

Features

- Compliant with AEC-Q200 Rev-C -Stress Test Qualification for Passive Components in Automotive Applications
- Small footprint size (1210)
- Operating temperature range up to 125 °C
- Low thermal derating factor
- Higher hold currents at elevated temperatures

MF-USHT Series - PTC Resettable Fuses

■ RoHS compliant*

■ Agency recognition: c 👊 us

Electrical Characteristics

	V max. Volts		l _{hold}	Itrip	Resis	stance	Max. Time To Trip		Tripped Power Dissipation	
Model			Amperes at 23 °C		Ohms at 23 °C		Amperes at 23 °C	Seconds at 23 °C	Watts at 23 °C	
		Hold Trip		R _{Min.}	R _{1Max.**}			Тур.		
MF-USHT035KX	30	20	0.35	1.75	0.4	2.2	8.0	0.1	1.0	
MF-USHT050KX	30	20	0.50	2.50	0.3	1.6	8.0	0.1	1.0	

^{**}R_{1Max.} measured 24 hours post reflow.

Environmental Characteristics

Operating Temperature	40 °C to +125 °C	
Passive Aging	+125 °C, 1000 hours	Rfinal <r1max< td=""></r1max<>
	+85 °C, 85 % R.H. 1000 hours	
	+125 °C to -40 °C, 20 times	
	MIL-STD-202, Method 215	
Vibration	MIL-STD-883C, Method 2007.1,	No change
	Condition A	· ·
Moisture Sensitivity Level (MSL)	Level 1	
ESD Classification - HRM		

Test Procedures And Requirements For Model MF-USHT Series

Test	Test Conditions	Accept/Reject Criteria
Visual/Mech	Verify dimensions and materials	Per MF physical description
Resistance	In still air @ 23 °C	R _{min} ≤ R ≤ R _{1max}
Time to Trip	At specified current, Vmax, 23 °C	T ≤ max. time to trip (seconds)
Hold Current	30 min. at I _{hold}	No trip
Trip Cycle Life	V _{max} , I _{max} , 100 cycles	No arcing or burning
Trip Endurance	V _{max} , 48 hours	No arcing or burning
	ANSI/J-STD-002	
cUL File Number	E174545 http://www.ul.com/ Follow link to Certifications, 1	then cUL File No., enter E174545

Thermal Derating Chart - Ihold (Amps)

Model	Ambient Operating Temperature									
Wodei	-40 °C	-20 °C	0 °C	+23 °C	+40 °C	+50 °C	+60 °C	+70 °C	+85 °C	+125 °C
MF-USHT035KX	0.508	0.459	0.406	0.350	0.308	0.284	0.259	0.235	0.196	0.095
MF-USHT050KX	0.725	0.655	0.580	0.500	0.440	0.405	0.370	0.335	0.280	0.135

BOURNS®

Asia-Pacific: Tel: +886-2 2562-4117 • Email: asiacus@bourns.com

EMEA: Tel: +36 88 520 390 • Email: eurocus@bourns.com

The Americas: Tel: +1-951 781-5500 • Email: americus@bourns.com

www.bourns.com

The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.

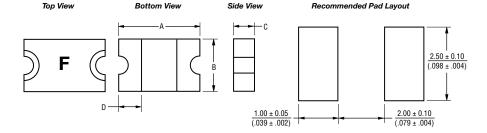
^{*}RoHS Directive 2002/95/EC Jan. 27, 2003 including annex and RoHS Recast 2011/65/EU June 8, 2011. Specifications are subject to change without notice.

Applications

- Protection of automotive circuitry including engine control modules
- Overcurrent surge protection of electronic equipment required to operate at high operating temperature ranges
- Resettable fault protection for general electronic equipment

MF-USHT Series - PTC Resettable Fuses

BOURNS


Product Dimensions

Madel		A		В	(D	
Model	Min.	Max.	Min.	Max.	Min.	Max.	Min.
MF-USHT035X	3.00	3.43	2.35	2.80	0.40	0.85	0.30
	(0.118)	(0.135)	(0.093)	(0.110)	(0.016)	(0.033)	(0.012)
ME LICUTOROV	3.00	3.43	2.35	2.80	0.40	0.85	0.30
MF-USHT050X	(0.118)	(0.135)	(0.093)	(0.110)	(0.016)	(0.033)	(0.012)

Packaging: 3000 pcs. per reel.

DIMENSIONS:

MM (INCHES)

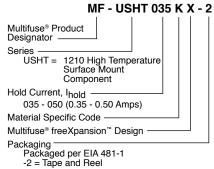
Terminal material:

Nickel/gold plated.


Termination pad solderability:

Standard Au finish: Meets ANSI/J-STD-002 Category 2.

Recommended Storage:


40 °C max./70 % RH max.

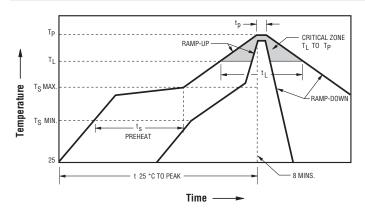
Typical Time to Trip at 23 °C

The Time to Trip curves represent typical performance of a device in a simulated application environment. Actual performance in specific customer applications may differ from these values due to the influence of other variables.

How to Order

Typical Part Marking

Represents total content. Layout may vary.


– PART IDENTIFICATION: MF-USHT035KX = F MF-USHT050KX = K

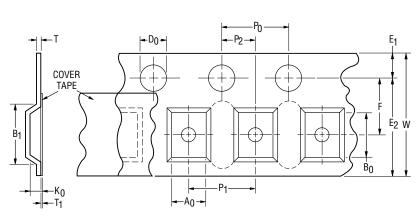
BIWEEKLY DATE CODE WILL APPEAR ON THE PACKAGING LABEL: WEEK 1 AND 2 = A WEEK 51 AND 52 = Z

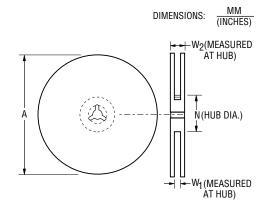
MF-USHT Series - PTC Resettable Fuses

BOURNS

Solder Reflow Recommendations

Notes:


- MF-USHT models cannot be wave soldered or hand soldered. Please contact Bourns for soldering recommendations.
- All temperatures refer to topside of the package, measured on the package body surface.
- If reflow temperatures exceed the recommended profile, devices may not meet the published specifications.
- Compatible with Pb and Pb-free solder reflow profiles.
- Excess solder may cause a short circuit, especially during hand soldering. Please refer to the Multifuse® Polymer PTC Soldering Recommendation guidelines.
- Designed for single solder reflow operations.


Profile Feature	Pb-Free Assembly
Average Ramp-Up Rate (TS _{max} to T _p)	3 °C / second max.
PREHEAT: Temperature Min. (TS _{min}) Temperature Max. (TS _{max}) Time (ts _{min} to ts _{max})	150 °C 200 °C 60~180 seconds
TIME MAINTAINED ABOVE: Temperature (T _L) Time (t _L)	217 °C 60~150 seconds
Peak / Classification Temperature (T _P)	260 °C
Time within 5 °C of Actual Peak Temperature (tp)	20~40 seconds
Ramp-Down Rate	6 °C / second max.
Time within 25 °C to Peak Temperature	8 minutes max.

MF-USHT Series Tape and Reel Specifications

BOURNS®

Tape Dimensions	MF-USHT Series per EIA 481-1
	8.0 ± 0.30
W	$\frac{0.015 \pm 0.002}{(0.315 \pm 0.012)}$
P ₀	4.0 ± 0.10
10	(0.157 ± 0.004)
P ₁	$\frac{4.0 \pm 0.10}{(0.157 \pm 0.004)}$
	$\frac{(0.137 \pm 0.004)}{2.0 \pm 0.05}$
P ₂	$\frac{2.0 \pm 0.03}{(0.079 \pm 0.002)}$
A ₀	$\frac{3.00 \pm 0.10}{(0.118 \pm 0.004)}$
	3.65 ± 0.10
B ₀	(0.144 ± 0.004)
B ₁ max.	4.35
	(0.171)
D_0	$\frac{1.5 + 0.10/-0.0}{(0.059 + 0.004/-0)}$
	3.5 ± 0.05
<u>F</u>	$\overline{(0.138 \pm 0.002)}$
E ₁	1.75 ± 0.10
	$\frac{(0.069 \pm 0.004)}{6.25}$
E ₂ min.	$\frac{6.25}{(0.246)}$
T max.	$\frac{0.6}{(0.024)}$
T	0.1
T ₁ max.	(0.004)
К ₀	0.85 ± 0.10
	(0.033 ± 0.004)
Leader min.	
T. 9	160
Trailer min.	(6.30)
Reel Dimensions	
A max.	<u>185</u> (7.28)
	50
N min.	$\overline{(1.97)}$
W ₁	8.4 + 1.5/-0.0
	(0.331 + 0.059/-0.0)
W ₂ max.	
	(6.567)

Specifications are subject to change without notice.

The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.