

EV2651-VT-00A I²C-Controlled 1-Cell to 4-Cell Buck-Boost

C-Controlled 1-Cell to 4-Cell Buck-Boost Charger with Reverse Source Mode Evaluation Board

DESCRIPTION

The EV2651-VT-00A is an evaluation board designed to demonstrate the capabilities of the MP2651, a buck-boost charger IC designed for battery packs with 1 cell to 4 cells in series. The device can accept a wide 4V to 22V input voltage (V_{IN}) range to charge the battery. It also supplies a wide 3V to 21V voltage range at the IN pin in source mode. This function is compliant to the USB PD specifications.

When input power is present, the board charges the battery with a maximum 6A charge current. When source mode is enabled, the device has an output current (I_{OUT}) limit up to 6A.

With the l^2C/SMB us interface, the MP2651 can flexibly configure the charge and discharge parameters. The l^2C interface can also provide the device and fault statuses through the registers.

PERFORMANCE SUMMARY (1) (2)

Parameters	Conditions	Value
Input voltage (V _{IN}) range		4V to 22V
Battery charge regulation voltage (VBATT_REG)	2 cells	8.4V (I ² C-configurable)
Fast charge current (I _{CC})	$V_{IN} = 9V$ to 22V	2A (I ² C-configurable)
Output voltage in source mode (V_{IN_SRC}) range		3V to 21V
Output voltage in source mode (V_{IN_SRC})		4.98V (l ² C-configurable)
Output current limit in source mode (I_{IN_SRC})		2A (I ² C-configurable)
Charge typical efficiency	V _{IN} = 20V, V _{BATT} = 8V, I _{CC} = 2A	93.09%
Charge peak efficiency	V _{IN} = 12V, V _{BATT} = 8V, I _{CC} = 2A	96.27%
Source mode typical efficiency	$V_{BATT} = 7.4V, V_{IN_{SRC}} = 20V, I_{IN_{SRC}} = 1.5A$	93.5%
Source mode peak efficiency	V _{BATT} = 8.4V, V _{IN_SRC} = 12V, I _{IN_SRC} = 1.5A	96.37%
Switching frequency (fsw)		600kHz (l ² C-configurable)

Specifications are at $T_A = 25^{\circ}$ C, unless otherwise noted.

Note:

1) Refer to the MP2651 datasheet for more details.

MPL Optimized Performance with the MPS Inductor MPL-AL5030 Series

EVALUATION BOARD

LxWxH (8.9cmx8.9cmx0.8cm)

Board Number	MPS IC Number
EV2651-VT-00A	MP2651GVT-000A

EV2651-VT-00A – 1-CELL TO 4-CELL BUCK-BOOST CHARGER EVAL BOARD

QUICK START GUIDE

This evaluation board is designed for MP2651 when the MP2651 is used as a buck-boost charger to charge a 2-cell battery pack. Its layout accommodates most commonly used resistors and capacitors. This board is preset for charge mode, and the full-charge voltage is preset to 8.4V. In charge mode, the IC can work in buck or buck-boost mode automatically, according to the input and battery voltages.

Follow the steps below to prepare the evaluation board:

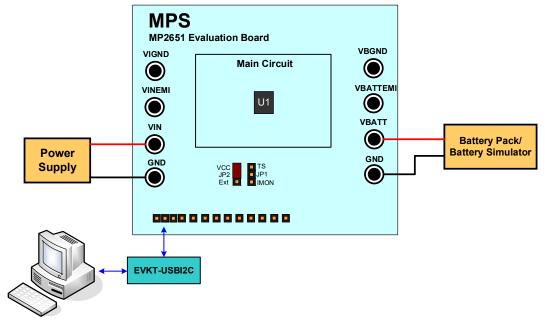
- 1. Ensure that the computer has at least one USB port and a USB cable. The MP2651 evaluation software must be properly installed.
- 2. Connect the USB-to-I²C communication kit (EVKT-USBI2C-02) (see Figure 1).

Figure 1: USB-to-I²C Communication Kit

3. To enable the software, double-click on the "MP2651 Evaluation Kit" .exe file to run the MP2651 evaluation software. The software supports Windows 7 and Windows 10 operating systems.

The MP2651 evaluation kit.exe file can be downloaded from the MPS website.

Original Test Set-Up for the MP2651


- 1. Connect the battery terminals to:
 - a. Positive (+): VBATT
 - b. Negative (-): GND

If using a battery simulator, preset the battery voltage between 0V and 8.4V, then turn the battery off. Connect the battery simulator outputs to the VBATT and GND pins, respectively.

- 2. Ensure that the battery voltage is present (if using a battery simulator, turn the simulator on after making the connection).
- 3. For charge mode testing, connect the input terminals to:
 - a. Positive (+): VIN
 - b. Negative (-): GND
- 4. For source mode testing, connect the load terminals to:
 - a. Positive (+): VIN
 - b. Negative (-): GND
- 5. For EMI testing, connect the input or load terminals to:
 - a. Positive (+): VINEMI
 - b. Negative (-): VIGND
- 6. For EMI testing, connect the battery terminals to:
 - a. Positive (+): VBATTEMI

- b. Negative (-): VBGND
- 7. Remove all other connectors (VIN, GND, VBATT, and GND) and pin headers.

Figure 2 shows the charge mode testing set-up.

Figure 2: MP2651 Charge Mode Test Set-Up

Table 1 shows how to set the jumpers.

Table 1: Jumper Connections

Jack	Description	Default Setting
JP1 ⁽²⁾	To select the pull-voltage, pull JP1 up to VCC or an external power source.	Pull JP1 up to VCC
JP2 ⁽³⁾	For the TS/IMON connection, connect pin 7 to different external circuitry depending on the TS/IMON selection.	Open

Notes:

- 2) If JP1 is pulled up to an external source, add an external power source (e.g. 3.3V) to AGND. Otherwise, no other actions are required.
- 3) If TS/IMON has different external circuity, connect the TS/IMON pin to the corresponding circuit with I²C control.
- 8. Launch the MP2651 evaluation software. The main software window should show up on the screen (see Figure 3 on page 5).

MP2651						
BASIC CONFIG	REGISTER MAP	DEBUG	-	10-Standby D-Not Power	 Fault BFET_OC_FAULT TS_FAULT 	0-Norma 0-Norma
General Setting		Source Mode Setting	SWITCH_STAT	Good 00-IDLE	VIN_SRC_OV VIN_SRC_UV	0-Norma 0-Norma
PWM Frequency 1 Battery Cell Count 1	600 • kHz 2 • Cell	SRC Mode Enable ① O-Disable Discharge ▼ SRC Output Voltage ① 4980 ▼ mV	Addross Satting	D-Normal 1-Multi-port	VIN_CHG_OV VADP_OV	0-Norma 0-Norma
Charge Enable () DC/DC Enable ()	1-Charge Enable	SRC Ouput Current 1 2000 mA	CHG_STAT (000-No Charging	VBATT_OV VBATT LOW	0-Norma 0-Norma
Safety Timer (1)	20 hours	NTC JEITA Setting Hot Threshold		D-Not in input voltage limit D-Not in input	WTD_EXP CHG TMR_EXP THERM SHDN	0-Norma 0-Norma 0-Norma
Charge Parameters		Warm Threshold (1-32.6%;(45°C) -		current limit D-Not in thermal regulation loop	NTC_FAULT	000-Norma
Battery Full Voltage 👔 Fast Charge Current 👔	8400 ▼ mV 2000 ▼ mA	Cool Threshold	IIN_DPM 6	6350 mA		
Pre-charge Threshold	6 • V	Warm UI-VBATI_REG Charge Action when				
Recharge Threshold (1) Trickle Charge Current (1)	200 ▼ mV 100 ▼ mA	VBATT_REG Setting when Warm/Cool 320				
Pre-charge Current 👔	400 🔻 mA	ICC Setting when				
Termination Current 🚯	200 - mA	Warm/Cool p0/0Ch[10:6] 01-1/4 urnes • • NTC Protection 1-Enable •				

Figure 3: MP2651 Evaluation Software

9. Turn on the VIN pin. The MP2651 should work to charge the battery with the default settings.

Modifying Parameters via the GUI

To use MPS's GUI, ensure that all connections are successful, such as the connections between the computer, USB-to-I²C communication kit, and the evaluation board.

BASIC Page

Figure 4 shows the MP2651's basic settings.

ASIC	CONFIG	REGISTER MAI	٢	DEBUG			
General	Setting			S 5	ource Mode Settin	g	
PWM Frequer	ncy 🚺	600	kHz	SRC N	Node Enable 🚯	0-Disable Dischar	•
Battery Cell C	ount 🚯	2	Cell		Output Voltage 🕤	4980	➡ mV
Charge Enable	• 0	1-Charge Enable	-	SRC C	Ouput Current 🚯	2000	▼ mA
DC/DC Enable	0	1-Enable	•				
Safety Timer	0	20 hours	·		ITC JEITA Setting		
Safety Timer I	nable 🚯	1-Enable	-)			
♥ Charge P	arameters						

Figure 4: MP2651 Basic Settings

The general settings include the PWM switching frequency, battery cell count, safety charge timer, the charge mode control and DC/DC converter control (see Figure 5).

0	General Setting					
F	WM Frequency	0		600	•	kHz
E	Battery Cell Count			2	•	Cell
0	Charge Enable	0	1-0	Charge Enable	•	
	DC/DC Enable	0		1-Enable	•	
S	Safety Timer			20 hours	•	
5	afety Timer Enable			1-Enable	•	

Figure 5: General Settings

Note that the recommended switching frequency (f_{SW}) is between 500kHz and 800kHz.

Charge Mode Settings

The charge mode parameters include the battery-full voltage, fast charge current, pre-charge threshold, recharge threshold, trickle charge current, pre-charge current, and termination current. The power path management parameters include the input minimum voltage limit and input current limit (see Figure 6).

Charge Paramet	ers			
Battery Full Voltage	0	8400	•	mV
Fast Charge Current	0	2000	•	mA
Pre-charge Threshold	0	6	•	V
Recharge Threshold	0	200	•	mV
Trickle Charge Current	0	100	•	mA
Pre-charge Current	0	400	•	mA
Termination Current	0	200	•	mA
Input Minimum Voltage Limit	0	4560	•	mV
Input Current Limit	0	500	•	mA

Figure 6: Charge Mode Settings

All parameters can be input using the keyboard. Figure 7 shows the JEITA parameters for battery thermal protection.

NTC JEITA Setting	
Hot Threshold	10-23.0%;(60°C) ▼
Warm Threshold	01-32.6%;(45°C) ▼
Cool Threshold	10-64.8%;(10°C) ▼
Cold Threshold	01-74.2%;(0°C) ▼
Charge Action when Warm	01-VBATT_REG 🔻
Charge Action when Cool	10-ICC 🔻
VBATT_REG Setting when Warm/Cool	320 • mV
ICC Setting when Warm/Cool	01-1/4 times 🔻
NTC Protection Enable	1-Enable -

Figure 7: Battery Thermal Protection Parameters

Source Mode Settings

The MP2651 can work in source mode. In source mode, the battery supplies power to the IN pin. The discharge parameters include the SRC mode (enabled or disabled), SRC output voltage, and SRC output current limit (see Figure 8).

Source Mode Setting	g and a second sec		
SRC Mode Enable	0-Disable Discharge	•	
SRC Output Voltage	4980	•	mV
SRC Ouput Current Limit	2000	•	mA

Figure 8: Discharge Parameters

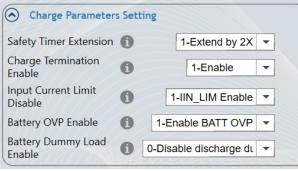
CONFIG Page

Figure 9 shows the MP2651's configuration settings.

General Setting			Watchdog Timer			
Input Current Sense Resistor	0-10mΩ	-	Watchdog Timer	0	00-Disable Timer	•
Battery Current Sense	β 0-10mΩ	-	Watchdog Feed Bit	6	0-Normal	•
Resistor	υ-10mΩ	<u> </u>	Watchdog Timer	-		_
Charge Parameter	rs Setting		Setting when Input Absent	1	1-Enable	•
Safety Timer Extension	1-Extend by 2X	-	Other Protections			
Charge Termination Enable	1-Enable	-	Input Under Voltage Threshold	0	3.2	- V
Input Current Limit Disable	1-IIN_LIM Enable	-	Input Over Voltage Threshold	0	22.4	▼ V
Battery OVP Enable	1-Enable BATT OVP	•	Input Over Voltage	0	0-100ns	-
Battery Dummy Load	O-Disable discharge dt	-	Deglitch Time	•		
Enable			Temperature Sens	e		
 Battery Impedance 	e Compensation		ADC			
Mode Configuratio	on		0			_
SRC Mode						

Figure 9: MP2651 Configuration Settings

General Settings


Figure 10 shows how to select the current-sense resistors.

General Setting		
Input Current Sense Resistor	0-10mΩ	•
Battery Current Sense Resistor	0-10mΩ	•

Figure 10: Setting the Current-Sense Resistors

Charge Protection Settings

Safety timer extension control enables the user to control parameters such as charge termination, the input current limit, battery over-voltage protection (OVP), and the battery dummy load (when V_{BATT} is below 10V) (see Figure 11 on page 8).

Figure 11: Charge Parameter Settings

1. Select the battery impedance compensation and the voltage limit (see Figure 12).

Batter Impeda	ance Comper	sation	
Battery Impedance	0	-	mΩ
Voltage			
Compensation	0	•	mV
Limit			

Figure 12: Battery Impedance Compensation

2. Select the external MOSFET mode configuration (input connection) (see Figure 13).

Mode Configuration	-	
ACGATE force On or not	0-Not force ACGATE	•
ACGATE driver enable or not	1-Enable ACGATE	•

Figure 13: External MOSFET Mode Configuration

3. Select the parameters for SRC mode control, such as the SRC output voltage configuration and additional protections (see Figure 14).

SRC Mode	
SRC Output Voltage Configuration	0-By register bit -
SRC Output Voltage Offset	0 v
Battery Low Voltage Protection Enable	1-Enable 🔻
Battery Low Voltage Threshold	6 🗸 V
DC/DC Action when Battery Low Voltage	0-INT
Battery Discharge Current Limit	6400 v mA
Battery Discharge Current Limit Enable	0-Disable 🔻

Figure 14: SRC Mode Configurations

4. Select the watchdog timer settings (see Figure 15).

Figure 15: Watchdog Timer Settings

Additional Protections

Additional threshold settings, such as the input under-voltage threshold, input over-voltage threshold, and input over-voltage deglitch time, can also be set (see Figure 16)

Other Protections	5		
Input Under Voltage Threshold	0	3.2	▼ V
Input Over Voltage Threshold	0	22.4	▼ V
Input Over Voltage Deglitch Time	0	0-100ns	-

Figure 16: Additional Protections

1. Select the parameters for temperature-sense control. The TS/IMON pin can be set as either the temperature-sense pin (TS) or the battery monitor pin (IMON) (see Figure 17).

 Temperature 	Sense	
TS/IMON Pin Function	0-TS	Ŧ
TS Sense Point	1-Battery FET	-
TS Function Enable	1-Enable	•
TS Function Action Enable when Fault	1-INT and TS a	•
TS Temperature Threshold	100-14.3%;(80°	•
Thermal loop Enable	1-Enable	•
Thermal Loop Temperature Threshold	111-120°C	•

Figure 17: Temperature-Sense Settings

2. Select the ADC operation mode settings (Figure 18).

ADC	
ADC Conversion Behavior	0-One-shot Cor 💌
ADC Conversion One-shot Enable	1-Enable ADC 💌

Figure 18: ADC Settings

REGISTER MAP Page

The REGISTER MAP page shows all the registers results, which are matched with the display on BASIC and CONFIG page (see Figure 19).

Command code	Command name	Register Value
05H	Device Address Setting	0208
06H	Input Minimum Voltage Limit Setting	0039
07H	Minimum System Voltage Threshold	001E
08H	Input Current Limit Setting	000A
09H	Output Voltage Setting	00F9
0AH	Battery Impedance Compensation and Output Current Limit Setting	0028
OBH	Battery Low Voltage Setting and Battery Discharge Current Regulation	3080
0CH	JEITA Action Setting	3410
0DH	Temperature Protection Setting	B399
0EH	Configuration Register 0	0010
OFH	Configuration Register 1	F244
10H	Configuration Register 2	0A40
11H	Configuration Register 3	60E8
12H	Configuration Register 4	3C53
14H	Charge Current Setting	0A00

Figure 19: MP2651 Register Map Sheet

MONITOR Page

The MONITOR page reports certain devices statuses (see Figure 20).

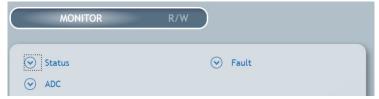


Figure 20: MP2651 Monitor Sheet

The MONITOR page indicates the general statuses (see Figure 21 on page 11).

Status	
MD_STAT	01-Operation Mode
PG_STAT	1-Power Good
SWITCH_STAT	11-BOOST
BATTMISS_STAT	0-Normal
Address Setting STAT	0-Single port
CHG_STAT	011-CC charge
VIN_MIN_STAT	0-Not in input voltage limit
IIN_LIM_STAT	1-In input current limit
TJREG_STAT	0-Not in thermal regulation loop
IIN_DPM	500 mA

Figure 21: General Statuses

The MONITOR page also reports the fault statuses (see Figure 22).

S Fault	
BFET_OC_FAULT	0-Normal
TS_FAULT	0-Normal
VIN_SRC_OV	0-Normal
VIN_SRC_UV	0-Normal
VIN_CHG_OV	0-Normal
VADP_OV	0-Normal
VBATT_OV	0-Normal
VBATT LOW	0-Normal
WTD_EXP	0-Normal
CHG TMR_EXP	0-Normal
THERM_SHDN	0-Normal
NTC_FAULT	000-Normal

Figure 22: Fault Statuses

The MONITOR page indicates the ADC statuses (see Figure 23).

ADC		
VIN	4800	mV
IIN	525	mA
VBATT	8050	mV
IBATT	237.5	mA
NTC	48.044	%
TS	47.946	%
TJ	29.991	°C
IBATT_DIS	175	mA
VIN_SRC	0	mV
IIN_SRC	0	mA

Figure 23: ADC Statuses

EVALUATION BOARD SCHEMATIC

P

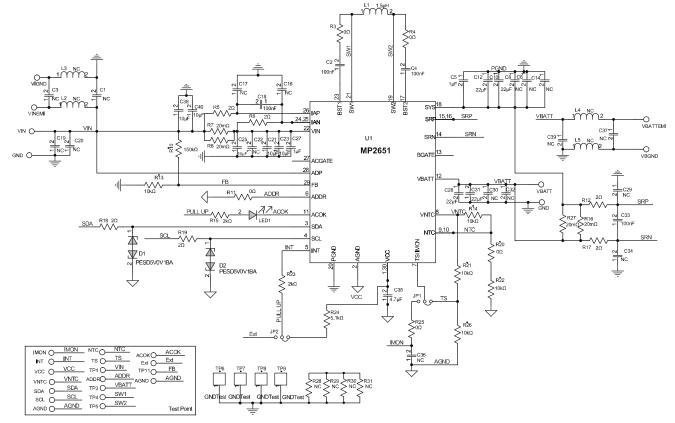
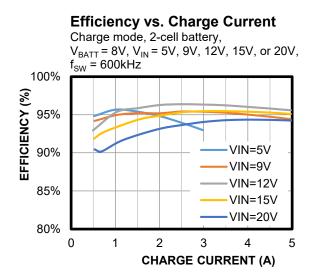
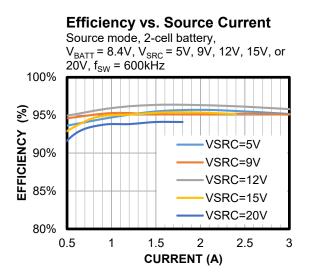


Figure 24: Evaluation Board Schematic

EV2651-VT-00A BILL OF MATERIALS

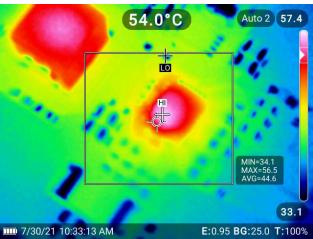

Qty	Ref	Value	Description	Package	Manufacturer	Manufacturer PN
4	L2, L3, L4, L5	NC	Description	Гаскаде	Manufacturer	
5	R3, R4, R11, R20, R25	0Ω	Film resistor, 5%;	0603	Yageo	RC0603JR-070RL
6	R5, R6, R12, R17, R18, R19	2Ω	Film resistor, 5%;	0603	Liz	CR0603JA02R0G
4	R7, R8, R16, R27	20mΩ	Film resistor, 1%, 1/4W	1206	Cyntec	RL1632H-R020-FN
1	R10	150kΩ	Film resistor, 5%, 1/10W	0603	Yageo	RC0603JR- 07150KL
5	R13, R14, R21, R22, R26	10kΩ	Film resistor, 1%, 1/10W	0603	Yageo	RC0603FR-0710KL
2	R15, R23	2kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-072KL
1	R24	5.1kΩ	Film resistor, 5%	0603	Yageo	RC0603JR-075K1L
4	R28, R29, R30, R31	NC				
10	C1, C3, C16, C17, C22, C29, C34, C36, C37, C39	NC				
4	C2, C4,C18, C33	100nF	Ceramic capacitor, 25V, X7R	0603	Wurth	885012206071
2	C5, C27	1µF	Ceramic capacitor, 25V, X5R	0402	Murata	GRM155R61E105K A12
7	C6, C8, C14, C19, C20, C30, C32	NC				
4	C10, C12, C28, C31	22µF	Ceramic capacitor, 25V, X5R	0805	Murata	GRM21BR61E226M E44L
5	C21, C23, C25, C38, C40	10µF	Ceramic capacitor, 25V, X7S	0805	Murata	GRM21BC7E106KE 11L
1	C35	4.7µF	Capacitor, 25V, X5R	0603	Murata	GRM188R61E475K E11D
1	LED1	Red	Red LED	0805	Bright LED	BL-HUE35A-AV- TRB
2	D1, D2	NC				
13	ACOK, ADDR, AGND, AGND, Ext, IMON, INT, NTC, TS, VCC, VNTC, SCL, SDA	2.54mm	Pin header	DIP	Any	
9	TP6 (GND), TP7 (GND), TP8 (GND), TP9 (GND), TP1, TP11, TP4, TP5, TP3	TH	Test point	DIP	Any	
4	VIN, VBATT, GND, GND	2mm	Connector	DIP	Any	
4*	VINEMI, VBATTEMI, VIGND, VBGND	2mm	Connector	DIP	Any	
2	JP1, JP2	2.54mm	Pin header	DIP	Any	
2	JP1, JP2	2.54mm	Mini jumper	Shunt	Any	
1	U1	MP2651	Buck-boost charger	TQFN-30 (4mmx 5mm)	MPS	MP2651GVT-000A
1	L1	1.5µH	Inductor, 1.5μH, 9.7mΩ, 9A	SMD	MPS	MPL-AL5030-1R5


MonolithicPower.com

MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2024 MPS. All Rights Reserved.

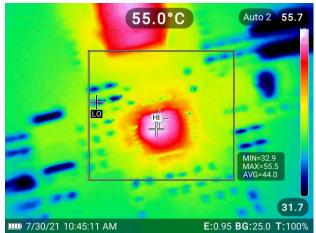
EVB TEST RESULTS

Performance curves and waveforms are tested on the evaluation board. The default setting is for a 2-cell battery, $I_{IN \ LIM} = 3A$, $V_{BATT} = 7.4V$, $I_{CC} = 3A$, $T_A = 25^{\circ}C$, unless otherwise noted.

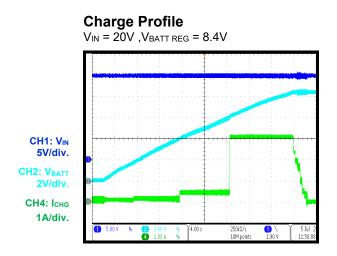


EVB TEST RESULTS (continued)

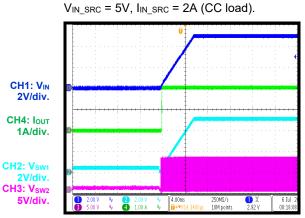
Performance curves and waveforms are tested on the evaluation board. The default setting is for a 2-cell battery, $I_{IN \ LIM} = 3A$, $V_{BATT} = 7.4V$, $I_{CC} = 3A$, $T_A = 25^{\circ}C$, unless otherwise noted.


Thermal Performance

Charge mode, V_IN = 20V, V_BATT = 8.2V, I_{CC} = 5A, no forced airflow, T_{CASE} = 56.5 $^\circ\text{C}$

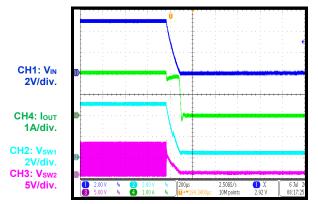

Thermal Performance

Source mode, V_{BATT} = 8.2V, V_{IN_SRC} = 20V, I_{IN_SRC} = 1.8A, no forced airflow, T_{CASE} = 55.5°C



EVB TEST RESULTS (continued)

Performance curves and waveforms are tested on the evaluation board. The default setting is for a 2-cell battery, $I_{IN_LIM} = 3A$, $V_{BATT} = 7.4V$, $I_{CC} = 3A$, $T_A = 25^{\circ}C$, unless otherwise noted.



Source Mode Enabled

Source Mode Disabled

 $V_{IN_SRC} = 5V$, $I_{IN_SRC} = 2A$ (CC load).

PCB LAYOUT

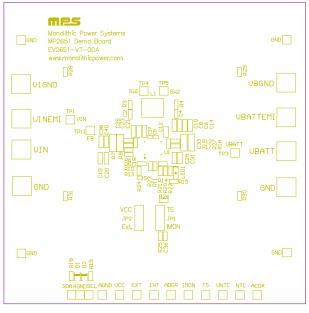


Figure 25: Top Silk

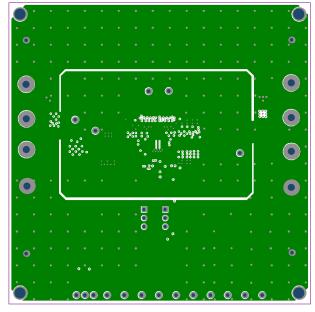


Figure 27: Mid-Layer 1

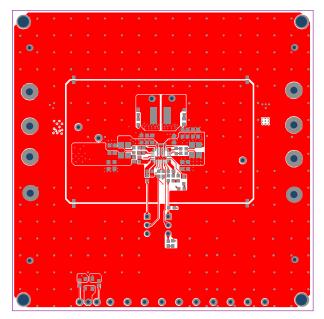


Figure 26: Top Layer

Figure 28: Mid-Layer 2

PCB LAYOUT (continued)

П

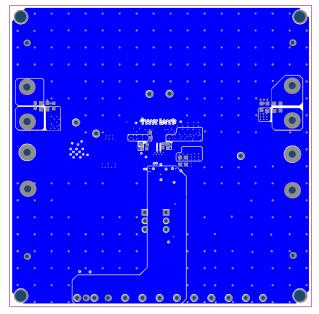


Figure 29: Bottom Layer

Figure 30: Bottom Silk

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	2/15/2022	Initial Release	-
		Updated the MPS IC Number from MP2651GVT-0000 to MP2651GVT-000A.	2
1.1	1/26/2024	 Updated the following in Figure 24 to be consistent with the EVB images and BOM: C25 = 10μF R14 = 10kΩ R20 = 0Ω Updated the VBEMI connector to VBATTEMI Updated the PGND connectors to GND Updated FB to TP11 Updated TP2 to ADDR Added the test points, TP4 (SW1) and TP5 (SW2) Removed the ACGATE test point Added R28 = R29 = R30 = R31 = NC 	12
		Updated GND (4) to TP6 (GND), TP7 (GND), TP8 (GND), and TP9 (GND), and updated the MP2651's manufacturer PN from MP2651GVT-0000 to MP2651GVT-000A in the EV2651-VT-00A Bill of Materials section.	13

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.