NH fuse-switch 3p box terminal 95 - $\mathbf{3 0 0} \mathrm{mm}^{2}$; busbar $\mathbf{6 0} \mathbf{~ m m}$; electronic fuse monitoring; NH3

Powering Business Worldwide
Part no.
XNH3-FCE-S630-BT
Article no.
183082

Delivery programme

Basic function
Number of poles
Mounting type
Size
Type of connection
Rated operational current
Front degree of protection (XNH installed)

Rated operational voltage
Rated operational voltage
Rated conditional short-circuit current

Flammability characteristics
Description

Fuse control - electronic
3 pole
Busbars of 60 mm
3
Box terminal
630
IP20 (Operating status) IP2XC (Contact protection) IP10 (Handle cover open)
$\mathrm{U}_{\mathrm{e}} \quad \mathrm{VAC} \quad 690$
$\mathrm{U}_{\mathrm{e}} \quad V D C \quad 440$
kA $\quad 120(500 \mathrm{~V})$
100 (690 V)
Self-extinguishing as per UL 94
Current paths of electrolytic copper, silver-plated Cable connection optionally at the top or bottom With electronic monitoring of fuse-links

Technical data

Electrical
Standards
Rated operational voltage

Rated operational current
Rated frequency
Rated insulation voltage
Total heat dissipation at $I_{\text {th }}$ (without fuses)
Heat dissipation at 80% (without fuses)
Rated impulse withstand voltage
Utilization category AC-23B
Rated operating voltage
Rated operating current
Utilization category AC22B
Rated operating voltage
Rated operating current
Utilization category AC-21B
Rated operating voltage
Rated operating current
Utilization category DC-22B
Rated operating voltage
Rated operating current
Utilization category DC21B
Rated operating voltage
Rated operating current
Rated conditional short-circuit current

Rated short-time withstand current
Max. fuse
Size according to DIN VDE 0636-2

V DC DC values on request
IEC/EN 60947-3
$\mathrm{U}_{\mathrm{e}} \quad \mathrm{VAC} \quad 690$
$\mathrm{U}_{\mathrm{e}} \quad \mathrm{VDC}$
$\mathrm{I}_{\mathrm{e}} \quad \mathrm{A} \quad 630$
$f \quad \mathrm{~Hz} \quad 40-60$
$\mathrm{U}_{\mathrm{i}} \quad \mathrm{VAC} 800$

P_{v}	W	86

P_{v}	W	54.8

$\mathrm{U}_{\text {imp }}$	kV	8

$\mathrm{U}_{\mathrm{e}} \quad \mathrm{VAC} \quad 400$

| I_{e} | A $\quad 630$ |
| :--- | :--- | :--- |

$U_{e} \quad V A C \quad 500$

I_{e}	A	630

$\mathrm{U}_{\mathrm{e}} \quad \mathrm{VAC} 690$

I	A $\quad 630$

$\mathrm{U}_{\mathrm{e}} \quad \mathrm{VDC} \quad \mathrm{DC}$ values on request

I_{e}	A	$D C$ values on request

Max. permitted power loss per fuse link	P_{v}	w	48
Lifespan, electrical	Operations		200
Mechanical			
Front degree of protection (XNH installed)			IP20 (Operating status) IP2XC (Contact protection) IP10 (Handle cover open)
Ambient temperature		${ }^{\circ} \mathrm{C}$	$-25-+55$
Rated operating mode			Permanent operation
Activation			Dependent manual activation
Mounting position			Vertical, horizontal
Altitude		m	Max. 2000
Overvoltage category/pollution degree			III/3
RoHS (in accordance with Directive 2002/95/EC of the European Parliament and Council)			Yes
Direction of incoming supply			as required (FLEX System)
Lockable			Yes, optional
Sealable			Yes, Standard
Material characteristics			
Material			Polyamide
Colour			Grey
Flammability characteristics			Self-extinguishing as per UL 94
Halogen-free			Yes
Voltage test			Yes, sliding inspection windows
Lifespan, mechanical	Operations		800
Track resistance			CTI 600
Heat deflection temperature		?C	125
Terminal capacity			
Flange connection			
Bolt diameter			M10
Cable lug max. width		mm	56
Flat busbar		mm	50×10
Box terminal			
Stranded		mm^{2}	95-300 Cu/Al
Copper strip	Number of segments x width x thickness	mm	$6 \times 16 \times 0,8-10 \times 32 \times 1$
Box terminal			
Stranded		mm^{2}	auf Anfrage
Copper band	Number of segments x width x thickness	mm	$11 \times 21 \times 1$
Clamp-type terminal			
Stranded		mm^{2}	120-300 Cu/Al
Double clamp-type terminal			
Stranded		mm^{2}	$2 \mathrm{x}(120-240) \mathrm{Cu} / \mathrm{Al}$
Electronic fuse monitoring			
Power supply			Self-supplied
Power consumption		VA	1.5
Overvoltage category			$\begin{aligned} & \text { 230/400V : III } \\ & 500 \mathrm{~V} \text { : II } \end{aligned}$
Frequency range			50-60
Input resistance		kOhm/V	>1
Voltage inputs		V AC	400-500 (+/-10\%)
Temperature range		${ }^{\circ} \mathrm{C}$	$-5-+55$
Operation indicator			1 LED green
Failure indicator			3 LEDs (F1, F2, F3) red
Degree of protection			IP3X

perating status) 2XC (Contact protection) 25-+55

Permanent operation
Dependent manual activation

Vertical, horizontal

III/3
s required (FLEX System)
Yes, optional
Yes, Standard

Polyamide

Grey

Yes
Yes, sliding inspection windows

M10
50×10
$95-300 \mathrm{Cu} / \mathrm{Al}$

Number of width x x width x
mm^{2} auf Anfrage
$\mathrm{mm}^{2} \quad 120-300 \mathrm{Cu} / \mathrm{A}$
$\mathrm{mm}^{2} 2 x(120-240) \mathrm{Cu} / \mathrm{Al}$

Self-supplied

230/400V : III
500V: I
$h m / V>1$
V AC $\quad 400-500$ (+/-10\%
${ }^{\circ} \mathrm{C} \quad-5-+55$

3 LEDs (F1, F2, F3) red

IP3X

Function test
EMC (Electromagnetic compatibility)

Fuse links
Outputs

Relay output

Max. voltage
Max. voltage
Max. switching current
Contact sequence

Test button for relay + LEDs
IEC 61000-4-4
IEC 61000-4-5
NH with live handle straps

1 NC
1 NO
V AC 250
VDC 24
A 1

Function diagram

Design verification as per IEC/EN 61439

Technical data for design verification

Rated operational current for specified heat dissipation	I_{n}	A	630
Heat dissipation per pole, current-dependent	$\mathrm{P}_{\text {vid }}$	W	7.3
Equipment heat dissipation, current-dependent	$\mathrm{P}_{\text {vid }}$	W	22

IEC/EN 61439 design verification

10.2 Strength of materials and parts
10.2.2 Corrosion resistance
10.2.3.1 Verification of thermal stability of enclosures
10.2.3.2 Verification of resistance of insulating materials to normal heat
10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects
10.2.4 Resistance to ultra-violet (UV) radiation
10.2.5 Lifting
10.2.6 Mechanical impact
10.2.7 Inscriptions
10.3 Degree of protection of ASSEMBLIES
10.4 Clearances and creepage distances
10.5 Protection against electric shock
10.6 Incorporation of switching devices and components
10.7 Internal electrical circuits and connections
10.8 Connections for external conductors
10.9 Insulation properties
10.9.2 Power-frequency electric strength
10.9.3 Impulse withstand voltage
10.9.4 Testing of enclosures made of insulating material
10.10 Temperature rise
10.11 Short-circuit rating
10.12 Electromagnetic compatibility
10.13 Mechanical function

Meets the product standard's requirements.

Meets the product standard's requirements.
Does not apply, since the entire switchgear needs to be evaluated.
Does not apply, since the entire switchgear needs to be evaluated.
Meets the product standard's requirements.
Does not apply, since the entire switchgear needs to be evaluated.
Is the panel builder's responsibility.
Does not apply, since the entire switchgear needs to be evaluated.
Does not apply, since the entire switchgear needs to be evaluated.
Is the panel builder's responsibility.
Is the panel builder's responsibility.
$U_{i}=800 \mathrm{VAC}$
Is the panel builder's responsibility.
Is the panel builder's responsibility.
The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.

Is the panel builder's responsibility. The specifications for the switchgear must be observed.

Is the panel builder's responsibility. The specifications for the switchgear must be observed.

The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.

Technical data ETIM 6.0

Low-voltage industrial components (EG000017) / Fuse switch disconnector (ECOO1040)
Electric engineering, automation, process control engineering / Low-voltage switch technology / Off-load switch, circuit breaker, control switch / Fuse switch disconnector (ecl@ss8.1-27-37-14-01 [AKF058010])

Version as main switch	Yes
Version as safety switch	Yes

Rated permanent current lu

Rated operation power at AC-23, 400 V
Conditioned rated short-circuit current Iq
Rated short-time withstand current Icw
Suitable for fuses
Number of poles
With error protection
Type of electrical connection of main circuit
Suitable for ground mounting
Suitable for front mounting 4-hole
Suitable for busbar mounting
Type of control element
Position control element
Motor drive optional
Motor drive integrated
Version as emergency stop installation
Degree of protection (IP), front side

V	690
A	630
kW	252
kA	120
kA	10
	NH3
	3
	Yes
	Frame clamp
	No
	Yes
	Yes
	Cover grip
	Front side
	No
	No
	No
	IP2X

Dimensions

Additional product information (links)

IL0131112ZU Fuse switch-disconnector XNH

IL0131112ZU Fuse switch-disconnector XNH
ftp://ftp.moeller.net/DOCUMENTATION/AWA_INSTRUCTIONS/IL0131112ZU2015_11.pdf

IL0131114ZU Fuse switch-disconnector XNH

IL0131114ZU Fuse switch-disconnector XNH
ftp://ftp.moeller.net/DOCUMENTATION/AWA_INSTRUCTIONS/LO131114ZU2015_11.pdf

