LM6152,LM6154

LM6152/LM6154 Dual and Quad 75 MHz GBW Rail-to-Rail I/O Operational Amplifiers

Literature Number: SNOS752C

LM6152/LM6154 Dual and Quad 75 MHz GBW Rail-to-Rail I/O Operational Amplifiers

General Description

Using patented circuit topologies, the LM6152/LM6154 provides new levels of speed vs. power performance in applications where low voltage supplies or power limitations previously made compromise necessary. With only 1.4 mA/amplifier supply current, the 75 MHz gain bandwidth of this device supports new portable applications where higher power devices unacceptably drain battery life. The slew rate of the devices increases with increasing input differential voltage, thus allowing the device to handle capacitive loads while maintaining large signal amplitude.

The LM6152/LM6154 can be driven by voltages that exceed both power supply rails, thus eliminating concerns about exceeding the common-mode voltage range. The rail-to-rail output swing capability provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages.

Operating on supplies from 2.7V to over 24V, the LM6152/LM6154 is excellent for a very wide range of applications, from battery operated systems with large bandwidth requirements to high speed instrumentation.

Features

At $V_S = 5V$, typical unless noted.

■ Greater than rail-to-rail input CMVR -0.25V to 5.25V

■ Rail-to-rail output swing 0.01V to 4.99V

■ Wide gain-bandwidth 75 MHz @ 100 kHz

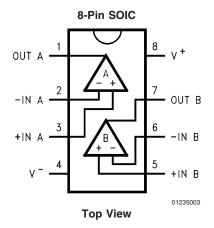
■ Slew rate

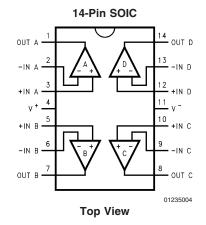
— Small signal 5 V/μs — Large signal 45 V/μs

— Large signal
 Low supply current
 1.4 mA/amplifier

■ Wide supply range 2.7V to 24V

■ Fast settling time of 1.1 µs for 2V step (to 0.01%)


■ PSRR 91 dB


■ CMRR 84 dB

Applications

- Portable high speed instrumentation
- Signal conditioning amplifier/ADC buffers
- Barcode scanners

Connection Diagrams

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing
8-Pin SOIC	LM6152ACM	LM6152ACM	95 Units/Rails	M08A
	LM6152ACMX		2.5k Units Tape and Reel	
	LM6152BCM	LM6152BCM	95 Units/Rails	
	LM6152BCMX		2.5k Units Tape and Reel	
14-Pin SOIC	LM6154BCM	LM6154BCM	55 Units/Rails	M14A
	LM6154BCMX		2.5k Units Tape and Reel	

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2) 2500V Differential Input Voltage 15V Voltage at Input/Output Pin $(V^+) + 0.3V$, $(V^-) -0.3V$ Supply Voltage $(V^+ - V^-)$ 35V Current at Input Pin ± 10 mA Current at Output Pin (Note 3) ± 25 mA Current at Power Supply Pin 50 mA

Lead Temperature (soldering, 10

sec) 260°C

Storage Temperature Range -65°C to +150°C

Junction Temperature (Note 4) 150°C

Operating Ratings (Note 1)

Supply Voltage $2.7V \le V^+ \le 24V$

Junction Temperature Range

LM6152,LM6154 $0^{\circ}C \leq T_{J} \leq + 70^{\circ}C$

Thermal Resistance (θ_{JA})

8-pin SOIC 193°C/W 14-pin SOIC 126°C/W

5.0V DC Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5.0V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1$ M Ω to $V^+/2$. **Boldface** limits apply at the temperature extremes.

				LM6154AC LM6152AC	LM6154BC LM6152BC	
			Тур	Limit	Limt	
Symbol	Parameter	Conditions	(Note 5)	(Note 6)	(Note 6)	Units
V _{os}	Input Offset Voltage		0.54	2	5	mV
- 03	The state of the s			4	7	max
TCV _{os}	Input Offset Voltage Average Drift		10			μV/°C
I _B	Input Bias Current	$0V \le V_{CM} \le 5V$	500	980	980	
			750	1500	1500	nA max
I _{os}	Input Offset Current		32	100	100	nA max
			40	160	160	na max
R _{IN}	Input Resistance, CM	$0V \le V_{CM} \le 4V$	30			$M\Omega$
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 4V$	94	70	70	dB
		$0V \le V_{CM} \le 5V$	84	60	60	min
PSRR	Power Supply Rejection Ratio	5V ≤ V ⁺ ≤ 24V	91	80	80	dB
						min
V_{CM}	Input Common-Mode Voltage Range	Low	-0.25	0	0	V
		High	5.25	5.0	5.0	V
A _V	Large Signal Voltage Gain	$R_L = 10 \text{ k}\Omega$	214	50	50	V/mV
-						min
V_O	Output Swing	$R_L = 100 \text{ k}\Omega$	0.006	0.02	0.02	V
				0.03	0.03	max
			4.992	4.97	4.97	V
				4.96	4.96	min
		$R_L = 2 k\Omega$	0.04	0.10	0.10	V
				0.12	0.12	max
			4.89	4.80	4.80	V
				4.70	4.70	min
I _{sc}	Output Short Circuit Current	Sourcing	6.2	3	3	mA
				2.5	2.5	min
				27	27	mA
		0: 1:	100	17	17	max
		Sinking	16.9	7	7	mA min
				5	5	min
				40	40	mA max

5.0V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits are guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5.0V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1$ M Ω to $V^+/2$. **Boldface** limits apply at the temperature extremes.

				LM6154AC	LM6154BC	
				LM6152AC	LM6152BC	
			Тур	Limit	Limt	
Symbol	Parameter	Conditions	(Note 5)	(Note 6)	(Note 6)	Units
Is	Supply Current	Per Amplifier	1.4	2	2	mA
				2.25	2.25	max

5.0V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T_J = 25°C, V^+ = 5.0V, V^- = 0V, V_{CM} = V_O = $V^+/2$ and $R_L > 1$ M Ω to $V^+/2$. **Boldface** limits apply at the temperature extremes.

				LM6154AC LM6152AC	LM6154BC LM6152BC	
			Тур	Limit	Limt	
Symbol	Parameter	Conditions	(Note 5)	(Note 6)	(Note 6)	Units
SR	Slew Rate	±4V Step @ V _S = ±6V,	30	24	24	V/µs
		$R_S < 1 k\Omega$		15	15	min
GBW	Gain-Bandwidth Product	f = 100 kHz	75			MHz
	Amp-to-Amp Isolation	$R_L = 10 \text{ k}\Omega$	125			dB
e _n	Input-Referred Voltage Noise	f = 1 kHz	9			nV/ √Hz
i _n	Input-Referred Current Noise	f = 1 kHz	0.34			pA/ √Hz
T.H.D	Total Harmonic Distortion	$f = 100 \text{ kHz}, R_L = 10 \text{ k}\Omega$	-65			dBc
		$A_V = -1$, $V_O = 2.5 V_{PP}$				
ts	Settling Time	2V Step to 0.01%	1.1			μs

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for $T_J = 25^{\circ}C$, $V^+ = 2.7V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1$ M Ω to $V^+/2$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LM6154AC LM6152AC	LM6154BC LM6152BC	Units
				Limit	Limt	
				(Note 6)	(Note 6)	
V_{OS}	Input Offset Voltage		0.8	2	5	mV
				5	8	max
TCVos	Input Offset Voltage Average Drift		10			μV/°C
I _B	Input Bias Current		500			nA
I _{os}	Input Offset Current		50			nA
R _{IN}	Input Resistance, CM	$0V \le V_{CM} \le 1.8V$	30			ΜΩ
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 1.8V$	88			dB
		$0V \le V_{CM} \le 2.7V$	78			uБ
PSRR	Power Supply Rejection Ratio	3V ≤ V ⁺ ≤ 5V	69			dB
V _{CM}	Input Common-Mode Voltage Range	Low	-0.25	0	0	V
		High	2.95	2.7	2.7	V
A _V	Large Signal Voltage Gain	$R_L = 10 \text{ k}\Omega$	5.5			V/mV
Vo	Output Swing	$R_L = 10 \text{ k}\Omega$	0.032	0.07	0.07	V
				0.11	0.11	max
			2.68	2.64	2.64	V
				2.62	2.62	min
Is	Supply Current	Per Amplifier	1.35			mA

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for $T_J = 25^{\circ}C$, $V^+ = 2.7V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1$ M Ω to $V^+/2$. **Boldface** limits apply at the temperature extremes.

				LM6154AC	LM6154BC	
				LM6152AC	LM6152BC	
			Тур	Limit	Limt	
Symbol	Parameter	Conditions	(Note 5)	(Note 6)	(Note 6)	Units
GBW	Gain-Bandwidth Product	f = 100 kHz	80			MHz

24V DC Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for $T_J = 25^{\circ}C$, $V^+ = 24V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1$ M Ω to $V^+/2$. **Boldface** limits apply at the temperature extremes.

			Тур	LM6154AC LM6152AC Limit	LM6154BC LM6152BC Limt	
Symbol	Parameter	Conditions	(Note 5)	(Note 6)	(Note 6)	Units
V _{os}	Input Offset Voltage		0.3	2	7	mV
				4	9	max
TCV _{OS}	Input Offset Voltage Average Drift		10			μV/°C
I _B	Input Bias Current		500			nA
I _{os}	Input Offset Current		32			nA
R _{IN}	Input Resistance, CM	$0V \le V_{CM} \le 23V$	60			Meg Ω
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 23V$	94			
		$0V \le V_{CM} \le 24V$	84			dB
PSRR	Power Supply Rejection Ratio	$0V \le V_{CM} \le 24V$	95			dB
V _{CM}	Input Common-Mode Voltage Range	Low	-0.25	0	0	V
		High	24.25	24	24	V
A _V	Large Signal Voltage Gain	$R_L = 10 \text{ k}\Omega$	55			V/mV
V_{o}	Output Swing	$R_L = 10 \text{ k}\Omega$	0.044	0.075	0.075	V
				0.090	0.090	max
			23.91	23.8	23.8	V
				23.7	23.7	min
Is	Supply Current	Per Amplifier	1.6	2.25	2.25	mA
				2.50	2.50	max

24V AC Electrical Characteristics

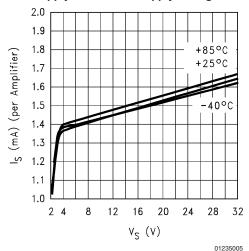
Unless otherwise specified, all limits are guaranteed for $T_J = 25^{\circ}C$, $V^+ = 24V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1$ M Ω to $V^+/2$. **Boldface** limits apply at the temperature extremes.

				LM6154AC	LM6154BC	
				LM6152AC	LM6152BC	
			Тур	Limit	Limt	
Symbol	Parameter	Conditions	(Note 5)	(Note 6)	(Note 6)	Units
GBW	Gain-Bandwidth Product	f = 100 kHz	80			MHz

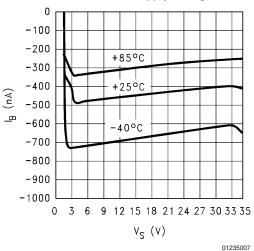
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Note 2: Human body model is 1.5 k Ω in series with 100 pF.

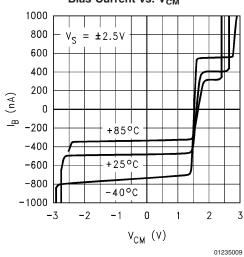
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.

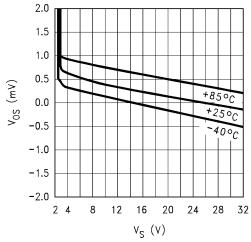

Note 4: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

Note 5: Typical Values represent the most likely parametric norm.

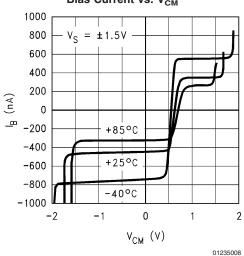

Note 6: All limits are guaranteed by testing or statistical analysis.

Typical Performance Characteristics

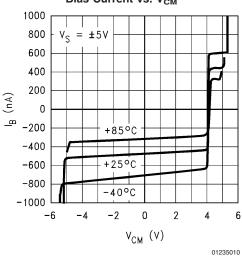

Supply Current vs. Supply Voltage


Bias Current vs. Supply voltage

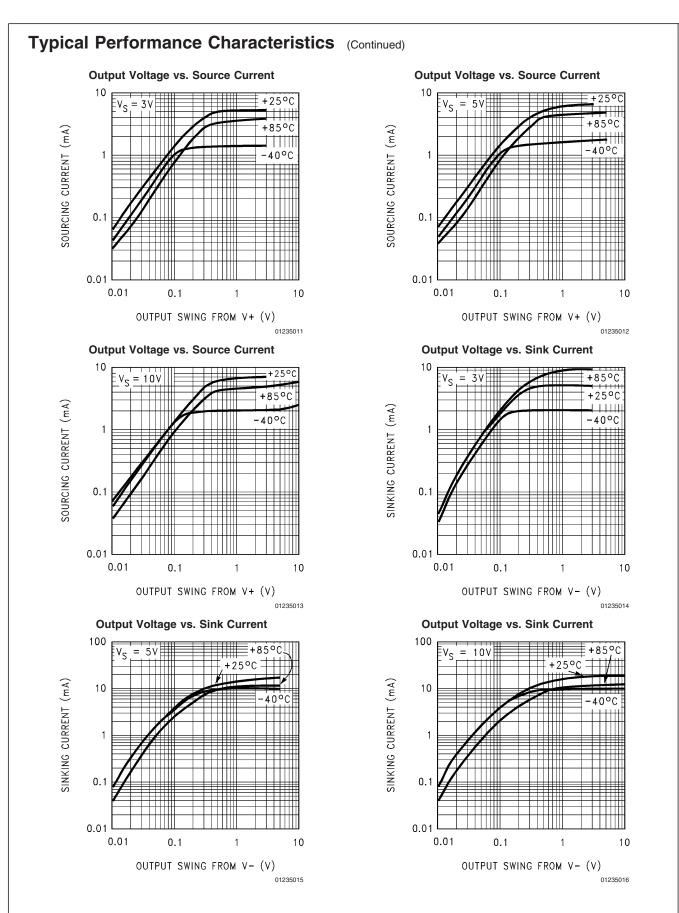
Bias Current vs. V_{CM}

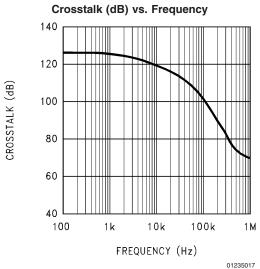


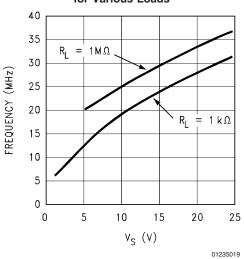
Offset Voltage vs. Supply voltage

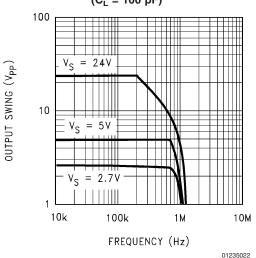


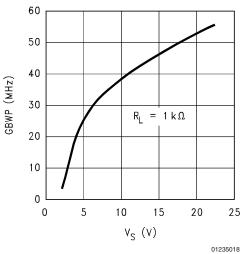
01235006

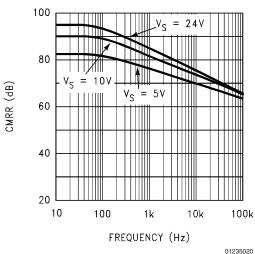

Bias Current vs. V_{CM}

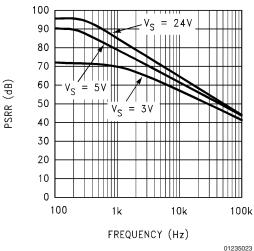

Bias Current vs. V_{CM}


01233010


Typical Performance Characteristics (Continued)

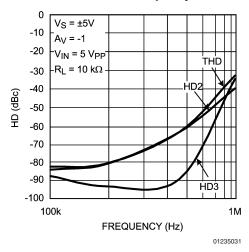

Unity Gain Frequency vs. Supply Voltage for Various Loads


Voltage Swing vs. Frequency (C_L = 100 pF)


GBWP (@ 100 kHz) vs. Supply Voltage

CMRR

PSRR vs. Frequency


Typical Performance Characteristics (Continued) Open Loop Gain/Phase Open Loop Gain/Phase $(V_S = 5V)$ $(V_{S} = 10V)$ 120 120 = 1 kΩ (Phase (Phase) 100 100 = 1 M Ω (Phase GAIN/PHASE (dB/°) GAIN/PHASE (dB/°) 80 80 60 60 40 40 20 20 0 0 -20 10k 10k 100k 1 M 10M 100M 100k 100M FREQUENCY (Hz) FREQUENCY (Hz) 01235024 01235025 Open Loop Gain/Phase Noise Voltage vs. Frequency $(V_{S} = 24V)$ 120 = $1 k\Omega$ (Phase 100 NOISE VOLTAGE (nV/rootHz) GAIN/PHASE (dB/o) 80 100 60 40 10 20 = $1 k\Omega$ (Gain) 0 = 1 MΩ (Gain) -20 1k 100k 10M 100M 10 100 1k 10k FREQUENCY (Hz) FREQUENCY (Hz) 01235026 01235027 Noise Current vs. Frequency Voltage Error vs. Settle Time 10k NOISE CURRENT (pA/rootHz) 1k VOLTAGE ERROR (mV) 100 10 0.1 0.01 500 2000 10 100 1k 1000 1500 10k FREQUENCY (Hz) SETTLE TIME (ns)

01235028

01235029

Typical Performance Characteristics (Continued)

Distortion vs. Frequency

Application Information

The LM6152/LM6154 is ideally suited for operation with about 10 k Ω (Feedback Resistor, R_F) between the output and the negative input terminal.

With R_F set to this value, for most applications requiring a close loop gain of 10 or less, an additional small compensation capacitor (C_F) (see *Figure 1*) is recommended across R_F in order to achieve a reasonable overshoot (10%) at the output by compensating for stray capacitance across the inputs.

The optimum value for C_F can best be established experimentally with a trimmer cap in place since its value is dependant on the supply voltage, output driving load, and the operating gain. Below, some typical values used in an inverting configuration and driving a 10 $\mbox{k}\Omega$ load have been tabulated for reference:

TABLE 1. Typical BW (-3 dB) at Various Supply Voltage and Gains

Vs	Gain	C _F pF	BW (-3 dB)
Volts		pF	MHz
	-1	5.6	4
3	-10	6.8	1.97
	-100	None	0.797
	-1	2.2	6.6
24	-10	4.7	2.2
	-100	None	0.962

In the non-inverting configuration, the LM6152/LM6154 can be used for closed loop gains of +2 and above. In this case, also, the compensation capacitor (C_F) is recommended across R_F (= 10 k Ω) for gains of 10 or less.

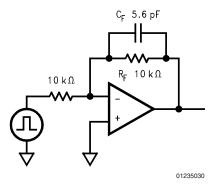


FIGURE 1. Typical Inverting Gain Circuit $A_V = -1$

Because of the unique structure of this amplifier, when used at low closed loop gains, the realizable BW will be much less than the GBW product would suggest.

The LM6152/LM6154 brings a new level of ease of use to op amp system design.

The greater than rail-to-rail input voltage range eliminates concern over exceeding the common-mode voltage range. The rail-to-rail output swing provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages.

The high gain-bandwidth with low supply current opens new battery powered applications where higher power consumption previously reduced battery life to unacceptable levels.

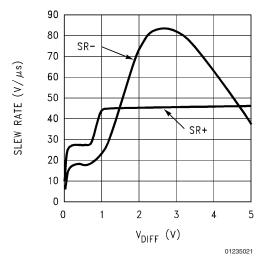
The ability to drive large capacitive loads without oscillating functional removes this common problem.

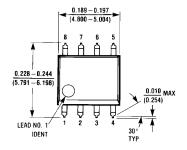
To take advantage of these features, some ideas should be kept in mind.

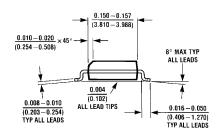
The LM6152/LM6154, capacitive loads do not lead to oscillations, in all but the most extreme conditions, but they will result in reduced bandwidth. They also cause increased settling time.

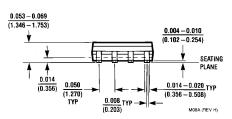
Application Information (Continued)

Unlike most bipolar op amps, the unique phase reversal prevention/speed-up circuit in the input stage, caused the slew rate to be very much a function of the input pulse amplitude. This results in a 10 to 1 increase in slew rate when the differential input signal increases. Large fast pulses will raise the slew-rate to more than 30 V/ μ s.

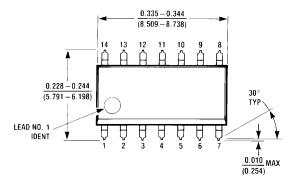


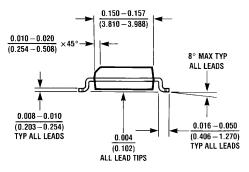

FIGURE 2. Slew Rate vs. V_{DIFF}

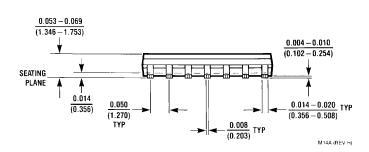

The speed-up action adds stability to the system when driving large capacitive loads.


A conventional op amp exhibits a fixed maximum slew-rate even though the differential input voltage rises due to the lagging output voltage. In the LM6152/LM6154, increasing lag causes the differential input voltage to increase but as it does, the increased slew-rate keeps the output following the input much better. This effectively reduces phase lag. As a result, the LM6152/LM6154 can drive capacitive loads as large as 470 pF at gain of 2 and above, and not oscillate.

Capacitive loads decrease the phase margin of all op amps. This can lead to overshoot, ringing and oscillation. This is caused by the output resistance of the amplifier and the load capacitance forming an R-C phase shift network. The LM6152/6154 senses this phase shift and partly compensates for this effect.


Physical Dimensions inches (millimeters) unless otherwise noted





8-Pin SOIC NSC Package Number M08A

14-Pin SOIC NSC Package Number M14A

Notes

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

Asia Pacific Customer Support Center Email: ap.support@nsc.com

National Semiconductor National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

TI E2E Community Home Page <u>e2e.ti.com</u>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated