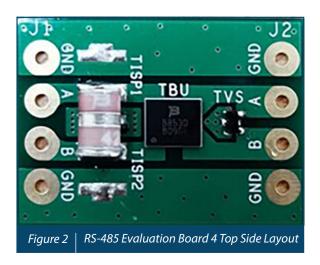

DESIGN NOTE

RS-485 Port Protection Evaluation Board 4

INTRODUCTION


This evaluation board serves as an aid in evaluating circuit protection solutions for RS-485 serial ports. It uses a Bourns® TBU® High-Speed Protector (HSP), a Gas Discharge Tube (GDT) Surge Arrestor and a Transient Voltage Suppressor (TVS) that are designed to meet the required industry standards on RS-485 port interfaces. The recommended Bourns® TBU® HSP solution offers enhanced performance features over competing technologies. These performance features can help engineers improve the surge and transient protection level on RS-485 ports, while allowing them to place the entire circuit protection solution into a smaller PCB area as compared to alternative solutions. The Bourns® RS-485 Evaluation Board 4 measures 35 mm x 25 mm x 0.85 mm, and is manufactured using an FR-4 PCB with nickel-gold pad plating on the top and bottom sides.

Bourns' three previous versions of the RS-485 Evaluation Boards (EVB1, 2 and 3) used the Bourns® Model TBU-CA, which is a single-channel device. Because the RS-485 interface has two lines, this new evaluation board provides further PCB area reduction by utilizing the new Bourns® Model TBU-DF HSP, which is a dual-channel device. This latest evaluation board is the smallest RS-485 evaluation board offering a more compact solution helping designers save valuable PCB real estate.

HOW TO CONNECT THE EVALUATION BOARD FOR TEST SET-UP

- · Connect J1A and J1B to the exposed lines.
- Connect J2A and J2B to the RS-485 IC device.

Table 1	RS-485 Evaluation Board 4 Bill of Materials							
No.	Part Number	Qty.	Description	Product				
1	TBU-DF085-300-WH	1	850 V 300 mA Dual Channel Bidirectional TBU® HSP	TBU® HSP				
2	2030-42T-SM-RPLF	1	Fast Acting, 3-Electrode 420 V Gas Discharge Tube	GDT				
3	CDS0T23-SM712	1	SOT23 12 V Dual Bidirectional TVS Diode	TVS Diode				

The default configuration of this board uses a TBU $^{\circ}$ HSP, a GDT and a TVS diode.

The board allows different configurations:

- One Model 2030-42T-SM-RPLF could be replaced by two Model TISP4350J3BJR-S
- One Model 2030-42T-SM-RPLF could be replaced by two Model TISP4500H3BJR-S
- One Model 2030-42T-SM-RPLF could be replaced by one Model 2036-07-SM-RPLF

RS-485 EVALBOARD 4 CONFIGURATION

Protection of RS-485 ports are typically required in three scenarios. The first scenario is for exposed and harsh environments, such as outdoor installations where induced lightning surges are a threat. Customers for these types of applications are familiar with the ITU-T K.20/21/44 recommendations (specifying the 10/700 µs voltage, surge) or with the Telcordia GR-1089-CORE or IEC 61000-4-5 standard (specifying the CWG 8/20 µs current, 1.2/50 µs voltage surges).

The second scenario accommodates long cable runs where multiple lines (data and AC power) are used in the same trucking or cabling. During a fault incidence, the AC power lines may come in contact with the signal lines. These applications require 230 V_{AC} tests specified in ITU-T K.20/21/44, or 120 V_{AC} tests specified in Telcordia GR-1089-CORE. There are applications with lower voltage application/installation threats, but where the standardized $120 \, V_{AC}$ or $230 \, V_{AC}$ tests are still used to test the robustness of the protection solution.

The third scenario protects against installation errors and faults. For example, 12 V_{DC} or 24 V_{DC} lines are frequently run together with the signal lines. The cable runs may include other exposed lines that can induce lightning surges onto RS-485 ports. In addition, there is the risk of deliberate and malicious attacks on RS-485 ports by unauthorized users. All of these can typically be taken care of with a protection solution that meets the higher protection levels offered in scenarios one and two.

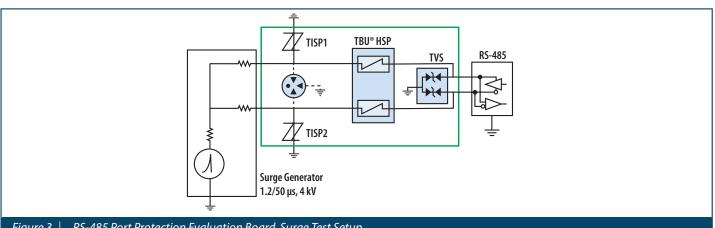
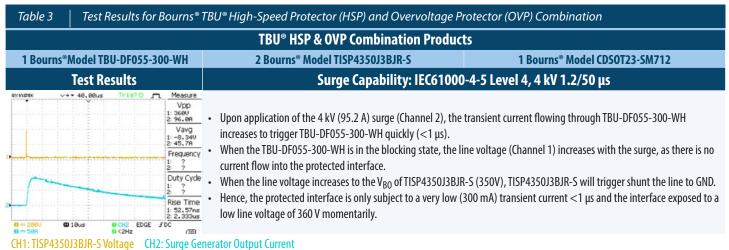

This evaluation board brief will highlight options for two levels of lightning surges that use a TISP® Thyristor Surge Protector for the lower surge level and a GDT for the higher surge level. By varying the chosen voltage, this brief will also demonstrate that AC power cross up to 120 V_{AC} or 230 V_{AC} can be accommodated by a Bourns® Model TBU-DF based RS-485 protection solution.

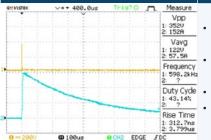
Table 2 Bourns® TBU® High-Speed Protector (HSP) and Overvoltage Protector (OVP) Combination									
OVP Part Number	OVP Surge Rating	V _{DRM} (V)	V _{BO} (V) (1000 V/μs)	TBU® HSP Part Number	Surge Capability	AC Power Cross Capability			
TISP4350J3BJR-S	800 A, 8/20 μs 350 A, 5/310 μs	275	350	TBU-DF055-300-WH	IEC61000-4-5, Level 4, 4 kV 1.2/50 μs, 42 0hm ITU K.20/21/45 Enhanced Lighting, 6 kV 10/700 μs, 40 0hm	120 V _{AC}			
2030-42T-SM	500 A, 8/20 μs 150 A, 5/310 μs	360	850	TBU-DF085-300-WH		230 V _{AC}			
TISP4500H3BJR-S	500 A, 8/20 μs 200 A, 5/310 μs	350	500	TBU-DF055-300-WH		230 V _{AC}			
2036-07-SM	10,000 A, 8/20 μs 2.000 A, 5/310 μs	350	750	TBU-DF085-300-WH		-			

Overvoltage Protector (OVP) Selection:

- Breakover voltage (V_{BO}) or impulse breakdown voltage (V_{imp}) of the overvoltage protector (OVP) should be below the maximum Peak Impulse Voltage (V_{imp}) of the TBU® HSP.
- V_{BO} or V_{imp} of the OVP should be above the maximum voltage of AC power cross (peak of V_{AC}).


SURGE CAPABILITY

RS-485 Port Protection Evaluation Board Surge Test Setup Figure 3


www.bourns.com 8/18 • e/K1840

Below are graphs of different surge tests performed on Bourns' RS-485 Evaluation Board 4 based on the various standards requirements.

Surge Capability: IEC61000-4-5 Level 4, 6 kV 10/700 µs

- Upon application of the 6 kV (150 A) surge (Channel 2), the transient current flowing through TBU-DF055-300-WH increases to trigger TBU-DF055-300-WH quickly ($<1 \mu s$).
- When the TBU-DF055-300-WH is in the blocking state, the line voltage (Channel 1) increases with the surge, as there is no current flow into the protected interface.
- When the line voltage increases to the V_{BO} of TISP4350J3BJR-S (350 V), TISP4350J3BJR-S will trigger shunt the line to GND.
- Hence, the protected interface is only subject to a very low (300 mA) transient current $<1 \,\mu s$ and the interface exposed to a low line voltage of 352 V momentarily.

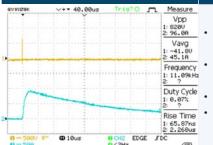

CH1: TISP4350J3BJR-S Voltage CH2: Surge Generator Output Current

Table 4 Test Results for Bourns® TBU® High-Speed Protector (HSP) and Overvoltage Protector (OVP) Combination **TBU® HSP & OVP Combination Products** 1 Bourns® Model TBU-DF055-300-WH 1 Bourns® Model 2030-42T-SM-RPLF

Test Results

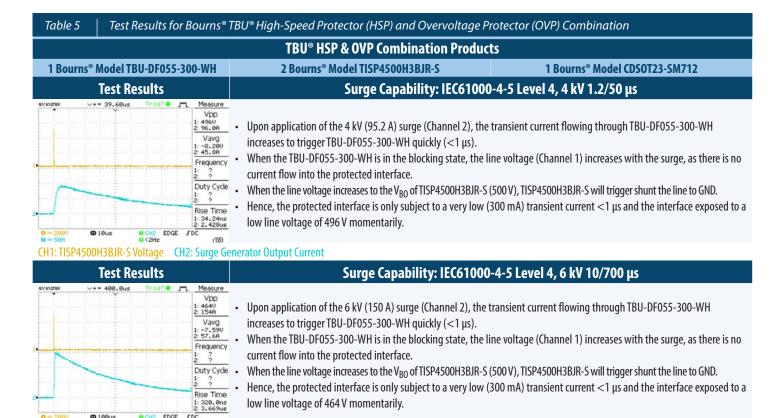
1 Bourns® Model CDS0T23-SM712

Surge Capability: IEC61000-4-5 Level 4, 4 kV 1.2/50 µs

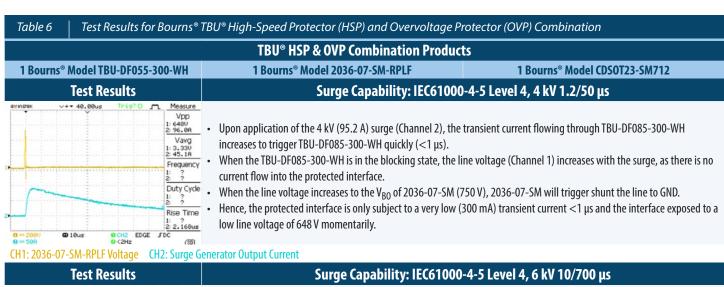
- Upon application of the 4 kV (95.2 A) surge (Channel 2), the transient current flowing through TBU-DF085-300-WH increases to trigger TBU-DF085-300-WH quickly ($<1 \mu s$).
- When the TBU-DF085-300-WH is in the blocking state, the line voltage (Channel 1) increases with the surge, as there is no current flow into the protected interface.
- When the line voltage increases to the V_{BO} of 2030-42T-SM (850 V), 2030-42T-SM will trigger shunt the line to GND.
- Hence, the protected interface is only subject to a very low (300 mA) transient current $<1 \,\mu s$ and the interface exposed to a low line voltage of 820 V momentarily.

CH1: 2030-42T-SM-RPLF Voltage **CH2: Surge Generator Output Current**

Surge Capability: IEC61000-4-5 Level 4, 6 kV 10/700 µs


- Upon application of the 6 kV (150 A) surge (Channel 2), the transient current flowing through TBU-DF085-300-WH increases to trigger TBU-DF085-300-WH quickly ($<1 \mu s$).
- When the TBU-DF085-300-WH is in the blocking state, the line voltage (Channel 1) increases with the surge, as there is no current flow into the protected interface.
- When the line voltage increases to the V_{BO} of 2030-42T-SM (850 V), 2030-42T-SM will trigger shunt the line to GND.
- Hence, the protected interface is only subject to a very low (300 mA) transient current <1 µs and the interface exposed to a low line voltage of 560 V momentarily.

CH1: 2030-42T-SM-RPLF Voltage CH2: Surge Generator Output Current


EDGE

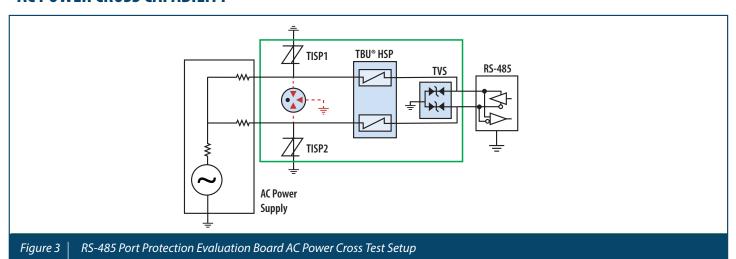
Rise Time

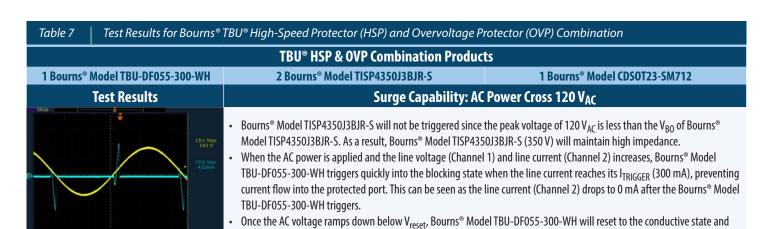
www.bourns.com 8/18 • e/K1840

CH1: TISP4500H3BJR-S Voltage CH2: Surge Generator Output Current

Test Results

| Comparison | Co


- Upon application of the 6 kV (150 A) surge (Channel 2), the transient current flowing through TBU-DF085-300-WH
 increases to trigger TBU-DF085-300-WH quickly (<1 µs).


 When the TBU-DF085-300-WH is in the blocking state, the line voltage (Channel 1) increases with the surge, as there is no current flow into the protected interface.
 - When the line voltage increases to the V_{BO} of 2036-07-SM (750 V), 2036-07-SM will trigger shunt the line to GND.
 - Hence, the protected interface is only subject to a very low (300 mA) transient current <1 μs and the interface exposed to a low line voltage of 592 V momentarily.

CH1: 2036-07-SM-RPLF Voltage CH2: Surge Generator Output Current

www.bourns.com 8/18 • e/K1840

AC POWER CROSS CAPABILITY

allow current flow again.

CH1: A TBU Voltage CH2: CH2: Line A TBU Current

www.bourns.com

BOURNS®

Americas: Tel +1-951 781-5500 Email americus@bourns.com EMEA: Tel +36 88 520 390 Email eurocus@bourns.com Asia-Pacific: Tel +886-2 256 241 17 Email asiacus@bourns.com