Signetics

Linear Products

DESCRIPTION

The NE5170 is an octal line driver which is designed for digital communications with data rates up to 100kb/s. This device meets all the requirements of EIA standards RS-232C/RS-423A and CCITT recommendations V.10/X.26. Three programmable features: (1) output slew rate, (2) output voltage level, and (3) 3-State control (high-impedance) are provided so that output characteristics may be modified to meet the requirements of specific applications.

NE5170 Octal Line Driver

Preliminary Specification

FEATURES

- Meets EIA RS-232C/423A and CCITT V.10/X.26
- Simple slew rate programming with a single external resistor
- 0.1 to $10V/\mu s$ slew rate range
- High/Low programmable voltage output modes
- TTL compatible inputs

APPLICATIONS

- High-speed modems
- High-speed parallel communications
- Computer I/O ports
- Logic level translation

FUNCTION TABLE

	LOGIC INPUT	OUTPUT VOLTAGE (V)			
ENABLE		RS-423A ¹	RS-232C		
			Low Output Mode ¹	High Output Mode ²	
L	L	5 to 6V	5 to 6V	≥ 9V	
L	н	-5 to -6V	-5 to -6V	≤-9V	
н	X	Hi-Z	Hi-Z	Hi-Z	

NOTES:

1. V_{CC} = + 10V and V_{EE} = -10V; R_L = 3k Ω

2. V_{CC} = +12V and V_{EE} = -12V; R_L = 3k Ω

ORDERING CODE

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
28-Pin Plastic DIP	0 to +70°C	NE5170N
28-Pin PLCC	0 to +70°C	NE5170A
24-Pin SO package	0 to +70°C	NE5170D

PIN CONFIGURATIONS

NE5170

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage and + MODE	15	v
VEE	Supply voltage and - MODE	- 15	v
IOUT	Output current ¹	± 150	mA
V _{IN}	Input voltage (ENABLE, Data)	-1.5 to +7	V
V _{OUT}	Output voltage ²	± 15	V
	Minimum slew resistor ³	1	kΩ
PD	Power dissipation	1200	mW

$\textbf{DC ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} v_{CC} \texttt{=} \hspace{0.1 cm} 10 \hspace{0.1 cm} \texttt{:} \hspace{0.1 cm} 10 \hspace{0.1 cm} \texttt{;} \hspace{0.1 cm} \pm 10 \hspace{0.1 cm} \texttt{;} \hspace{0.1 cm} \texttt{;$ unless otherwise specified.

CYMBO			LIN	LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS		Max	UNIT	
V _{OH}	Output High voltage	$V_{IN} = 0.8V$ $R_L = 3k\Omega^4$	5	6		
		$R_L = 450\Omega^4$	4.5	6		
		$R_{L} = 3k\Omega^{5}, C_{L} = 2500pF$	V _{CC} - 3			
V _{OL}	Output Low voltage	$V_{IN} = 2.0V$ $R_L = 3k\Omega^4$	-6	-5	v	
		$R_L = 450\Omega^4$	-6	-4.5		
		$R_{L} = 3k\Omega^{5}, C_{L} = 2500pF$		V _{EE} +3		
V _{OU}	Output unbalance voltage	$V_{CC} = V_{EE} , R_L = 450\Omega^4$		0.4	V	
ICEX	Output leakage current	$ V_0 = 6V$, ENABLE = 2V or $V_{CC} = V_{EE} = 0V$	-100	100	μA	
VIH	Input High voltage		2.0		V	
VIL	Input Low voltage			0.8	v	
liL.	Logic "0" input current	V _{IN} = 0.4V	- 400	0	μA	
IIH	Logic "1" input current	V _{IN} = 2.4V	0	40	μA	
los	Output short circuit current ¹	$V_{O} = 0V$	~150	150	mA	
V _{CL}	input clamp voltage	I _{IN} = -15mA	-1.5		V	
Icc	Output Low voltage Output unbalance voltage Output leakage current Input High voltage Input Low voltage Logic ''0'' input current Logic ''1'' input current Output short circuit current ¹ Input clamp voltage Supply current	No Load		35	mA	
) _{EE}	Supply current	No Load	-45		mA	

NOTES:

1 Maximum current per driver. Do not exceed maximum power dissipation if more than one output is on.

2. High-impedance mode.

3. Minimum value of the resistor used to set the slew rate.

NE5170

SYMBOL			LIMITS		
	PARAMETER	TEST CONDITIONS	Min	Max	UNIT
t _{PHZ}	Propagation delay output high to high-impedance	$R_{L} = 450, C_{L} = 50pF$ or $R_{L} = 3k, C_{L} = 2500pF$		5	μs
t _{PLZ}	Propagation delay output low to high-impedance	$R_{L} = 450, C_{L} = 50pF$ or $R_{L} = 3k, C_{L} = 2500pF$		5	μs
tрzн	Propagation delay high-impedance to high output	R _{SL} = 200k R _L = 450, C _L = 50pF or R _L = 3k, C _L = 2500pF		150	μs
t _{PZL}	Propagation delay high-impedance to low output	$R_{SL} = 200k$ $R_{L} = 450, C_{L} = 50pF$ or $R_{L} = 3k, C_{L} = 2500pF$	1	150	μs
SR	Output slew rate ¹	R _{SL} = 2k	8	12	V/µs
		R _{SL} = 20k	0.8	1.2	
		R _{SL} = 200k	0.06	0.14	

AC ELECTRICAL CHARACTERISTICS $V_{CC} = +10V$; $V_{EE} = -10V$; Mode = GND, 0°C $\leq T_A \leq 70°C$

NOTE:

SR: Load condition. (A) For $R_{SL} < 4k\Omega$ use $R_{L} = 450\Omega$; $C_{L} \approx 50pF$; (B) for $R_{SL} > 4k\Omega$ use either $R_{L} = 450\Omega$, $C_{L} = 50pF$ or $R_{L} = 3k\Omega$, $C_{L} = 2500pF$.

AC PARAMETER TEST CIRCUIT AND WAVEFORMS

NE5170

SLEW RATE PROGRAMMING

Slew rate for the NE5170 is set using a single external resistor connected between the R_{SL} pin and ground. Adjustment is made according to the formula:

$$R_{SL}$$
 (in $k\Omega$) = $\frac{20}{\text{Slew Rate}}$

where the slew rate is in V/ μ s. The slew resistor can vary between 2 and 200kΩ which gives a slew rate range of 10 to 0.1V/ μ s. This adjustment of the slew rate allows tailoring output characteristics to recommendations for cable length and data rate found in EIA standard RS-423A. Approximations for cable length and data rate are given by: Max. data rate (in kb/s) = 300/t

Cable length (in feet) = 100 \times t

where t is the rise time in microseconds. The absolute maximum data rate is 100kb/s and the absolute maximum cable length is 4000 feet

OUTPUT MODE PROGRAMMING The NE5170 has two programmable output

modes which provide different output voltage

levels. The low output mode meets the specifications of EIA standards RS-423A and RS-232C. The high output mode meets the specifications of RS-232C only, since higher output voltages result from programming this mode. The high output mode provides the greater output voltages where higher attenuation levels must be tolerated. Programming the high output mode is accomplished by connecting the +MODE pin to V_{CC} and the -MODE pin to V_{EE}. The low output mode results when both of these pins are connected to ground.

NE5170

-

Octal Line Driver

NE5170

NE5170

