Bipolar Transistor

multicomp PRO

Features

- Meets MIL 19500 /376
- Collector Base Voltage 60V
- Collector Current 50mA
- · High Speed, Low Power Bipolar Transistor

RoHS Compliant

NPN

Absolute Maximum Ratings:

Characteristic	Symbol	Rating	
Collector-Emitter Voltage	Vceo	60V DC	
Collector-Base Voltage	Vсво	60V DC	
Emitter - Base Voltage	Vebo	6V DC	
Continuous Collector Current	lc	50mA DC	
Total Device Dissipation (Tc = +25°C) Derate above 25°C	Po	360mW >2.06mW/°C	
Total Device Dissipation (Tc = +25°C) Derate above 25°C	Po	1.2W 6.85mW/°C	
Operating Junction Temperature Range	TJ	-65°C to +200°C	
Storage Temperature Range	Тѕтс	-65°C to +200°C	

Thermal Characteristics

Characteristics	Symbol	Maximum	Unit	
Thermal Resistance, Junction to Ambient	Reja*	485	°C/W	
Thermal Resistance, Junction to Case	Rejc	146	°C/W	
Lead Temperature 1/16 inches from Case for 10s	ΤL	300	°C	

*Reja is measured with the device soldered into a typical printed circuit board

Electrical Characteristics: (T_A = +25°C Unless otherwise specified)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit.
OFF Characteristics						
Collector-Emitter Breakdown Voltage	BVCEO	Ic = 10mA DC, Iв = 0, (Note 1)	60	-	-	
Collector-Base Breakdown Voltage	ВУсво	Ic = 10μA DC, Iε = 0	60	-	-	V DC
Emitter-Base Breakdown Voltage	ВVево	IE = 100µA DC, Ic = 0	6	-	-	
Collector-Cut-Off Current	Ісво	Vcb = 45V DC, IE = 0	-	-	10	nA DC
		Vcb = 45V DC, IE = 0, TA = +150°C	-	-	10	µA DC
Emitter Cut off Current	Іево	(V _{BE} = 5 V DC, Ic = 0)	-	-	10	nA DC

Newark.com/multicomp-pro Farnell.com/multicomp-pro Element14.com/multicomp-pro

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit.	
On Characteristics	On Characteristics						
	hfe	Ic = 1µA DC, Vce = 5V DC	30	190	-	-	
		Ic = 10μA DC, Vcε = 5V DC	100	250	500	-	
		Ic = 10μA DC, Vcε = 5V DC, ΤΑ = 55°C	20	40	-	-	
DC Current Gain		Ic = 100μA DC, Vcε = 5 V DC	175	275	-	-	
		Ic = 500µA DC, Vce = 5V DC)	200	300	-	-	
		Ic = 1mA DC, Vce = 5V DC)	250	350	-	-	
		Ic = 10mA DC, VcE = 5V DC) (Note 1)	-	400	800	-	
Collector-Emitter Saturation Voltage	VCE(sat)	Ic = 10mA DC, Iв = 1mA DC	-	0.25	0.35	V DC	
Base-Emitter Saturation Voltage	VBE(on)	Ic = 0.1mA DC, Vce = 5V DC	0.5	0.65	0.7		
Dynamic Characteristics							
Current Gain-Bandwidth Product	fτ	Ic = 0.05mA DC, Vce = 5V DC, f = 5MHz	15	50	-	MHz	
		Ic = 0.5mA DC, Vce = 5 V DC, f = 30MHz	60	100	-		
Output Capacitance	Cob	Vсв = 5 V DC, IE = 0, f = 140kHz	-	3	6	pF	
Input Capacitance	Cib	VBE = 5V DC, IE = 0, f = 140kHz	-	4	6	pF	
Input Impedance	h⊫	Ic = 1mA DC, Vce = 5V DC, f = 1kHz	3.5	-	24	kΩ	
Voltage Feedback Ratio	hre	Ic = 1mA DC, Vce = 5V DC, f = 1kHz	-	-	800	× 10 ⁻⁶	
Small Signal Current Gain	h _{fe}	Ic = 1mA DC, Vce = 5V DC, f = 1kHz	150	-	900	-	
Output Admittance	hoe	Ic = 1mA DC, Vce = 5V DC, f = 1kHz	-	-	40	µmhos	
Noise Figure	NF	Ic = 10μA DC, Vcε = 5V DC, Rs = 10kΩ, f = 100Hz, BW = 20 Hz	-	8	10	dB	
		Ic = 10µA DC, V _{CE} = 5V DC, Rs = 10kΩ, f = 1kHz, BW = 200Hz	-	-	3	dB	
		Ic = 10 μ A DC, Vce = 5V DC, Rs = 10kΩ, f = 10kHz, BW = 2kHz	-	-	2	dB	
		(Ic = $10\mu A DC$, Vce = 5V DC, Rs = $10k\Omega$, f = $10Hz$ to $15.7kHz$, BW = $15.7kHz$	-	-	3	dB	

Note 1 : Pulse Test : Pulse Width \leq 300 µs, Duty Cycle \leq 2%

Newark.com/multicomp-pro Farnell.com/multicomp-pro Element14.com/multicomp-pro

Notes:

- 1. Dimensions are in Inches
- 2. Tab width shall be held to tolerance for at least 0.011 Beyond corner radius
- 3. True position applies at gage plane; device may be measured by direct methods or by mil spec. Gage & procedure.
- 4. xxxxxx Symbol indicates portion of leads not held to tolerance.
- 5. 0.016/0.019 Lead Dia. applies between 0.05 max. & 0.25 min.
- 6. 0.016/0.021 Lead Dia. applies between 0.25 min. & 0.5 min.
- 7. Standard product lead finish is gold plate. Optional lead finish shall be hot solder dip per customer spec.

Part Number Table

Description	Part Number		
Bipolar Transistor, NPN, 50mA, 60V, TO-18	2N2484		

Important Notice : This data sheet and its contents (the "Information") belong to the members of the AVNET group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for white any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp Pro is the registered trademark of Premier Farnell Limited 2019.

Newark.com/multicomp-pro Farnell.com/multicomp-pro Element14.com/multicomp-pro

