

Specifications

Temperature Coefficient
Short-time Overload
Min. Insulation Resistance
Dielectric Withstanding Voltage
Terminal Bending
Soldering Heat
Min. Solderability
Temperature Cycling
Humidity (Steady State)
Load Life in Humidity
Load Life

Features

Compliant

- Small size and lightweight
- Suitable for both flow and reflow soldering
- Reduction of assembly costs and matching with placement machines

Standard : 2, 5 and 10% - A series

$$
: 1 \%-B \text { series }
$$


```
    11\Omega to 100\Omega \leq }\pm200 PPM/ / C C
    > 100\Omega \leq t100PPM/ }\mp@subsup{}{}{\circ}\textrm{C}(0201>100\Omega\leq\pm200PPM/ / C C)
: }\pm5%:\pm(2%+0.1\Omega) Max
\pm1% : \pm(1% + 0.1 \Omega) Max.
: 1,000M\Omega
: No evidence of flashover, mechanical damage, arcing or insulation breakdown
: }\pm(1%+0.05\Omega) Max
: Resistance change rate is }\pm(1%+0.05\Omega) Max
: 95% coverage
: }\pm5% : \pm(1% + 0.05\Omega) Max.
    \pm1% : \pm(0.5% + 0.05\Omega) Max.
: \pm5% : }\pm(3%+0.1\Omega) Max
    \pm1% : }\pm(0.5%+0.1\Omega) Max
    : \pm5% : \pm(3% + 0.1\Omega) Max.
    \pm1%: \pm(1% + 0.1\Omega) Max.
: \pm5% : \pm(3% + 0.1\Omega) Max.
    \pm1%: }\pm(1%+0.1\Omega) Max
```


Construction

Power Rating and Dimension

Newark.com/multicomp-pro
Farnell.com/multicomp-pro
Element14.com/multicomp-pro

Thick Film Chip Resistors

multicomprRo

	Power Rating at $70^{\circ} \mathrm{C}$	Max. Working Voltage	Max. Overload Voltage	Operating Temperature (${ }^{\circ} \mathrm{C}$)	Tolerance \%	Resistance Range	Standard Series	Dimension (mm)				
Type								L	W	H	$\ell 1$	$\ell 2$
0402	1/16W	$\begin{gathered} 1 \mathrm{~A} \\ 50 \mathrm{~V} \end{gathered}$	$\begin{gathered} 2 \mathrm{~A} \\ 100 \mathrm{~V} \end{gathered}$	-55 to +155	Jumper	$<50 \mathrm{~m} \Omega$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} 1 \\ \pm 0.1 \end{gathered}$	$\begin{gathered} 0.5 \\ \pm 0.05 \end{gathered}$	$\begin{gathered} 0.35 \\ \pm 0.05 \end{gathered}$	$\begin{gathered} 0.2 \\ \pm 0.1 \end{gathered}$	$\begin{aligned} & 0.25 \\ & \pm 0.1 \end{aligned}$
					± 1	$10 \Omega-1 \mathrm{M} \Omega$						
					± 2	$1 \Omega-1 \mathrm{M} \Omega$						
					± 5	$1 \Omega-1 \mathrm{M} \Omega$						
0603	$\begin{gathered} \text { 1/10W-S } \\ 1 / 16 \mathrm{~W} \end{gathered}$	$\begin{gathered} 1 \mathrm{~A} \\ 50 \mathrm{~V} \end{gathered}$	$\begin{gathered} 2 \mathrm{~A} \\ 100 \mathrm{~V} \end{gathered}$	-55 to +155	Jumper	$<50 \mathrm{~m} \Omega$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} 1.6 \\ \pm 0.1 \end{gathered}$	$0.8_{-0.1}^{+0.15}$	$\begin{aligned} & 0.45 \\ & \pm 0.1 \end{aligned}$	$\begin{gathered} 0.3 \\ \pm 0.2 \end{gathered}$	$\begin{gathered} 0.3 \\ \pm 0.2 \end{gathered}$
					± 1	$10 \Omega-1 \mathrm{M} \Omega$						
					± 2	$1 \Omega-1 \mathrm{M} \Omega$						
					± 5	$1 \Omega-1 \mathrm{M} \Omega$						
0805	$\begin{aligned} & \text { 1/8W-S } \\ & 1 / 10 \mathrm{~W} \end{aligned}$	$\begin{gathered} 2 \mathrm{~A} \\ 150 \mathrm{~V} \end{gathered}$	$\begin{gathered} 4 \mathrm{~A} \\ 300 \mathrm{~V} \end{gathered}$	-55 to +155	Jumper	$<50 \mathrm{~m} \Omega$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \end{aligned}$		1.25	$\begin{aligned} & 0.55 \\ & \pm 0.1 \end{aligned}$	$\begin{gathered} 0.4 \\ \pm 0.2 \end{gathered}$	
					± 1	$10 \Omega-1 \mathrm{M} \Omega$		$\begin{gathered} 2 \\ \pm 0.15 \end{gathered}$				$\begin{gathered} 0.4 \\ \pm 0.2 \end{gathered}$
					± 2	$1 \Omega-1 \mathrm{M} \Omega$						
					± 5	$1 \Omega-1 \mathrm{M} \Omega$						
1206	$\begin{gathered} \text { 1/4W-S } \\ 1 / 8 \mathrm{~W} \end{gathered}$	$\begin{gathered} 2 \mathrm{~A} \\ 200 \mathrm{~V} \end{gathered}$	$\begin{gathered} 4 \mathrm{~A} \\ 400 \mathrm{~V} \end{gathered}$	-55 to +155	Jumper	$<50 \mathrm{~m} \Omega$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} 3.1 \\ \pm 0.15 \end{gathered}$	$1.55_{-0.1}^{+0.15}$	$\begin{aligned} & 0.55 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & 0.45 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & 0.45 \\ & \pm 0.2 \end{aligned}$
					± 1	$10 \Omega-1 \mathrm{M} \Omega$						
					± 2	$1 \Omega-1 \mathrm{M} \Omega$						
					± 5	$1 \Omega-1 \mathrm{M} \Omega$						
1210	$\begin{gathered} 1 / 3 \mathrm{~W}-\mathrm{S} \\ 1 / 4 \mathrm{~W} \end{gathered}$	$\begin{gathered} 2 \mathrm{~A} \\ 200 \mathrm{~V} \end{gathered}$	$\begin{gathered} 4 \mathrm{~A} \\ 400 \mathrm{~V} \end{gathered}$	-55 to +155	Jumper	$<50 \mathrm{~m} \Omega$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} 3.1 \\ \pm 0.1 \end{gathered}$	$\begin{gathered} 2.6 \\ \pm 0.15 \end{gathered}$	$\begin{aligned} & 0.55 \\ & \pm 0.1 \end{aligned}$	$\begin{gathered} 0.5 \\ \pm 0.25 \end{gathered}$	$\begin{gathered} 0.5 \\ \pm 0.2 \end{gathered}$
					± 1	$10 \Omega-1 \mathrm{M} \Omega$						
					± 2	$1 \Omega-1 \mathrm{M} \Omega$						
					± 5	$1 \Omega-1 \mathrm{M} \Omega$						
2010	$\begin{gathered} 3 / 4 \mathrm{~W}-\mathrm{S} \\ 1 / 2 \mathrm{~W} \end{gathered}$	$\begin{gathered} 2 \mathrm{~A} \\ 200 \mathrm{~V} \end{gathered}$	$\begin{gathered} 4 \mathrm{~A} \\ 400 \mathrm{~V} \end{gathered}$	-55 to +155	Jumper	$<50 \mathrm{~m} \Omega$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} 5 \\ \pm 0.1 \end{gathered}$	$\begin{gathered} 2.5 \\ \pm 0.15 \end{gathered}$	$\begin{aligned} & 0.55 \\ & \pm 0.1 \end{aligned}$	$\begin{gathered} 0.6 \\ \pm 0.25 \end{gathered}$	$\begin{gathered} 0.5 \\ \pm 0.2 \end{gathered}$
					± 1	$10 \Omega-1 \mathrm{M} \Omega$						
					± 2	$1 \Omega-1 \mathrm{M} \Omega$						
					± 5	$1 \Omega-1 \mathrm{M} \Omega$						
2512	1W	$\begin{aligned} & 2.5 \mathrm{~A} \\ & 200 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5 \mathrm{~A} \\ 400 \mathrm{~V} \end{gathered}$	-55 to +155	Jumper	$<50 \mathrm{~m} \Omega$	$\begin{aligned} & B \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 6.35 \\ & \pm 0.1 \end{aligned}$	$\begin{gathered} 3.2 \\ \pm 0.15 \end{gathered}$	$\begin{aligned} & 0.55 \\ & \pm 0.1 \end{aligned}$	$\begin{gathered} 0.6 \\ \pm 0.25 \end{gathered}$	$\begin{gathered} 0.5 \\ \pm 0.2 \end{gathered}$
					± 1	$10 \Omega-1 \mathrm{M} \Omega$						
					± 2	$1 \Omega-1 \mathrm{M} \Omega$						
					± 5	$1 \Omega-1 \mathrm{M} \Omega$						

Derating Curve

Newark.com/multicomp-pro
Farnell.com/multicomp-pro
Element14.com/multicomp-pro

Thick Film Chip Resistors

multicomprRo

Multiplier Code (for 0603 1\% marking)

Code	A	B	C	D	E	F	G	H	X	Y	Z
Multiplier	10^{0}	10^{1}	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{-1}	10^{-2}	$10-3$

Standard B Series Resistance Value Code (for 0603 1\% marking)

Ω Value	Code								
100	1	162	21	261	41	422	61	681	81
102	2	165	22	267	42	432	62	698	82
105	3	169	23	274	43	442	63	715	83
107	4	174	24	280	44	453	64	732	84
110	5	178	25	287	45	464	65	750	85
113	6	182	26	294	46	475	66	768	86
115	7	187	27	301	47	487	67	787	87
118	8	191	28	309	48	499	68	806	88
121	9	196	29	316	49	511	69	825	89
124	10	200	30	324	50	523	70	845	90
127	11	205	31	332	51	536	71	866	91
130	12	210	32	340	52	549	72	887	92
133	13	215	33	348	53	562	73	909	93
137	14	221	34	357	54	576	74	931	94
140	15	226	35	365	55	590	75	953	95
143	16	232	36	374	56	604	76	976	96
147	17	237	37	383	57	619	77	-	-
150	18	243	38	392	58	634	78	-	-
154	19	249	39	402	59	649	79	-	-
158	20	255	40	412	60	665	80	-	-

Marking on the Resistors Body:

- For 0402 size, no marking on the body due to the small size of the resistor.
- $\pm 5 \%$ tolerance product. (Including resistance values less than 1Ω; both 1% and 5%) The marking is 3 digits, the first 2 digits are the significant figures of the resistance and the 3rd digit denotes number of zeros.
$153=15,000 \Omega=15 \mathrm{~K} \Omega 120=12 \Omega$

Below 10Ω shown as this: 6 R8 $=6.8 \Omega$

0.1Ω to 0.99Ω shown as this: $\mathrm{R} 33=0.33 \Omega$

Newark.com/multicomp-pro
Farnell.com/multicomp-pro
Element14.com/multicomp-pro
multicomprno

- $\pm 1 \%$ tolerance marking of case size 0805 and bigger is 4 digits, the first 3 digits are the significant figures of the resistance and the 4th digit denotes number of zeros.
$2372=23700 \Omega=23.7 \mathrm{~K} \Omega ; 1430=143 \Omega \quad$ Below 10Ω shown as this: $3 R 24=3.24 \Omega \quad 0.1 \Omega$ to 0.99Ω shown as this: $\mathrm{R} 33=0.33 \Omega$
 R33
- Standard B series values ($\pm 1 \%$ tolerance) of 0603 size. Due to the small size of the resistor's body, 3 digits marking will be used to indicate the accurate resistance value by using the Multiplier code \& Standard B Series Resistance Value Code.
$1.96 \mathrm{~K} \Omega=196 \times 10^{1} \Omega=29 \mathrm{~B}$
29B
$12.4 \boldsymbol{\Omega}=124 \times 10^{-1} \boldsymbol{\Omega}=10 \mathrm{X}$
10X
- Standard A series values which does not belong to B series values (in $\pm 1 \%$ tolerance) of 0603 size The marking is the same as 5% tolerance but marked with underline.
$\underline{122}=1200=1.2 \mathrm{~K} \Omega$
$\underline{680}=68 \Omega$

Part Number Explanation

Chip resistor types
Normal size
Small size Resistance Value
: 0402, 0603, 0805, 1206, 1210, 2010, 2512
: WG=1/16W, W2=1/2W, 1W=1W
: SA=1/10W-S, S8=1/8W-S, S4=1/4W-S, S3=1/3W-S
: A-series :
$1^{\text {st }}$ digit is " 0 "
$2^{\text {nd }} \& 3^{\text {rd }}$ digits are significant figures of the resistance
$4^{\text {th }}$ indicate the number of zeros
: B-series :
$1^{\text {st }}$ to $3^{\text {rd }}$ digits are significant figures of the resistance
$4^{\text {th }}$ digit indicate the number of zeros "J" to 0.1 , " K " to 0.01 , " L " to 0.001
Ex. 012 J to $1 \Omega 2,226 \mathrm{~K}$ to $2 \Omega 26$
Jumper : use " 0 " for 1 st to $4^{\text {th }}$ digits
: $0=$ Jumper, $F= \pm 1 \%$
Tolerance
Packing Type
Packing Quantity
Special Feature
: T = Tape / reel
$: 4=4,000$ pieces, $5=5,000$ pieces, $C=10,000$ pieces
: $\mathrm{E}=$ lead (Pb) free plating type

[^0]
[^0]: Important Notice : This data sheet and its contents (the "Information") belong to the members of the AVNET group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp Pro is the registered trademark of Premier Farnell Limited 2019.

