

SEMIPONT ${ }^{\circledR} 4$

Power Bridge Rectifiers

SKD 160

Features

- Robust plastic case with screw terminals
- Large, isolated base plate
- Blocking voltage up to 1800 V
- High surge currents
- Three phase brige rectifier
- Easy chassis mounting
- UL recognized, file no. E 63532

Typical Applications

- Three phase rectifiers for power supplies
- Input rectifiers for variable frequency drives
- Rectifiers for DC motor field supplies
- Battery charger rectifiers

1) Available in limited quantities
2) Mounted on a painted metal sheet of min. $250 \times 250 \times 1 \mathrm{~mm}$;
$R_{\text {th(c-a) }}=1,8 \mathrm{~K} / \mathrm{W}$

SKD

$\mathrm{V}_{\text {RSM }}$	$\mathrm{V}_{\text {RRM }}, \mathrm{V}_{\mathrm{DRM}}$	$\mathrm{I}_{\mathrm{D}}=160 \mathrm{~A}$ (full conduction)
V	V	$\left(\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right)$
400	400	SKD 160/04
800	800	SKD 160/08
1200	1200	SKD 160/12
1400	1400	SKD 160/14
1600	1600	SKD 160/16
1800	1800	SKD 160/18 ${ }^{1)}$

Symbol	Conditions	Values	Units
I_{D}	$\mathrm{T}_{\mathrm{c}}=85^{\circ} \mathrm{C}$	205	A
	$\mathrm{T}_{\mathrm{a}}=45^{\circ} \mathrm{C}$; chassis ${ }^{2}{ }^{2}$	30	A
	$\mathrm{T}_{\mathrm{a}}=45^{\circ} \mathrm{C} ; \mathrm{P} 1 / 200$	75	A
	$\mathrm{T}_{\mathrm{a}}=35^{\circ} \mathrm{C} ;$ P1/120F	145	A
	$\mathrm{T}_{\mathrm{a}}=35^{\circ} \mathrm{C} ; \mathrm{P} 3 / 120 \mathrm{~F}$	146	A
$\mathrm{I}_{\text {FSM }}$	$\mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; 10 \mathrm{~ms}$	1800	A
	$\mathrm{T}_{\mathrm{vj}}=150^{\circ} \mathrm{C} ; 10 \mathrm{~ms}$	1500	A
i2t	$\mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; 8,3 \ldots 10 \mathrm{~ms}$	16200	$A^{2} \mathrm{~S}$
	$\mathrm{T}_{\mathrm{vj}}=150^{\circ} \mathrm{C} ; 8,3 \ldots 10 \mathrm{~ms}$	11200	$\mathrm{A}^{2} \mathrm{~S}$
V_{F}	$\mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{F}}=300 \mathrm{~A}$	max. 1,65	V
$V_{\text {(TO) }}$	$\mathrm{T}_{\mathrm{vj}}=150^{\circ} \mathrm{C}$	max. 0,85	V
r_{T}	$\mathrm{T}_{\mathrm{vj}}=150^{\circ} \mathrm{C}$	max. 3	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {RD }}$	$\mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DRM}} ; \mathrm{V}_{\mathrm{RD}}=\mathrm{V}_{\mathrm{RRM}}$	max. 0,5	mA
	$\mathrm{T}_{\mathrm{vj}}=150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{RD}}=\mathrm{V}_{\mathrm{RRM}}$	6	mA
$\mathrm{R}_{\mathrm{th}(\mathrm{j} \mathrm{c})}$	per diode	0,65	K/W
	total	0,11	K/W
$\mathrm{R}_{\mathrm{th}(\mathrm{c}-\mathrm{s})}$	total	0,03	K/W
T_{vj}		$-40 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-40 \ldots+125$	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {isol }}$	a. c. 50 Hz ; r.m.s.; $1 \mathrm{~s} / 1 \mathrm{~min}$.	3600 (3000)	V
$\mathrm{M}_{\text {s }}$	to heatsink	5 ± 15 \%	Nm
M_{t}	to terminals	5 ± 15 \%	Nm
m		270	g
Case		G 37	

Fig. 12 Transient thermal impedance vs. time

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

