@ T O T ST o =T (PP 170
9.3.9 (@ 1T O T 1 1T o (PP 171
9.3.10 OS_Q_GetMeESSageCNE() . utitiriiiee it 172
9.3.11 (@ 1T O T 7= 11 o Y () S 173
9.3.12 (O 1S @ K= 1 | =T RPN 174
9.3.13 OS_Q_GetMESSAGESIZE() e utuntririiteiiniant ittt s rareaeraeaaeaneans 175
9.3.14 (@ T O T o= T=T o ol () PP 176
O =] Q=A< o (SO 177
10.1 INErOdUCEION e e 178
10.2 AP fUNCHIONS ¢ttt i e e 179
10.2.1 OS _ WaltEVENE() teiiriiii i e e e 180
10.2.2 OS_WaitSIiNgIEEVENT() 1viiriiiiiii i i v eaneaas 181
10.2.3 OS_WaitEventTimed() .ovvveiiiiiii i e e aneas 182
10.2.4 0S_WaitSingleEventTimed() cuvveeiiei i s i a e anneanens 183
10.2.5 (O SIS o [E=1 1 =Y o) o () PP 184
10.2.6 OS_GetEventsSOCCUITEA() tuvviriiiiire i i s ae e a e e e ane e anneaneans 186
10.2.7 (O S O[T [=T o) =] () PP 187
11 EVENT ODJECES ..ooeiiiiiiiiiiie ettt ettt e e e e e e e e e e e e e 189
11.1 |l o o 18 T o o TP 190
11.2 7N 2 I 11 o o o 1= 191
11.2.1 OS _EVENT _CrEat() cvuueiueitiititieetiateatiie et stea et s et e e s e e e e e e e taneaaens 192
11.2.2 OS _EVENT _CreateEX() e iue ittt et e et e e aaeas 193
11.2.3 O _EVENT _Waait() vvutiutitentitiiitntrteie sttt s tee e tea e e et s e e e s e e e e neaneanens 194
11.2.4 OS_EVENT_WaitTimed() «oveveieiiiiiiii it s st see e s senaenaaneaneeaens 195
11.2.5 (O I YA = AV Y= () T PP 197
11.2.6 O _EVENT _RESEE() tutiutitiitiitiiiie ettt e a e aaeeaeas 198
11.2.7 O _EVENT _PUISE() ettt et sttt et e e e e e e aaens 199
11.2.8 (O I YA =\ 1= () I PP 200
11.2.9 OS _EVENT _DIEEE() ttutitiitiitiiii sttt ettt e e aeaaens 201
11.2.10 OS_EVENT_SetResetMode() .ivviiiiiiiiiii i i i e e e e e aaes 202
11.2.11 OS_EVENT _GetReSetMOdE() «iviiiiiiiiii ittt e 203
11.3 Examples of using event ObJeCES....iviiiiiiiiii i e 204
11.3.1 Activate a task from interrupt by an event object ... 204
11.3.2 Activating multiple tasks using a single event object ... 205
12 Heap type Memory ManageMENT.........ccouuuuuuiiaaieiiia e eeeetiia e e eeeari e e e eeesenaaeeeeesnnnnns 207
12.1 |l o Yo 18 T o o T PP 208
12.2 7N o I 11 o o o 1= 209
12.2.1 (01T 1 4 1= 11 Lo o () T PP 210
12.2.2 (O T =TT T PP 211
12.2.3 (O T =T=1 oYl (PP 212
13 Fixed block Size MemOry POOIS........cooiiiiiiiiiii e 213
13.1 INErOdUCEION e s 214
13.2 7N o I 8 o o T 1= 215
13.2.1 (O I] =1 O Y= | =T () T PP 216
13.2.2 OS _MEMF _DIEEE() tutirtitiititi ittt 217
13.2.3 (@RI 1 =1 o A 1T Yol () P PP PRPRP 218
13.2.4 OS_MEMF_AHOCTIMEA() tttutintineititieineesensae sttt saae e sseassanreseansnraneanennans 219
13.2.5 OS_MEMF_REQUESE() + vt tttntintineitiitetaeeestetaaeeerteaseas e sseaseaeaeeneaseneaneanens 220
13.2.6 OS _MEMF _REICASE() et uttuttutasitatienstrsee et tteataaneereaseatsereassnsaaeenerannanens 221
13.2.7 OS _MEMF _Fre@BIOCK() cvuueutsitttitessetaae et iteassae et steassansneenenssnneaeeneasannanens 222
13.2.8 OS_MEMF_GEtNUMBIOCKS() +uttutiutitititieetiitentaae et vtenseae e sensenesaeeneasannanens 223
13.2.9 OS_MEMF_GEtBIOCKSIZE() tvtuttueitiititie ittt staasenesieaseas e sreansnsaneaneanens 224
13.2.10 OS_MEMF_GEetNUMFIreeBIOCKS() «uturititiniitiitiie it iensaie it rennenesneeeasennaaeanens 225
13.2.11 OS_MEMF_GEtMaXUSEA() tuvturirtiriinitieieitentaae et steasane e ssansenesieensasannaneanens 226
13.2.12 OS_MEMF _ISINPOOI() +tuttttitititissiatatteesenssaese e saae e easensaae e asennaaeanens 227

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

] = T TP PPPPRRR 229
14.1 ol e T [0 T o o 230
14.1.1 SYSEEM SEACK 1t e 230
14.1.2 TASK SEACK . e 230
14.1.3 INterrupt SEACK v e 230
14.1.4 Stack size calculation ... e 231
14.1.5 StACK-ChECK .. e 231
14.2 APT fUNCEIONS Lt e 232
14.2.1 O I CT=]) w=Tol 14 = =] =T () P 233
14.2.2 (O IR 1= i = [ol 6] =1 () I PP 234
14.2.3 (O ST C1=] 0 =T ol 14S] o = [oL =T () S 235
14.2.4 L@ ST €11) = Tol 1 U 1= =T | () TP 236
14.2.5 OS_GetSySStaCKBaSE() «evurrrireiiiiiiiiie ittt e e 237
14.2.6 OS _GetSYSStaCKSIZE() «iutiriitiie it 238
14.2.7 OIS €11 0o V1 S) o= To 1S o= Lol =T () T 239
14.2.8 OIS €11 0o VZ=10] =T (U =T [240
14.2.9 OS_GetINtStacKBasE() tueierrriiieiii it rar s s rraaaeaeaare e 241
14.2.10 OS_GetIntStackSiZe() vovurriii i 242
14.2.11 OS_GetIntStackSPace (). o uii i e 243
14.2.12 OS_GetIntStacklUsSed() ..oieiiriiiiiiiiiiiii i s e eaaas 244

T [T ¢ AT o] £ TP 245
15.1 What are InterrUPES? o e 246
15.2 INterrUpt IateNCY v e 247
15.2.1 Causes of interrupt 1atenCiescvii i 247
15.2.2 Additional causes for interrupt latenCies......coovviiiiiiii e 247
15.3 Zero interrupt [atenCy .o e 249
15.4 High / [ow priority interruptsc.oiiiii i e 250
15.4.1 Using OS functions from high priority interrupts.........coooiiiiiiiii i, 250
15.5 Rules for interrupt handlers.o e 252
15.5.1 LT =T =T =1 I U] =T P 252
15.5.2 Additional rules for preemptive multitasking........c.ccoiviiiiiiiiii e 252
15.6 APT fUNCEIONS L e 253
15.6.1 (O ST 0= 1|1 55] 2 () I PP 254
15.6.2 OS_CalINESEADIEISR() euueritteiie it ettt et ettt e e e e re e e e e eaeaeaneenn 255
15.6.3 OS _ENterInterrupl() cvveeeiiee i e 256
15.6.4 L@ ST =T LV g =] o oy o) o () 257
15.7 Enabling / disabling interrupts from C.......ccoiiiiiiiiiiir e 258
15.7.1 OS_INCDI() / OS_DECRI() ttuuttueieiniataieee et aeae et ae e aee e e seaeeneeaeaneaeeneanens 259
15.7.2 OS_DI() / OS_EI() / OS_RESEOIrEI() . euuiruirneenertietiereeneeteetiesieeeeneeneenenneenns 260
15.8 Definitions of interrupt control macros (in RTOS.h).....cooiiiiiiiiiiiieeee, 261
15.9 Nesting interrupt roULINES ..o 262
15.9.1 OS_EnterNestableINterrupt()...ccoverieiiiiiiiiiii i e e a s 263
15.9.2 OS_LeaveNestableINterrupt() ..o e 264
15.9.3 L@ ST o 1 g =T o B o1 () 265
15.10 Global interrupt enable / disable.......coviiiiiii 266
15.10.1 OS_INTERRUPT_MaskGIODal() ceveurieieiiiiiei ittt e e e e naee e 267
15.10.2 OS_INTERRUPT_UNMaskGIobal() .vveveeiiriiiiiii it i v vneeenaeenneas 267
15.10.3 OS_INTERRUPT_PreserveGIlobal() ..occuviiiii i i e enaeennea 268
15.10.4 OS_INTERRUPT_PreserveAndMaskGlobal()ccovviiiiiiiiiiiiiiiic i cieenaea 269
15.10.5 OS_INTERRUPT_RestoreGIobal()...ioveeiiiiiiiii i i e niae e e 269
15.11 Non-maskable interrupts (NMIS) ...c.oiiiiiiiiiiii e 270

G O 1 (o= =T (] RS 271
16.1 INErOdUCHION . e 272
16.2 APT fUNCHIONS L. e 273
16.2.1 (O ST = a1 =] o 2 =To [To] oY () T PR 274
16.2.2 OS _LeaVEREGION() ettt ittt st a e e e e 275

17 TiME MEASUIEIMENTeitiiiiiiiieeeee e e e e e e e eeee et eeeeeeeataa e e e e e e e e eeeeeeeeeeeeessensssnnn e aaaaaeeaaeeeeees 277

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

16

17.1 I OdUCHION Lt e 278
17.2 LOW-resolution mMeasuUremMENt ... i e e 279
17.2.1 AP fUNCHIONS ¢ttt e 280
30 I R © T 1= ol 2 1= () IS P 281
10 B A © | Y 1= ol [0 017G 2 () IS P 282
17.3 High-resolution measurementooiiiiiii i e 283
17.3.1 AP fUNCHIONS ¢ttt e 284
17.3.1.1 OS_TimiNg_SEart() cuueeiieiiiiiiii i e e es 285
17.3.1.2 OS_TimMiNg_ENd() . cceiieiiiiiiiiiiii i e e e 286
3G T G R @ LT I [11 T T = o U =] () P 287
17.3.1.4 OS_TimMiNg_GeLCYCIES() svuuriiiiiiiiiiii it as e s se s aaeaneaens 288
17.4 EX AL e e 289
17.5 Micro second precise system time......oooiiiiiiii 291
17.5.1 AP fUNCHIONS ¢ttt e e 291
17.5.2 (OIS 1= N 0 g T V=] (R PP 292
17.5.3 (OIS €=y N g g T U= G Y () PP 293
17.5.4 OS _CONfIG SYSTIMEBI() ettt et et e e e e e e e eeanenens 294
17.5.4.1 PfGetTIimMErCYCIES() tuvueinitiit ittt e e e e e e e aaeneanens 294
17.5.4.2 pfGetTimerIntPending() «.coeoeiieii it e e aeeas 294
17.5.4.3 EXAMPI ittt 295
18 SyStemM VariabIES........ooveieiiiiieie e 297
18.1 INErOdUCEION e e 298
18.2 TiME Variables ..o e s 299
18.2.1 (@] ST 1 o] o - 1 PP 299
18.2.2 (O 1T €] 1o oY= PR 11 2. 1= 299
18.2.3 (O LI €] 1o oY= T IR 1T 0 4 =] S 299
18.3 OS internal variables and data-structuresooviiiiiiiiiiii e 300
19 SYSEIM TICK. .. e e e e e e e 301
19.1 |l o Yo 18 T o o T PP 302
19.2 LI Ll G = Lo 1 =T PP 303
19.2.1 Y 2 11 o o 1= 303
L s R © Y I O S o =1 o o =T () 304
19.2.1.2 OS_TICK _HaNAIEEX() uerueeineinereiieinneransasesseennesanssnesnnsasesanssnesnnssnernnennsrnns 305
19.2.1.3 OS_TICK_HandleNOHOOK() «iiiriiiiiiiiii i i st e i ee e aes 306
19.2.1.4 OS_TICK_CONFIG() tttrrrrnrrnernnereinnsaneianssneranssnnranssesansrnesansrneransrnesaerneenns 307
19.3 Hooking into the system ticK......coiiiiiiii 308
19.3.1 Y o 11 o o o 1P 308
19.3.1.1 OS_TICK_AdAHOOK() trerueiiniiieiie i siesseesesasesesanssnsanssanssnernnsanesnnanneenes 309
19.3.1.2 OS_TICK_ReEMOVEHOOK() turiiiitiiiiiii i i e e e e rae e e aas 310
19.4 QLI LT3 U o] o o S 311
19.4.1 L@ T e 1 1= PP 311
19.4.2 Callback FUNCHION ... s i e eeaeans 312
19.4.3 PN o B 11 Vo o 1= PP 313
19.4.3.1 OS_GetNUMIAIETICKS() turviriiiiieiiiit it ite s ae e s rars s e e ranerneaaneanees 314
I T © LY Yo [U1y T 1= TP P 315
19.4.3.3 OS_StartTickIeSSMOAE() cvuuuiiriiii it ar e ane e aaneanens 316
19.4.3.4 OS_StopTicKIESSMOAE() . ueiuriiriiit ittt i rr e ae e aae e aneanens 317
19.4.4 Frequently Asked QUESTIONS ... cuiiii it i e s e e eeeaneans 318
20 Configuration of target SYyStem (BSP)ccoiiiiiiiiieiiiieei e 319
20.1 |l e Yo 18 T o o T PP 320
20.2 Hardware-specifiC rOULINES .. .ciiiiiii i e 321
20.2.1 L@ TN o 1 =T (PP 321
20.3 Configuration defiNeS ... i 323
20.4 HOW t0 Change SettingsSciiiiiiii i i e e e 324
20.4.1 Setting the system frequency OS_FSYS ... 324
20.4.2 Using a different timer to generate the tick-interrupts for embOS 324
20.4.3 Using a different UART or baudrate for embOSViewccoviiiiiiiiiiiiiiiicinen, 324

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

20.4.4 Changing the tick freqQUENCYe i e 324
20.5 STOP / HALT / IDLE MOGES « vttt ittt e ettt et e et e e et e e e e e s e eneaaan 326
21 PIOTIING et 327
21.0.1 APT fUNCHIONS ettt i e e 328
21.0.1.1 OS_STAT _SAmMPIE() ceiireiitiiiiiti i it i i ar et rar s e e e aeaaneaneans 329
21.0.1.2 OS _STAT _GEtLOAA() tutiriiriitiitiiiiiitii ittt e e e e eas 330
21.0.1.3 Sample application for OS_STAT_Sample() and OS_STAT_GetLoad()............ 331
21.0.1.4 OS_AddLoadMeasuremMeENt() . ioeueiieeireiieiireieianesiesanereranereranerernneaeannenes 332
21.0.1.5 OS_GetLoadMeasuremMent() vuviu i i ririre st areaaae e 333
B I Y S T © 1 @ = U o - T [PR 334
21.0.1.7 OS _STAT _ENADBIE() vttt it 335
21.0.1.8 OS_STAT _DiSable() «iuiiiiiiiiiiiiii i e 336
21.0.1.9 OS_STAT_GetTaskEXECTIME() «iuuitiiiiii it e it r e aee e aaneas 337
22 embOSView: Profiling and analyzingcccuuueeeiiieiiiiiiiiieeee e 339
22.1 L@ = YT 340
22.2 JLIE 13 S 113 o4 o (o) P 341
22.3 System variables WindOW.....c.oiiiiiii i e 342
22.4 Sharing the SIO for terminal I/O ... e 343
22.5 Y o I 11 U o o 1= 344
22.5.1 OIS Y=1 aTe 1] o 1 T 1 () 345
22.5.2 OS_SEetRXCAlIDACK() ettt ittt e e 346
22.6 USING the AP IraCe .ottt e e e e aaea s 347
22.7 Trace filter setup fUNCHIONS...oo i s 349
22.8 Y o I 11 U o 1= 350
22.8.1 (OIS I =Tl =Y = g =1 0] L= () I 351
22.8.2 O _TraceDisable() e ettt e 352
22.8.3 OS _TraCceENabl Al «vei i e 353
22.8.4 OS_TraceDisableAl () uuiiii i 354
22.8.5 OS _TraCceENableld() . e e ittt e 355
22.8.6 OS_TraceDisableld() .ouuuii it i e 356
22.8.7 OS_TraceEnableFilterId() . .uuui i e e e 357
22.8.8 OS_TraceDisableFilterId () couuv i i i e e e 358
22.9 Trace record fUNCHIONS .. ovu i e e e e ranannes 359
22.10 APT fUNCEIONS Lt 360
220 N O T R © T I =Tl =)V o o [() T PP 361
22.10.2 OO TraCEPEI() ittt ittt ittt 362
22.10.3 OS_TracCeData() «ivvveeeieiiitiitii i 363
22.10.4 OS _TraceDataPtr() tuuveiieii it e e 364
22.10.5 OS _TraCU32Pr() vuvuueiuiitiitiiti ettt 365
22.11 Application-controlled trace exampleooviiiiiiiii i 366
22.12 User-defined fUNCLIONS ..iiviiiiii i i e e e aaeas 367
23 Performance and rESOUICE USAQE......ccuuuuuuuuuuuiaaaaeaaaaaaeeeeeeeeeesesrnnnnaaaaaaaaaaaasaeeeeeeesnnes 369
23.1 1l o o [6 T o o T PP 370
23.2 V1T g Yo aV o =To LU] (=T 0 g 1= o 16T 371
23.3 o< o (o o = L= 372
23.4 BenNChmMaArKiNg .. 372
23.4.1 Measurement with port pins and 0scilloSCope.....ccoiviiiiiiiiiiiiiii 373
23.4.1.1 OSCilloSCOPE @NalYSiS vttt i i e 374
23.4.1.2 Example measurements AT91SAM7S, ARM code in RAM.......ccviiiiiiiiiiennen, 375
23.4.1.3 Example measurements AT91SAM7S, Thumb code in FLASHooeeeee. 376
23.4.1.4 Measurement with high-resolution timer ... 377
2 B L= o 8 o o [T RS SSUPPPPPPPPRPPPPRTP 379
24.1 N8 T = =T o e PP 380
24.1.1 OS _DEBUG _LEVEL ..utiiiiiiiii ittt e ettt ettt a e e e e e e e neaes 380
24.2 IS o) =T o o ol ol Yo 1= 381

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

18

24.3 Application defined error COAESuiiiiiiiii e e e e 385
25 Supported developmeNnt tOO0IScooi i 387
25.1 L@ Y7 YT L P 388
12 T I 101 = 11 0] o P UPRRRRR 389
27 Source code of kernel and lbrary ... 391
27.1 |l o Yo 18 T o o T PP 392
27.2 Building embOS lbraries ...ooiiiiii i e 393
27.3 Major compile time SWILCNES ..ot e 394
27.3.1 OS_RR_SUPPORTED ...utciitiiiievie e s e s aaeesaeesanee s e e s e s sne s nnnesnneennes 394
28 FAQ (frequently asked QUESLIONS)uuuueuiiiiiieee ettt e e eeeeeneeeennees 395
PAS IR YU o] o[] ¢ AP P PR PTPTRR TP 397
29.1 (oY g w=Tot o1 s [o I U] o 0T o (N 398
B0 GlOSSAIY ...ttt et e et bbb e e e e e e e aeeeeeetarnannnnas 399

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

19

Chapter 1

Introduction to embOS

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 1 Introduction to embQOS

1.1 What is embOS

embOS is a priority-controlled multitasking system, designed to be used as an
embedded operating system for the development of real-time applications for a vari-
ety of microcontrollers.

embOS is a high-performance tool that has been optimized for minimal memory con-
sumption in both RAM and ROM, as well as high speed and versatility.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

21

1.2 Features

Throughout the development process of embOS, the limited resources of microcon-
trollers have always been kept in mind. The internal structure of the real-time oper-
ating system (RTOS) has been optimized in a variety of applications with different
customers, to fit the needs of industry. Fully source-compatible implementations of
embOS are available for a variety of microcontrollers, making it well worth the time
and effort to learn how to structure real-time programs with real-time operating sys-
tems.

embOS is highly modular. This means that only those functions that are required are
linked into an application, keeping the ROM size very small. The minimum memory
consumption is little more than 1 Kbyte of ROM and about 30 bytes of RAM (plus
memory for stacks). A couple of files are supplied in source code to make sure that
you do not loose any flexibility by using embOS and that you can customize the sys-
tem to fully fit your needs.

The tasks you create can easily and safely communicate with each other using a
number of communication mechanisms such as semaphores, mailboxes, and events.

Some features of embOS include:

e Preemptive scheduling:
Guarantees that of all tasks in READY state the one with the highest priority exe-
cutes, except for situations where priority inheritance applies.
Round-robin scheduling for tasks with identical priorities.
Preemptions can be disabled for entire tasks or for sections of a program.
Up to 4.294.967.296 priorities.
Every task can have an individual priority, which means that the response of
tasks can be precisely defined according to the requirements of the application.
e Unlimited number of tasks
(limited only by the amount of available memory).
e Unlimited number of semaphores
(limited only by the amount of available memory).
Two types of semaphores: resource and counting.
Unlimited number of mailboxes
(limited only by the amount of available memory).

e Size and number of messages can be freely defined when initializing mailboxes.
e Unlimited number of software timers
(limited only by the amount of available memory).
e Up to 32-bit events for every task.
e Time resolution can be freely selected (default is 1ms).
e Easily accessible time variable.
e Power management.
e Calculation time in which embOS is idle can automatically be spent in low-power

mode.
power-consumption is minimized.
e Full interrupt support:
Interrupts can call any function except those that require waiting for data,
as well as create, delete or change the priority of a task.
Interrupts can wake up or suspend tasks and directly communicate with tasks
using all available communication methods (mailboxes, semaphores, events).

e Disabling interrupts for very short periods allows minimal interrupt latency.

e Nested interrupts are permitted.

e embOS has its own interrupt stack (usage optional).

e Application samples for an easy start.

e Debug build performs runtime checks that catch common programming errors
early on.

e Profiling and stack-check may be implemented by choosing specified libraries.

e Monitoring during runtime is available using embOSView via UART, Debug Com-

munications Channel (DCC) and memory read/write, or else via Ethernet.
Very fast and efficient, yet small code.
Minimal RAM usage.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 1 Introduction to embQOS

e Core written in assembly language.
e API can be called from assembly, C or C++ code.
e Initialization of microcontroller hardware as sources (BSP).

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

23

Chapter 2

Basic concepts

This chapter explains some basic concepts behind embOS. It should be relativly easy
to read and is recommended before moving to other chapters.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

24 CHAPTER 2 Basic concepts

2.1 Tasks

In this context, a task is a program running on the CPU core of a microcontroller.
Without a multitasking kernel (an RTOS), only one task can be executed by the CPU
at a time. This is called a single-task system. A real-time operating system allows the
execution of multiple tasks on a single CPU. All tasks execute as if they completely
“own” the entire CPU. The tasks are scheduled for execution, meaning that the RTOS
can activate and deactivate each task according to its priority, with the highest prior-
ity task being executed in general.

2.1.1 Threads

Threads are tasks which share the same memory layout. Two threads can access the
same memory locations. If virtual memory is used, the same virtual to physical
translation and access rights are used.

The embOS tasks are threads; they all have the same memory access rights and
translation (in systems with virtual memory).

2.1.2 Processes

Processs are tasks with their own memory layout. Two processes cannot normally
access the same memory locations. Different processes typically have different
access rights and (in case of MMUs) different translation tables.

Processes are not supported by the present version of embOS.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

25

2.2 Single-task systems (superloop)

The classic way of designing embedded systems does not use the services of an
RTOS, which is also called "superloop design". Typically, no real time kernel is used,
so interrupt service routines (ISRs) are used for the real-time parts of the application
and for critical operations (at interrupt level). This type of system is typically used in
small, simple systems or if real-time behavior is not critical.

Task level Interrupt level

Superloop

Time

ISR (nhested)

Typically, because no real-time kernel and only one stack is used, both program
(ROM) and RAM size for simple applications are smaller when compared to using an
RTOS. Of course, there are no inter-task synchronization problems with a superloop
application. However, superloops can become difficult to maintain if the program
becomes too large or uses complex interactions. As sequential processes cannot
interrupt themselves, reaction times depend on the execution time of the entire
sequence, resulting in a poor real-time behavior.

2.2.1 Advantages & disadvantages

Advantages

e Simple structure (for small applications)
e Low stack usage (only one stack required)

Disadvantages

No "delay" capability

Higher power consumption due to the lack of a sleep mode in most architectures
Difficult to maintain as program grows

Timing of all software components depends on all other software componts:
Small change in one place can have major side effects in other places

Defeats modular programming

e Real time behavior only with interrupts

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

26

CHAPTER 2 Basic concepts

2.2.2 Using embOS in super-loop applications

In a true superloop application, no tasks are used, so the biggest advantage of using
an RTOS cannot be used unless the application is converted to use multitasking.
However, even with just a single task, using embOS has the following advantages:

e Software timers are available
e Power saving: Idle mode can be used
e Future extensions can be put in a separate task

2.2.3 Migrating from superloop to multi-tasking

A common situation is that an application exists for some time and has been
designed as single task, super loop application. At a certain point, the disadvantages
of this approach lead to a decision to use an RTOS. The typical question is then: How
do I do this?

The easiest way is to take the start application that comes with the embQOS and put
your existing "superloop code" into one task. At this point you should also make sure
that the stack size of this task is sufficient. Later, additional functionality which is
added to the software can be put in one or more additional tasks; the functionality of
the super loop can also be distributed over multiple tasks.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

27

2.3 Multitasking systems

In a multitasking system, there are different ways of distributing the CPU time
amongst different tasks. This process is called scheduling.

Idle task

i Priority . >
| |
| |
I - - - I
, Low prio task High prio task | ISR
| |
OS_Start() 1 - 1
1 7] 1
1 P OS_EVENT_Wait() !
1 < 1
1 Interrupt 1 >
I < " g S|
| |
| |
| |
| |
1 Interrupt (Rx) | .
Time 1 OS_EVENT_Set()
: P 0S_EVENT_Wait() :
1 1
1) !
| |
1 Interrupt (Tick) 1 >
| [~ |
| |
| |
1 1
0S_Delay() :
1 1
1 1
1 1
| |
| |
| |

Application level tasks Interrupt service

2.3.1 Task switches

There are two types of task switches, also called context switches: Cooperative and
preemptive task switches.
2.3.2 Cooperative task switch

A cooperative task switch is performed by the task itself. It requires the cooperation
of the task, hence the name. What happens is that the task blocks itself by calling a
blocking RTOS function such as 0S_Delay () Oor 0OS_WaitEvent ().

2.3.3 Preemptive task switch

A preemptive task switch is a task switch caused by an interrupt. Typically some
other high priority task becomes ready for execution and, as a result, the current
task is suspended.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 2 Basic concepts

2.3.4 Preemptive multitasking

Real-time operating systems like embOS operate with preemptive multitasking. The
highest-priority task in the READY state always executes as long as the task is not
suspended by a call of any operating system function. A high-priority task waiting for
an event is signalled READY as soon as the event occurs. The event can be set by an
interrupt handler, which then activates the task immediately. Other tasks with lower
priority are suspended (preempted) as long as the high-priority task is executing.

A real-time operating system, such as embQOS, normally comes with a regular timer
interrupt to interrupt tasks at regular intervals and to perform task switches if timed
task switches are necessary.

Low priority task

Executing task is interrupted

ISR

ISR puts high priority
task in READY state;
Time task switch occurs

High priority task

Higher priority task
Is executed

Interrupted task
is completed

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

29

2.3.5 Cooperative multitasking

Cooperative multitasking requires all tasks to cooperate by using blocking functions.
A task switch can only take place if the running task blocks itself by calling a blocking
function such as 0s_Delay () or 0Ss_wait... (). If tasks do not cooperate, the system
“hangs”, which means that other tasks have no chance of being executed by the CPU
while the first task is being carried out. This is illustrated in the diagram below. Even
if an ISR makes a higher-priority task ready to run, the interrupted task will be
resumed and complete before the task switch is made.

Low priority task

Executing task is interrupted

ISR
ISR puts high priority
task in READY state

Interrupted task
is completed

Time

High priority task

Higher priority task
Is executed

A pure cooperative multi-tasking system has the disadvantage of longer reaction
times when high priority tasks become ready for execution. This makes their usage in
embedded real-time systems uncommon.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

30 CHAPTER 2 Basic concepts

2.4 Scheduling

There are different algorithms that determine which task to execute, called
schedulers. All schedulers have one thing in common: they distinguish between tasks
that are ready to be executed (in the READY state) and other tasks that are sus-
pended for some reason (delay, waiting for mailbox, waiting for semaphore, waiting
for event, and so on). The scheduler selects one of the tasks in the READY state and
activates it (executes the body of this task). The task which is currently executing is
referred to as the running task. The main difference between schedulers is the way
they distribute computation time between tasks in the READY state.

2.4.1 Round-robin scheduling algorithm

With round-robin scheduling, the scheduler has a list of tasks and, when deactivating
the running task, activates the next task that is in the READY state. Round-robin can
be used with either preemptive or cooperative multitasking. It works well if you do
not need to guarantee response time. Round-robin scheduling can be illustrated as
follows:

All tasks share the same priority; the possession of the CPU changes periodically
after a predefined execution time. This time is called a time slice, and may be defined
individually for every task.

2.4.2 Priority-controlled scheduling algorithm

In real-world applications, different tasks require different response times. For exam-
ple, in an application that controls a motor, a keyboard, and a display, the motor usu-
ally requires faster reaction time than the keyboard and display. While the display is
being updated, the motor needs to be controlled. This makes preemptive multitask-
ing essential. Round-robin might work, but because it cannot guarantee a specific
reaction time, an improved algorithm should be used.

In priority-controlled scheduling, every task is assigned a priority. Depending on
these priorities, one task gets chosen for execution according to one simple rule:

Note: The scheduler activates the task that has the highest priority of all
tasks in the READY state.

This means that every time a task with a priority higher than the running task
becomes ready, it immediately becomes the running task, thus the previous task gets
preempted. However, the scheduler can be switched off in sections of a program
where task switches are prohibited, known as critical regions.

embOS uses a priority-controlled scheduling algorithm with round-robin between
tasks of identical priority. One hint at this point: round-robin scheduling is a nice fea-
ture because you do not need to decide whether one task is more important than
another. Tasks with identical priority cannot block each other for longer than their
time slices. But round-robin scheduling also costs time if two or more tasks of identi-
cal priority are ready and no task of higher priority is ready, because execution con-
stantly switch between the identical-priority tasks. It is more efficient to assign a
different priority to each task, which will avoid unnecessary task switches.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

31

2.4.3 Priority inversion / priority inheritance
The rule the scheduler obeys is:
Activate the task that has the highest priority of all tasks in the READY state.

But what happens if the highest-priority task is blocked because it is waiting for a
resource owned by a lower-priority task? According to the above rule, it would wait
until the low-priority task is resumed and releases the resource.

Up to this point, everything works as expected.

Problems arise when a task with medium priority becomes ready during the execu-
tion of the higher prioritized task.

When the higher priority task is suspended waiting for the resource, the task with the
medium priority will run until it finishes its work, because it has a higher priority than
the low-priority task.

In this scenario, a task with medium priority runs in place of the task with high prior-
ity. This is known as priority inversion.

With Priority Inversion

Low priority task Medium priority task High priority task

OS_Use()
Interrupt activates high prio task
>

»

OS_Use()

A

OS_Delay()

<&
l

rime |1

OS_Unuse()

OS_Unuse()

The low priority task claims the semaphore with OS_Use(). An interrupt activates the
high priority task, which also calls OS_Use().

Meanwhile a task with medium priority becomes ready and runs when the high prior-
ity task is suspended.

The task with medium priority eventually calls OS_Delay() and is therefore sus-
pended. The task with lower priority now continues and calls OS_Unuse() to release
the resource semaphore. After the low priority task releases the semaphore, the high
priority task is activated and claims the semaphore.

To avoid this situation, embOS temporarily raises the low-priority task to high priority
until it releases the resource. This unblocks the task that originally had the highest
priority and can now be resumed. This is known as priority inheritance.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

32 CHAPTER 2 Basic concepts

With Priority Inheritance

Low priority task Medium priority task High priority task

OS_Use()
Interrupt activates high prio task
>

P

Priority inheritance
0OS_Use()

A

T| me OS_Unuse() o

-os_Unuseo

A

With priority inheritance, the low priority task inherits the priority of the waiting high
priority task as long as it holds the resource semaphore. The lower priority task is
activated instead of the medium priority task when the high priority task tries to
claim the semaphore.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

33

2.5 Communication between tasks

In a multitasking (multithreaded) program, multiple tasks and ISRs work completely
separately. Because they all work in the same application, it will sometimes be nec-
essary for them to exchange information with each other.

2.5.1 Periodic polling

The easiest way to communicate between different pieces of code is by using global
variables. In certain situations, it can make sense for tasks to communicate via glo-
bal variables, but most of the time this method has disadvantages.

For example, if you want to synchronize a task to start when the value of a global
variable changes, you must continually poll this variable, wasting precious computa-
tion time and energy, and the reaction time depends on how often you poll.

2.5.2 Event-driven communication mechanisms

When multiple tasks work with each other, they often have to:

e exchange data,
e synchronize with another task, or
e make sure that a resource is used by no more than one task at a time.

For these purposes embOS offers mailboxes, queues, semaphores and events.

2.5.3 Mailboxes and queues

A mailbox is a data buffer managed by the RTOS and is used for sending a message
to a task. It works without conflicts even if multiple tasks and interrupts try to access
the same mailbox simultaneously. embOS activates any task that is waiting for a
message in a mailbox the moment it receives new data and, if necessary, switches to
this task.

A queue works in a similar manner, but handles larger messages than mailboxes, and
each message may have an individual size.

For more information, refer to the chapters Mailboxes on page 139 and Queues on
page 159.

2.5.4 Semaphores

Two types of semaphores are used for synchronizing tasks and to manage resources
of any kind. The most common are resource semaphores, although counting sema-
phores are also used. For details and samples, refer to the chapters Resource sema-
phores on page 111 and Counting Semaphores on page 125.

2.5.5 Events

A task can wait for a particular event without consuming any calculation time. The
idea is as simple as it is convincing, there is no sense in polling if we can simply acti-
vate a task the moment the event it is waiting for occurs. This saves processor cycles
and energy and ensures that the task can respond to the event without delay. Typical
applications for events are those where a task waits for some data, a pressed key, a
received command or character, or the pulse of an external real-time clock.

For further details, refer to the chapters Task events on page 177 and Event objects
on page 189.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

34 CHAPTER 2 Basic concepts

2.6 How task switching works

A real-time multitasking system lets multiple tasks run like multiple single-task pro-
grams, quasi-simultaneously, on a single CPU. A task consists of three parts in the
multitasking world:

e The program code, which typically resides in ROM
e A stack, residing in a RAM area that can be accessed by the stack pointer
e A task control block, residing in RAM.

The task’s stack has the same function as in a single-task system: storage of return
addresses of function calls, parameters and local variables, and temporary storage of
intermediate results and register values. Each task can have a different stack size.
More information can be found in chapter Stacks on page 229.

The task control block (TCB) is a data structure assigned to a task when it is created.
The TCB contains status information for the task, including the stack pointer, task
priority, current task status (ready, waiting, reason for suspension) and other man-
agement data. Knowledge of the stack pointer allows access to the other registers,
which are typically stored (pushed onto) the stack when the task is created and each
time it is suspended. This information allows an interrupted task to continue execu-
tion exactly where it left off. TCBs are only accessed by the RTOS.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

2.6.1

35

Switching stacks

The following diagram demonstrates the process of switching from one stack to
another.

Task O Task n
Task Control Stack Task Control Stack
block block
variables variables
temp. storage temp. storage
ret. addresses ret. addresses
CPU CPU
registers registers
SP > SP >
Free Stack Free Stack
area area
\ /
\ /
\ /
\ /
\ /

CPU

The scheduler deactivates the task to be suspended (Task 0) by saving the processor
registers on its stack. It then activates the higher-priority task (Task n) by loading
the stack pointer (SP) and the processor registers from the values stored on Task n's
stack.

Deactivating a task

The scheduler deactivates the task to be suspended (Task 0) as follows:

1. Save (push) the processor registers on the task's stack.
2. Save the stack pointer in the Task Control Block.

Activating a task

The scheduler activates the higher-priority task (Task n) by performing the sequence
in reverse order:

1. Load (pop) the stack pointer (SP) from the Task Control Block.
2. Load the processor registers from the values stored on Task n's stack.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

36 CHAPTER 2 Basic concepts

2.7 Change of task status

A task may be in one of several states at any given time. When a task is created, it is
placed into the READY state.

A task in the READY state is activated as soon as there is no other task in the READY
state with higher priority. Only one task may be running at a time. If a task with
higher priority becomes READY, this higher priority task is activated and the pre-
empted task remains in the READY state.

The running task may be delayed for or until a specified time; in this case it is placed
into the WAITING state and the next-highest-priority task in the READY state is acti-
vated.

The running task might need to wait for an event (or semaphore, mailbox or queue).
If the event has not yet occurred, the task is placed into the waiting state and the
next-highest-priority task in the READY state is activated.

A non-existent task is one that is not yet available to embOS; it either has been ter-
minated or was not created at all.

The following illustration shows all possible task states and transitions between
them.

Not existing

OS_CreateTask()

OS_CreateTaskEXx() OS_Terminate()

Ready Running
API class such as API class such as
OS_Delay() OS_Signal...() or
OS_Wait_...() delay expiration
Waiting

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

37

2.8 How the OS gains control

When the CPU is reset, the special-function registers are set to their default values.
After reset, program execution begins. The PC register is set to the start address
defined by the start vector or start address (depending on the CPU). This start
address is usually in a startup module shipped with the C compiler, and is sometimes
part of the standard library.

The startup code performs the following:

e Loads the stack pointer(s) with the default values, which is for most CPUs
the end of the defined stack segment(s)

e Initializes all data segments to their respective values

e Calls the main () function.

The main() function is the part of your program which takes control immediately
after the C startup. Normally, embOS works with the standard C startup module with-
out any modification. If there are any changes required, they are documented in the
CPU & Compiler Specifics manual of the embOS documentation.

With embQOS, the main () function is still part of your application program. Essentially,
main() creates one or more tasks and then starts multitasking by calling
0S_Start (). From this point, the scheduler controls which task is executed.

Startup code
main ()

—OS_IncDI()

—OS_InitKern()

—OS_InitHW()

—Additional initialization code;
creating at least one task.

—0S_Start()

The main() function will not be interrupted by any of the created tasks because
those tasks execute only following the call to os_start (). It is therefore usually rec-
ommended to create all or most of your tasks here, as well as your control structures
such as mailboxes and semaphores. Good practice is to write software in the form of
modules which are (up to a point) reusable. These modules usually have an initializa-
tion routine, which creates any required task(s) and control structures.

A typical main () function looks similar to the following example:

Example

/~k~k~k~k~k~k~k**~k********~k~k~k~k~k~k*********~k~k~k~k*************************************
*
* main
*

Rk Ik I I I Sk I I I S S R R S R I R R Ik I R Rk S kI I I

*/

void main(void) {
0S_TIncDI();
OS_InitKern() ; /* Initialize OS (should be first !) */
OS_InitHW() ; /* Initialize Hardware for OS (in RtosInit.c) */
/* Call Init routines of all program modules which in turn will create */
/* the tasks they need ... (Order of creation may be important) */
MODULE1l_Init () ;
MODULE2_Init () ;
MODULE3_TInit (
(
(

MODULE4_Init

MODULES5_Init

0S_Start () ; /* Start multitasking */
}

With the call to os_start (), the scheduler starts the highest-priority task created in
main ().
Note that os_start () is called only once during the startup process and does not
return.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

38 CHAPTER 2 Basic concepts

2.9 Different builds of embOS

embOS comes in different builds or versions of the libraries. The reason for different
builds is that requirements vary during development. While developing software, the
performance (and resource usage) is not as important as in the final version which
usually goes as release build into the product. But during development, even small
programming errors should be caught by use of assertions. These assertions are
compiled into the debug build of the embOS libraries and make the code a little
bigger (about 50%) and also slightly slower than the release or stack-check build
used for the final product.

This concept gives you the best of both worlds: a compact and very efficient build for
your final product (release or stack-check build of the libraries), and a safer (though
bigger and slower) build for development which will catch most common application
programming errors. Of course, you may also use the release build of embOS during
development, but it will not catch these errors.

2.9.1 Profiling

embOS supports profiling in profiling builds. Profiling makes precise information
available about the execution time of individual tasks. You may always use the profil-
ing libraries, but they require larger task control blocks, additional ROM (approxi-
mately 200 bytes) and additional runtime overhead. This overhead is usually
acceptable, but for best performance you may want to use non-profiling builds of
embOS if you do not use this feature.

2.9.2 List of libraries

In your application program, you need to let the compiler know which build of embQOS
you are using. This is done by defining a single identifier prior to including RT0OS.h.

o 0|4
|5 | o g | &
: e R (F|2|7F .
Name Define @ | 5 | = 2 = Description
83|33 |° |23
o o0 =3 o
o | = 5| o
Eéf;i?ee 0S_LIBMODE_XR Smallest fastest build.
Small, fast build, normally
Release OS_LIBMODE_R X | X |used for release build of
application.
Same as release, plus
Stack check | 0s_LIBMODE_S X X | X stack checking.
Stackcheck
plus profil- | 0S_LIBMODE_SP X | X X | X Sam_e_ as stack check, plus
ing profiling.
Debug 0S LIBMODE D N X | x Maximum runtime check-
- - ing.
Debug plus 0s LIBMODE DP | X | X |X X |x Maximum runtime check-
profiling - - ing, plus profiling.
Prilljuucﬁn Maximum runtime check-
trace ?o- OS_LIBMODE_DT [X [X |X |X |X |X |ing, plus tracing API calls
fiIing’ P and profiling.

Table 2.1: List of libraries

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

39

2.9.3 embOS functions context

Not all embQOS functions can be called from every place in your application. We need
to distinguish between Main (before the call of OS_Start()), Task, ISR and Software
timer.

Please consult the embOS API tables to be sure that an embQOS function is allowed to
be called from your execution context, e.g. from an ISR. The embOS debug build
helps you to check that you do not violate these rules.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

40

UMO01001 User & Reference Guide for embOS

CHAPTER 2 Basic concepts

© 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

41

Chapter 3
Working with embOS

This chapter gives some recommendations on how to use embOS in your applica-
tions. These are simply recommendations that we feel are helpful when designing
and structuring an application.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

42 CHAPTER 3 Working with embOS

3.1 General advice
- Avoid Round Robin if possible

- Avoid dynamically creating and terminating tasks

- Avoid nesting interrupts if possible

3.1.1 Timers or task

For periodic jobs you can use either a task or a software timer. An embOS software
timer has the advantage that it does not need its own task stack since it runs on the
system stack.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

43

Chapter 4

Tasks

This chapter explains some basic concepts related to tasks and embOS task API func-
tions. It should be relatively easy to read and is recommended before moving to
other chapters.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

44

4.1 Introduction

CHAPTER 4

Tasks

A task that should run under embOS needs a task control block (TCB), a stack, and a
task body written in C. The following rules apply to task routines:

e The task routine can either not take parameters (void parameter list), in which
case 0S_CreateTask() is used to create it, or take a single void pointer as
parameter, in which case 0S_CreateTaskEx () is used to create it.

e The task routine must not return.

e The task routine must be implemented as an endless loop or it must terminate

itself (see examples below).

4.1.1 Example of a task routine as an endless loop

/* Example of a task routine as an endless loop */
void Taskl (void) {
while (1) {
DoSomething () ; /* Do something */
0S_Delay (1) ; /* Give other tasks a chance */

}
}

4.1.2 Example of a task routine that terminates itself

/* Example of a task routine that terminates */

void Task2 (void) {
char DoSomeMore;
do {

DoSomeMore = DoSomethingElse();

/* Do something */

0S_Delay (1) ; /* Give other tasks a chance */

} while (DoSomeMore) ;
OS_TerminateTask (0) ;
}

/* Terminate yourself */

There are different ways to create a task; embOS offers a simple macro that makes
this easy and which is sufficient in most cases. However, if you are dynamically creat-
ing and deleting tasks, a function is available allowing “fine-tuning” of all parame-
ters. For most applications, at least initially, using the macro as in the sample start

project works fine.

UMO01001 User & Reference Guide for embOS

© 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

45

4.2 Cooperative vs. preemptive task switches

In general, preemptive task switches are an important feature of an RTOS. Preemp-
tive task switches are required to guarantee responsiveness of high-priority, time-
critical tasks. However, it may be desireable to disable preemptive task switches for
certain tasks in some circumstances. The default behavior of embOS is to always

allow preemptive task switches.

4.2.1 Disabling preemptive task switches for tasks of equal

priority

In some situations, preemptive task switches between tasks running at identical pri-
orities are not desireable. To inhibit time slicing of equal-priority tasks, the time slice
of the tasks running at identical priorities must be set to zero as in the example

below:

#include "RTOS.h"

#define PRIO_COOP 10
#define TIME_SLICE_NULL 0

OS_STACKPTR int StackHP[128],
OS_TASK TCBHP, TCBLP;

StackLP[128]; /* Task stacks */

/* Task-control-blocks */

/**/

static void TaskEx(void * pData)

while (1) {

0S_Delay ((OS_TIME) pDbata) ;

}
}

/***

*

* main
*

***/

int main(void) {

0OS_IncDI(); /* Initially disable interrupts */
O0S_InitKern() ; /* initialize OS */
OS_InitHW() ; /* initialize Hardware for OS */
/* You need to create at least one task before calling OS_Start() */

0S_CreateTaskEx (&TCBHP, "HP Task",
sizeof (StackHP),
0S_CreateTaskEx (&TCBLP, "LP Task",
sizeof (StackLP),

OS_Start();
return O;

}

PRIO_COOP, TaskEx, StackHP,
TIME_SLICE_NULL, (void*) 50);
PRIO_COOP, TaskEx, StackLP,
TIME_SLICE_NULL, (void*) 200);

/* Start multitasking */

4.2.2 Completely disabling preemptions for a task

This is simple: The first line of code should be 0S_EnterRegion() as shown in the

following sample:

void MyTask (void *pContext) {
OS_EnterRegion () ;
while (1) {

// Do something. In the code,

/* Disable preemptive context switches */

make sure that you call a blocking

// funtion periodically to give other tasks a chance to run.

}
}

Note: This will entirely disable preemptive context switches from that particular
task and will therefore affect the timing of higher-priority-tasks. Do not use this

carelessly.

UMO01001 User & Reference Guide for embOS

© 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

46 CHAPTER 4 Tasks

4.3 Extending the task context

For some applications it might be useful or required to have individual data in tasks
that are unique to the task.

Local variables, declared in the task, are unique to the task and remain valid, even
when the task is suspended and resumed again.

When the same task function is used for multiple tasks, local variables in the task
may be used, but cannot be initialized individually for every task.

embOS offers different options to extend the task context.

4.3.1 Passing one parameter to a task during task creation

Very often it is sufficient to have just one individual parameter passed to a task.
Using the OS_CREATETASK_EX () Or 0S_CreateTaskEx() function to create a task
allows passing a void-pointer to the task. The pointer may point to individual data, or
may represent any data type that can be held within a pointer.

4.3.2 Extending the task context individually at runtime

Sometimes it may be required to have an extended task context for individual tasks
to store global data or special CPU registers such as floating-point registers in the
task context.

The standard libraries for file I/0, locale support and others may require task-local
storage for specific data like errno and other variables.

embOS enables extension of the task context for individual tasks during runtime by a
call of 0S_ExtendTaskContext ().

The sample application file ExtendTaskContext.c delivered in the application sam-
ples folder of embOS demonstrates how the individual task context extension can be
used.

4.3.3 Extending the task context by using own task structures

When complex data is needed for an individual task context, the
OS_CREATETASK_EX () OrF 0OS_CreateTaskEx() functions may be used, passing a
pointer to individual data structures to the task.

Alternatively you may define your own task structure which can be used.

Note, that the first item in the task structure must be an embOS task control struc-
ture OS_TASK. This can be followed by any amount and type of additional data of dif-
ferent types.

The following code shows the example application start_Extended_0S_TASK.c which
is delivered in the sample application folder of embOS.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

47

/********‘k*‘k*‘k*‘k*‘k‘k*******‘k*‘k*‘k*‘k**‘k*****‘k‘k‘k*‘k*‘k*‘k‘k*******************

* SEGGER MICROCONTROLLER GmbH & Co KG *

* Solutions for real time microcontroller applications ¥*
R R R S R I I I R I I I I R R R I S R I I I I R R I S I S I

File : Start_Extended_OS_TASK.c

Purpose : Skeleton program for OS to demonstrate extended tasks
———————— END-OF-HEADER === === = = = = o e e e e e e e e
*/

#include "RTOS.h"

#include <stdio.h>

/xxx*x*%*% Define an own task structure with extended task context *****/
typedef struct {

OS_TASK Task; // OS_TASK must be the first element

OS_TIME Timeout; // Any other data may follow

char* pString;
} MY_APP_TASK;

/****** Varlables ********‘k*‘k*‘k*‘k**‘k*****‘k‘k‘k*‘k*‘k*‘k‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k‘k*/

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
MY_APP_TASK TCBHP, TCBLP; /* Task-control-blocks */

/********************'k*'k**

*

* Task function

*/

static void MyTask(void) {
char* pString;
OS_TIME Delay;

MY_APP_TASK* pThis;

pThis = (MY_APP_TASK*) 0OS_GetTaskID() ;
while (1) {
Delay = pThis->Timeout;

pString = pThis->pString;
printf (pString) ;
0S_Delay (Delay) :;

/******************~k~k~k~k~k~k***
*

* maln

*

***/

int main(void) {

0S_IncDI(); /* Initially disable interrupts */
0S_InitKern(); /* Initialize 0OS */
OS_InitHW() ; /* Initialize Hardware for OS */
/*

* Create the extended tasks just as normal tasks.

* Note that the first paramater must be of type OS_TASK

*/

OS_CREATETASK (&TCBHP.Task, "HP Task", MyTask, 100, StackHP);
OS_CREATETASK (&TCBLP.Task, "LP Task", MyTask, 50, StackLP);
/*

* Give task contexts individual data

*/

TCBHP.Timeout = 200;

TCBHP.pString "HP task running\n";

TCBLP.Timeout = 500;
TCBLP.pString = "LP task running\n";
0S_Start () ; /* Start multitasking */

return 0;

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

48 CHAPTER 4 Tasks

4.4 API functions

Routine Description 3 § % g
5 = P o
Adds a hook (callback) function to the
0S_AddOnTerminateHook () list of functions which are called when | X | X
a task is terminated.
OS_CREATETASK () Creates a task. X | X
0S_CreateTask () Creates a task. X | X
OS_CREATETASK_EX () Creates a task with parameter. X| X
0S_CreateTaskEx () Creates a task with parameter. X| X
oS Delay () Suspends the calling task for a speci- x| x

fied period of time.
Suspends the calling task until a spec-

0S_DelayUntil () ified time. X | X

0S._Delayus () Waits for the given time in microsec- x| x
onds

0S. ExtendTaskContext () Malfe global varlabl_e_s or processor x| x
registers task-specific.
Returns a pointer to the task control

0S_GetpCurrentTask () block structure of the currently run- X| X| X | X
ning task.

0OS_GetPriority () Returns the priority of a specified task | X| X | X| X

0S_GetSuspendCnt () Returns the suspension count. X X[X[X

0S. GetTaskID () R_eturns the ID of the currently run- x| x| x| x
ning task.

0S_GetTaskName () Returns the name of a task. X| X | X]| X

05 GetTimesliceRen () Returns the remaining time slice time X! x x
of a task.

0S._TsRunning () Exxamine whether OS_Start() was x| x| x| x
called.

0S. TsTask () Determines whether a task control X% x| x

block actually belongs to a valid task.
Decrements the suspend count of
OS_Resume () specified task and resumes the task, if X | X
the suspend count reaches zero.
Decrements the suspend count of
0S_ResumeAllSuspendedTasks () |specified task and resumes the task, if XX
the suspend count reaches zero.
Sets an initial suspension count for

0S_SetInitialSuspendCnt () newly created tasks XX X[X
0S_SetPriority () ﬁ(sa(sjlgtgzka specified priority to a speci- x| X
0S_SetTaskName () ,:‘Jlr?t\?vni:odlflcatlon of a task name at x| x| x| x
0S. SetTimeslice () A55|gn_s_a specified time slice value to x| x| x
a specified task.
0S_Start () Start the embOS kernel.
Suspends the specified task and incre-
0S_Suspend () ments a counter. X
0S._ SuspendAllTasks () Suspends all tasks except the running X% x| x

task.

Table 4.1: Task routine API list

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

Routine Description 52 @3
5 = P o
0S_TerminateTask () Ends (terminates) a task. X| X
0S_WakeTask () Ends delay of a task immediately. X| X[X
. Calls the scheduler to force a task
0S_Yield() . X
switch.

Table 4.1: Task routine API list

UMO01001 User & Reference Guide for embOS

© 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

50 CHAPTER 4 Tasks

441 OS_AddOnTerminateHook()

Description

Adds a handler function to a list of functions that are called when a task is termi-
nated.

Prototype

void 0OS_AddOnTerminateHook (OS_ON_TERMINATE_HOOK * pHook,
OS_ON_TERMINATE_FUNC * pfUser);

Parameter Description

Pointer to a variable of type 0S_ON_TERMINATE_HOOK which will
pHook be inserted into the linked list of functions to be called during
O0S_TerminateTask () .

Pointer to the function of type OS_TERMINATE_FUNC which shall
be called when a task is terminated.

Table 4.2: OS_AddOnTerminateHook() parameter list

pfUser

Additional Information

For some applications, it may be useful to allocate memory or objects specific to
tasks. For other applications, it may be useful to have task-specific information on

the stack.
When a task is terminated, the task-specific objects may become invalid.
A callback function may be hooked into 0S_TerminateTask() by calling

0S_AddOnTerminateHook () to allow the application to invalidate all task-specific
objects before the task is terminated.

The callback function of type 0S_ON_TERMINATE_FUNC receives the ID of the termi-
nated task as its parameter.

OS_ON_TERMINATE_FUNC is defined as:

typedef void OS_ON_TERMINATE_FUNC (OS_CONST_PTR OS_TASK * pTask);

Important

The variable of type OS_ON_TERMINATE_HOOK must reside in memory as a global or
static variable. It may be located on a task stack, as local variable, but it must not
be located on any stack of any task that might be terminated.

Example

OS_ON_TERMINATE_HOOK _OnTerminateHook; /* Stack-space */

void OnTerminateHookFunc (OS_CONST_PTR OS_TASK * pTask) {
// This function is called when OS_TerminateTask() is called.
if (pTask == &MyTask) {
free (MytaskBuffer) ;
}
}

main (void) {
0S_AddOnTerminateHook (& OnTerminateHook, OnTerminateHookFunc) ;

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

51

4.42 OS_CREATETASK()

Description

Creates a task.

Prototype
void OS_CREATETASK (OS_TASK * pTask,
char * pName,
void * pRoutine,
OS_PRIO Priority,
void * pStack) ;
Parameter Description
pTask Pointer to a task control block structure.
pName Pointer to the name of the task. Can be NULL (or 0) if not used.
pRoutine Pointer to a function that should run as the task body.
Priority of the task. Must be within the following range:
1 <= priority <= 28-1 = OxFF for 8/16-bit CPUs
Priority 1 <= pPriority <= 232-1 = OxFFFFFFFF for 32-bit CPUs

Higher values indicate higher priorities.

The type 0s_PRr10 is defined as 32-bit value for 32-bit CPUs and
8-bit value for 8- or 16-bit CPUs by default.

Pointer to an area of memory in RAM that will serve as stack area
pStack for the task. The size of this block of memory determines the size
of the stack area.

Table 4.3: OS_CREATETASK() parameter list

Additional Information

OS_CREATETASK () is @ macro which calls an OS library function. It creates a task and
makes it ready for execution by placing it into the READY state. The newly created
task will be activated by the scheduler as soon as there is no other task with higher
priority in the READY state. If there is another task with the same priority, the new
task will be placed immediately before it. This macro is normally used for creating a
task instead of the function call 0s_createTask() because it has fewer parameters
and is therefore easier to use.

OS_CREATETASK () can be called either from main () during initialization or from any
other task. The recommended strategy is to create all tasks during initialization in
main () to keep the structure of your tasks easy to understand.

The absolute value of priority is of no importance, only the value in comparison to
the priorities of other tasks matters.

OS_CREATETASK () determines the size of the stack automatically, using sizeof ().
This is possible only if the memory area has been defined at compile time.

Important

The stack that you define must reside in an area that the CPU can address as stack.
Most CPUs cannot use the entire memory area as stack and require the stack to be
aligned to a multiple of the processor word size.

The task stack cannot be shared between multiple tasks and must be assigned to one
task only. The memory used as task stack cannot be used for other purposes unless
the task is terminated.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

52 CHAPTER 4 Tasks

Example

OS_STACKPTR int UserStack[150]; /* Stack-space */
OS_TASK UserTCB; /* Task-control-blocks */

void UserTask (void) {
while (1) {
Delay (100);
}
}

void InitTask (void) {

OS_CREATETASK (&UserTCB, "UserTask", UserTask, 100, UserStack);
}

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

53

4.4.3 OS_CreateTask()

Description

Creates a task.

Prototype
void OS_CreateTask (OS_TASK * pTask,
char * pName,
OS_PRIO Priority,
voidRoutine * pRoutine,
void * pStack,
unsigned StackSize,
unsigned char TimeSlice);
Parameter Description
pTask Pointer to a task control block structure.
pName Pointer to the name of the task. Can be NULL (or 0) if not used.
Priority of the task. Must be within the following range:
1 <= priority <= 28-1 = OxFF for 8/16-bit CPUs
pPriority 1 <= pPriority <= 232-1 = OxFFFFFFFF for 32-bit CPUs
Higher values indicate higher priorities.
The type 0s_pPRr10 is defined as a 32-bit value for 32-bit CPUs and
as an 8-bit value for 8- or 16-bit CPUs by default.
pRoutine Pointer to a function that should run as the task body.
Pointer to an area of memory in RAM that will serve as stack area
pStack for the task. The size of this block of memory determines the size
of the stack area.
StackSize Size of the stack in bytes.
Time slice value for round-robin scheduling. Has an effect only if
other tasks are running at the same priority. TimeSlice denotes
TimeSlice the time in embOS timer ticks that the task will run before it sus-
pends, thus enabling another task with the same priority.
The time slice value must be in the following range:
0 <= TimeSlice <= 255.

Table 4.4: OS_CreateTask() parameter list

Additional Information

This function works the same way as 0S_CREATETASK (), except that all parameters of
the task can be specified.

The task can be dynamically created because the stack size is not calculated auto-
matically as it is with the macro.

A time slice value of zero is allowed and disables round-robin task switches (see
sample in chapter Disabling preemptive task switches for tasks of equal priority on
page 45).

Important

The stack that you define must reside in an area that the CPU can address as stack.
Most CPUs cannot use the entire memory area as stack and require the stack to be
aligned to a multiple of the processor word size.

The task stack cannot be shared between multiple tasks and must be assigned to one
task only. The memory used as task stack cannot be used for other purposes unless
the task is terminated.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

54

Example

CHAPTER 4 Tasks

/* Demo-program to illustrate the use of 0S_CreateTask */

OS_STACKPTR int StackMain[100], StackClock[50];

OS_TASK TaskMain, TaskClock;
OS_SEMA SemalCD;

void Clock(void) {
while(1l) {
/* Code to update the clock */
}
}

void Main (void) {
while (1) {
/* Your code */
}
}

void InitTask (void) {
OS_CreateTask (&TaskMain, NULL,
0S_CreateTask (&TaskClock, NULL,
}

UMO01001 User & Reference Guide for embOS

50,
100,

Main, StackMain, sizeof (StackMain), 2);
Clock, StackClock, sizeof (StackClock),2);

© 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

55

4.4.4 OS_CREATETASK_EX()

Description
Creates a task and passes a parameter to the task.
Prototype
void OS_CREATETASK_EX (OS_TASK * pTask,
char * pName,
void * pRoutine,
OS_PRIO Priority,
void * pStack,
void * pContext) ;
Parameter Description
pTask Pointer to a task control block structure.
pName Pointer to the name of the task. Can be NULL (or 0) if not used.
pRoutine Pointer to a function that should run as the task body.
Priority of the task. Must be within the following range:
1 <= priority <= 28-1 = OxFF for 8/16-bit CPUs
Priority 1 <= priority <= 232-1 = OxFFFFFFFF for 32-bit CPUs
Higher values indicate higher priorities.
The type 0s_pPrI0 is defined as a 32-bit value for 32-bit CPUs and
an 8-bit value for 8- or 16-bit CPUs per default.
Pointer to an area of memory in RAM that will serve as stack area
pStack for the task. The size of this block of memory determines the size
of the stack area.
pContext Parameter passed to the created task function.

Table 4.5: OS_CREATETASK_EX() parameter list

Additional Information

OS_CREATETASK_EX () is a macro calling an embOS library function. It works like
OS_CREATETASK () but allows passing a parameter to the task.

Using a void pointer as an additional parameter gives the flexibility to pass any kind
of data to the task function.

Example

The following example is delivered in the samples folder of embOS.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

56 CHAPTER 4 Tasks

/* __
File : Main_ TaskEx.c

Purpose : Sample program for embOS using OC_CREATETASK_EX

————————— END-OF-HEADER —— === === == — oo %/
#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

/‘k‘k‘k‘k‘k‘k‘k*‘k‘k*******‘k‘k‘k‘k‘k*‘k**‘k*******‘k‘k‘k‘k‘k*‘k**‘k***‘k*‘k*‘k*‘k*‘k*‘k‘k*‘k*‘k*‘k***/

static void TaskEx(void* pVoid) {
while (1) {
0S_Delay ((OS_TIME) pVoid);
}

/***
*

* maln

*
***/

int main(void) {

0S_IncDI(); /* Initially disable interrupts */
0S_InitKern() ; /* initialize 0OS */
OS_InitHW() ; /* initialize Hardware for OS */
/* You need to create at least one task before calling OS_Start() */

OS_CREATETASK_EX (&TCBHP, "HP Task", TaskEx, 100, StackHP, (void*) 50);
OS_CREATETASK_EX (&TCBLP, "LP Task", TaskEx, 50, StackLP, (void*) 200);
0S_SendString("Start project will start multitasking !\n");

0S_Start () ; /* Start multitasking */
return O;

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

57

4.4.5 OS_CreateTaskEx()

Description

Creates a task and passes a parameter to the task.

Prototype
void OS_CreateTaskEx (OS_TASK * pTask,
char * pName,
OS_PRIO Priority,
voidRoutine * pRoutine,
void * pStack,
unsigned StackSize,
unsigned char TimeSlice,
void * pContext) ;
Parameter Description
pTask Pointer to a task control block structure.
pName Pointer to the name of the task. Can be NULL (or 0) if not used.
Priority of the task. Must be within the following range:
1 <= priority <= 28-1 = OXFF for 8/16-bit CPUs
pPriority 1 <= pPriority <= 232-1 = OxFFFFFFFF for 32-bit CPUs
Higher values indicate higher priorities.
The type 0s_pPRr10 is defined as a 32-bit value for 32-bit CPUs and
an 8-bit value for 8- or 16-bit CPUs per default.
pRoutine Pointer to a function that should run as the task body.
Pointer to an area of memory in RAM that will serve as stack area
pStack for the task. The size of this block of memory determines the size
of the stack area.
StackSize Size of the stack in bytes.
Time slice value for round-robin scheduling. Has an effect only if
other tasks are running at the same priority. TimeSlice denotes
TimeSlice the time in embOS timer ticks that the task will run until it sus-
pends; thus enabling another task with the same priority.
The time slice value must be in the following range:
0 <= TimeSlice <= 255.
pContext Parameter passed to the created task.

Table 4.6: OS_Create_TaskEx() parameter list

Additional Information

This function works the same way as 0S_CreateTask () except that a parameter is
passed to the task function.

An example of parameter passing to tasks is shown under 0S_CREATETASK_EX ().

A time slice value of zero is allowed and disables round-robin task switches (see
sample in chapter Disabling preemptive task switches for tasks of equal priority on
page 45).

Important

The stack that you define must reside in an area that the CPU can address as stack.
Most CPUs cannot use the entire memory area as stack and require the stack to be
aligned to a multiple of the processor word size.

The task stack cannot be shared between multiple tasks and must be assigned to one
task only. The memory used as task stack cannot be used for other purposes unless
the task is terminated.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

58 CHAPTER 4 Tasks

4.4.6 OS_Delay()

Description
Suspends the calling task for a specified period of time.

Prototype
void 0S_Delay (OS_TIME ms) ;

Parameter Description

Time interval to delay. Must be within the following range:
215> = 0x8000 <= ms <= 21°-1 = Ox7FFF for 8/16-bit CPUs
231 = 0x80000000 <= ms <= 231-1 = Ox7FFFFFFF for 32-bit CPUs

Please note that these are signed values.
Table 4.7: OS_Delay() parameter list

ms

Additional Information

The calling task is placed into the WAITING state for the period of time specified. The
task will stay in the delayed state until the specified time has expired. 0s_bDelay ()
returns immediately if the parameter ms is less than or equal to zero. The parameter ms
specifies the precise interval during which the task is suspended given in basic time
intervals (usually 1/1000 seconds). The actual delay (in basic time intervals) will be
in the following range: ms - 1 <= delay <= ms, depending on when the interrupt for
the scheduler occurs.

After the expiration of the delay, the task is made ready and activated according to
the rules of the scheduler. A delay can be ended prematurely by another task or by
an interrupt handler calling 0s_wakeTask ().

Example

void Hello(void) {
printf ("Hello");
printf ("The next output will occur in 5 seconds");
0S_Delay (5000) ;
printf ("Delay is over");

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

59

4.4.7 OS_DelayUntil()

Description
Suspends the calling task until a specified time.

Prototype
void OS_DelayUntil (OS_TIME t) ;

Parameter Description

Time to delay until. Must be within the following range:
0 <=t <= 216-1 = OxFFFF = 65535 for 8/16-bit CPUs
0 <= t <= 232-1 = OxFFFFFFFF for 32-bit CPUs

t and must meet the following additional condition
1 <= (t -0S_Time) <= 215-1 = 0x7FFF = 32767 for 8/16-bit
CPUs

1 <= (t- OS_Time) <= 231-1 = Ox7FFFFFFF for 32-bit CPUs
Table 4.8: OS_DelayUntil() parameter list

Additional Information

The calling task will be put into the WAITING state until the time specified.

The 0s_bDelayuntil () function delays until the value of the time-variable 0s_Time
reaches a certain value. It is very useful to avoid accumulating delays.

An embOS SysTick timer overflow is no problem as long as parameter t is within the
specified range.

Example

int sec,min;

void TaskShowTime (void) {
OS_TIME tO;
t0 = 0S_GetTime() ;
while (1) {
ShowTime () ; /* Routine to display time */
£t0 += 1000;
0S_DelayUntil (tO0);
if (sec < 59) {
sec++;
} else {
sec = 0;
min++;
}
}
}

In the example above, using 0S_bDelay () could lead to accumulating delays and
would cause the simple “clock” to be slow.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

60

CHAPTER 4 Tasks

4.4.8 OS_Delayus()

Description
Waits for the given time in microseconds.

Prototype
void 0OS_Delayus (0S_U1l6 us);

Parameter Description

Number of microseconds to delay. Must be within the following
us range:

1 <= us <= 215-1 = Ox7FFF = 32767

Table 4.9: OS_Delay() parameter list

Additional Information
This function can be used for short delays.

0S_Delayus () must only be called with interrupts enabled and after OS_InitKern()
and OS_InitHW() have been called. This only works when the embQOS system timer is
running. The embOS debug build of 0s_belayus() checks that interrupts are
enabled, and if not then 0s_Error () is called.

0S_Delayus () does not block task switches and does not block interrupts. Therefore,
the delay may not be accurate because the function may be interrupted for an unde-
fined time. The delay duration therefore is a minimum delay.

Example

void Hello (void) {
printf ("Hello");
printf ("The next output will occur in 500 microseconds") ;
0S_Delayus (500);
printf ("Delay is over");

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

61

4.4.9 OS_ExtendTaskContext()

Description

The function may be used for a variety of purposes. Typical applications are:

e global variables such as “errno” in the C library, making the C-lib functions
thread-safe.

e additional, optional CPU / registers such as MAC / EMAC registers (multiply and
accumulate unit) if they are not saved in the task context per default.
Coprocessor registers such as registers of a VFP (floating-point coprocessor).
Data registers of an additional hardware unit such as a CRC calculation unit

This allows the user to extend the task context as required. A major advantage is
that the task extension is task-specific. This means that the additional information
(such as floating-point registers) needs to be saved only by tasks that actually use
these registers. The advantage is that the task switching time of other tasks is not
affected. The same is true for the required stack space: Additional stack space is
required only for the tasks which actually save the additional registers.

Prototype
void OS_ExtendTaskContext (const OS_EXTEND_TASK_CONTEXT * pExtendContext) ;

Parameter Description

Pointer to the 0S_EXTEND_TASK_CONTEXT structure which contains
pExtendContext |the addresses of the specific save and restore functions that save
and restore the extended task context during task switches.
Table 4.10: OS_ExtendTaskContext() parameter list

Additional Information

The 0S_EXTEND_TASK_CONTEXT structure is defined as follows:

typedef struct OS_EXTEND_TASK_CONTEXT {
void (*pfSave) (void * pStack) ;
void (*pfRestore) (const void * pStack);
} OS_EXTEND_TASK_CONTEXT;

The save and restore functions must be declared according the function type used in
the structure. The sample below shows how the task stack must be addressed to
save and restore the extended task context.

0S_ExtendTaskContext () is not available in the XR libraries.
Important

The task context can be extended only once per task. The function must not be called
multple times for one task.

Note that some ports of embOS use the mechanism of extending the task context for
individual tasks for CPU or compiler-specific purposes such as storing floating-point
registers or deliver a thread-local storage. In this case, the user cannot extend the
task context using 0S_ExtendTaskContext(). Extended tasks created by
OS_CREATETASK_EX () Or 0S_CreateTaskEx () can still be used.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

62

UMO01001 User & Reference Guide for embOS

CHAPTER 4 Tasks

Example

The following example is delivered in the samples folder of embOS.

/* __
File : ExtendTaskContext.c
Purpose : Sample program for embOS demonstrating how to dynamically

extend the task context.

This example adds a global variable to the task context of

certain tasks.

———————— END-OF~HEADER === == == = = = = = e e e e e e e e

*/

#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

int GlobalVar;

/‘k********‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k**********‘k*‘k***‘k**********‘k***‘k****

*

* _Restore

* _Save

*

* Function description

* This function pair saves and restores an extended task context.

* In this case, the extended task context consists of just a single
* member, which is a global variable.

*/

typedef struct {
int GlobalVar;
} CONTEXT_EXTENSION;

static void _Save(void * pStack) {
CONTEXT_EXTENSION * p;

p = ((CONTEXT_EXTENSION*)pStack) - (1 - OS_STACK_AT_BOTTOM) ; // Create pointer
//

// Save all members of the structure

//

p->GlobalVar = GlobalVar;
}

static void _Restore(const void * pStack) {
CONTEXT_EXTENSION * p;

p = ((CONTEXT_EXTENSION*)pStack) - (1 - OS_STACK_AT_BOTTOM) ; // Create pointer
//

// Restore all members of the structure

//

GlobalvVar = p->GlobalVar;
}

/*k**********‘k*‘k**k***************k**k************‘k************‘k*‘k********
*
* Global variable which holds the function pointers
* to save and restore the task context.
*/
const OS_EXTEND_TASK_CONTEXT _SaveRestore = {
_Save,
_Restore
}i

/‘k********‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k**********‘k*‘k***‘k**********‘k***‘k***/

/‘k********‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k**********‘k*‘k***‘k**********‘k***‘k****

*

* HPTask

*

* Function description

* During the execution of this function, the thread-specific
* global variable has always the same value of 1.

*/

static void HPTask (void) {
OS_ExtendTaskContext (&_SaveRestore) ;
GlobalvVar = 1;
while (1) {
0S_Delay (10) ;
}
}

© 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

63

/********‘k‘k‘k‘k‘k*‘k*‘k‘k*******‘k*‘k*‘k*‘k**‘k*****‘k*‘k*‘k*‘k*‘k‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k‘k*‘k

*

* LPTask

*

* Function description

* During the execution of this function, the thread-specific
* global variable has always the same value of 2.

*/

static void LPTask(void) {
0S_ExtendTaskContext (&_SaveRestore) ;
Globalvar = 2;
while (1) {
0S_Delay (50) ;
}
}

/***

*

* main

*/

int main(void) {
0S_IncDI(); /* Initially disable interrupts */
0OS_InitKern() ; /* initialize 0OS */
OS_InitHW() ; /* initialize Hardware for 0OS */
/* You need to create at least one task here ! */

OS_CREATETASK (&TCBHP, "HP Task", HPTask, 100, StackHP);
OS_CREATETASK (&TCBLP, "LP Task", LPTask, 50, StackLP);

0S_Start () ; /* Start multitasking */
return O;

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

64 CHAPTER 4 Tasks

4.4.10 OS_GetpCurrentTask()

Description

Returns a pointer to the task control block structure of the running task.

Prototype
OS_TASK* 0S_GetpCurrentTask (void);

Return value
A pointer to the task control block structure.
Additional Information

This function may be used for determining which task is executing. This may be help-
ful if the reaction of any function depends on the currently running task.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

65

4.4.11 OS_GetPriority()

Description

Returns the priority of a specified task.

Prototype

OS_PRIO 0OS_GetPriority (const OS_TASK* pTask);
Parameter Description

pTask Pointer to a task control block structure.

Table 4.11: OS_GetPriority() parameter list

Return value
Priority of the specified task (range 1 to 255).
Additional Information

If pTask is NULL, the function returns the priority of the currently running task. If
pTask does not specify a valid task, the debug build of embOQOS calls 0s_Error (). The
release build of embOS cannot check the validity of pTask and may therefore return
invalid values if pTask does not specify a valid task.

Important

This function must not be called from within an interrupt handler.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

66 CHAPTER 4 Tasks

4.4.12 OS_GetSuspendCnt()

Description

The function returns the suspension count and thus suspension state of the specified
task. This function may be used to examine whether a task is suspended by previous
calls of 0S_Suspend ().

Prototype
unsigned char 0S_GetSuspendCnt (const OS_TASK* pTask) ;

Parameter Description

pTask Pointer to a task control block structure.
Table 4.12: OS_GetSuspendCnt() parameter list

Return value

Suspension count of the specified task.
0: Task is not suspended.
>0: Task is suspended by at least one call of 0S_Suspend ().

Additional Information

If pTask does not specify a valid task, the debug build of embOS calls 0S_Error ().
The release build of embOS cannot check the validity of pTask and may therefore
return invalid values if pTask does not specify a valid task. When tasks are created
and terminated dynamically, 0s_iIsTask() may be called prior to calling
0S_GetSuspendCnt () to determine whether a task is valid. The returned value can be
used to resume a suspended task by calling 0s_Resume () as often as indicated by the
returned value.

Example

/* Demo-function to illustrate the use of 0S_GetSuspendCnt () */

void ResumeTask (OS_TASK* pTask) {
unsigned char SuspendCnt;
SuspendCnt = 0S_GetSuspendCnt (pTask) ;
while (SuspendCnt > 0) {
OS_Resume (pTask); /* May cause a task switch */
SuspendCnt--;
}
}

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

67

4.4.13 OS_GetTasklID()

Description

Returns a pointer to the task control block structure of the currently running task.
This pointer is unique for the task and is used as a task Id.

Prototype
OS_TASK * 0S_GetTaskID (wvoid);

Return value

A pointer to the task control block. A value of 0 (NULL) indicates that no task is exe-
cuting.

Additional Information

This function may be used for determining which task is executing. This may be help-
ful if the reaction of any function depends on the currently running task.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

68 CHAPTER 4 Tasks

4.4.14 OS_GetTaskName()

Description

Returns a pointer to the name of a task.

Prototype

const char* OS_GetTaskName (const OS_TASK* pTask) ;
Parameter Description

pTask Pointer to a task control block structure.

Table 4.13: OS_GetTaskName() parameter list

Return value

A pointer to the name of the task. A value of 0 (NULL) indicates that the task has no
name.

Additional Information

If prask is NULL, the function returns the name of the running task. If not called from
a task with a NULL pointer as parameter, the return value is “0s_1Idle()". If pTask
does not specify a valid task, the debug build of embOS calls 0s_Error(). The
release build of embOS cannot check the validity of pTask and may therefore return
invalid values if pTask does not specify a valid task.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

69

4.4.15 OS_GetTimeSliceRem()

Description

Returns the remaining time slice value of a task.

Prototype

unsigned char 0S_GetTimeSliceRem(const OS_TASK* pTask) ;
Parameter Description

pTask Pointer to a task control block structure.

Table 4.14: OS_GetTimeSliceRem() parameter list

Return value
The remaining time slice value of the task.
Additional Information

If pTask is NULL, the function returns the remaining time slice of the running task. If
not called from a task with a NULL pointer as parameter, or if pTask does not specify
a valid task, the debug build of embOS calls 0s_Error (). The release build of embQS
cannot check the validity of pTask and may therefore return invalid values if pTask
does not specify a valid task.

The function is unavailable when using an embOS build without round-robin support.
The embOS eXtreme release libraries do not support round robin. Furthermore, when
embOS is recompiled with 0s_RRrR_sUpPPORTED set to 0, the function will not be avail-
able.

UMO01001 User & Reference Guide for embOS © 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG

70

CHAPTER 4 Tasks

4.4.16 OS_IsRunning()

Description

Determines whether the embOS scheduler was started by a call of OS_Start().

Prototype

unsigned char 0OS_IsRunning (void) ;

Return value

Character value:
0: Scheduler is not started.