

No High-Voltage Bias, Low Harmonic Distortion, 16-Channel, High-Voltage Analog Switch

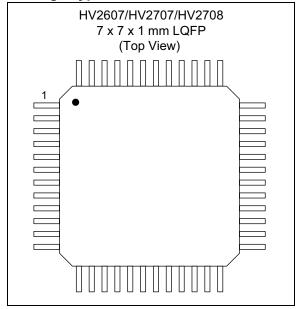
Features

- · 16-Channel High-Voltage Analog Switch
- · Analog Signal Voltage Up to ±100V
- · Only +5V Bias Supply Required
- · 3.3V and 5V CMOS Input Logic Level
- · 66 MHz Data Shift Clock Frequency
- Ultra-Low Quiescent Current < 10 μA
- · Low Parasitic Capacitance
- · Low Harmonic Distortion
- DC to 100 MHz Analog Small Signal Frequency
- · 200 kHz to 50 MHz Large Signal Frequency
- · -76 dB Typical Off Isolation at 5.0 MHz
- · Excellent Noise Immunity
- · Cascadable Serial Data Register with Latches
- Integrated Bleed Resistors on the Outputs (both sides for HV2707, one side for HV2708)

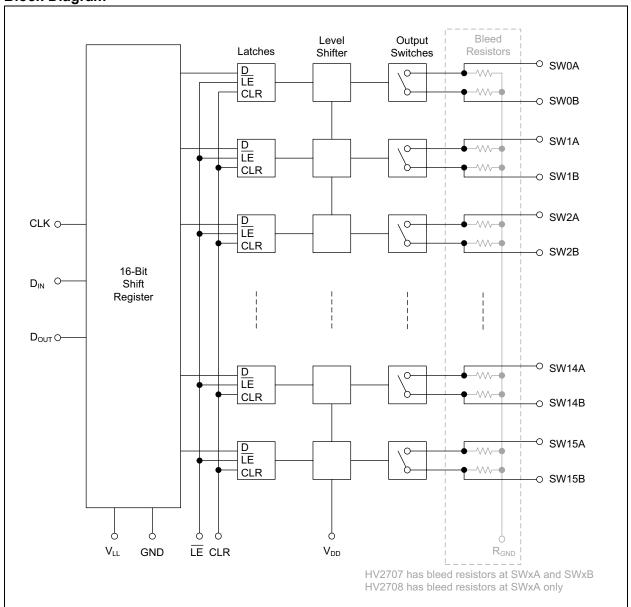
Application

- · Medical Ultrasound Imaging
- Non-Destructive Testing (NDT) Metal Flaw Detection
- · Piezoelectric Transducer Drivers
- Inkjet Printer Head
- · Optical MEMS Module

General Description


HV2607/HV2707/HV2708 devices are low harmonic distortion, low charge injection, 16-channel, high-voltage analog switches without high-voltage supplies. They are intended for use in applications requiring high-voltage switching controlled by low-voltage control signals, such as medical ultrasound imaging, driving piezoelectric transducers and printers.

The HV2707 has integrated bleed resistors at both sides of the switches. The HV2708 has integrated bleed resistors at the SWA side only. The HV2607 has no bleed resistors. The bleed resistor eliminates voltage build up on capacitive loads, such as piezoelectric transducers.


The HV2607/HV2707/HV2708 devices require no high-voltage supplies and require only +5V or +6V bias supply. The analog input voltage range is up to $\pm 100V$, even though there are no high-voltage supplies.

The HV2607/HV2707/HV2708 devices are offered in a 48-pin LQFP package, which is pin-to-pin compatible with HV2601/HV2701 and HV2605/HV2705 devices, except power supply pins.

Package Types

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Logic Supply Voltage (V ₁₁)	0.5V to 6.6V
Positive Supply Voltage (V _{DD})	0.5V to 6.6V
Logic Input Voltage (V _{IN})	
Analog Signal Range (V _{SIG})	
Peak Analog Signal Current/Channel (I _{PK})	

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS(1,2,3)

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions
Logic Supply Voltage	V_{LL}	3	_	5.5	V	
Positive Supply Voltage	V_{DD}	4.5	_	6.3	V	
High-Level Input Voltage	V_{IH}	0.9 V _{LL}	_	V_{LL}	V	
Low-Level Input Voltage	V_{IL}	0	_	0.1 V _{LL}	V	
Analog Signal Voltage Peak-to-Peak	V_{SIG}	-100	_	100	V	

- Note 1: Power-up sequence is V_{LL} first and then V_{DD} . Power-down sequence is the reverse of power-up.
 - 2: V_{SIG} must be GND $\leq V_{SIG} \leq V_{DD}$ or floating during power-up/down transition.
 - 3: Rise and fall times of power supplies, V_{LL} and V_{DD} , should be greater than 1.0 ms.

DC ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $V_{LL} = +5V$, $V_{DD} = +5V$, $T_A = +25$ °C. Boldface specifications apply over the full operating temperature range. Units **Parameter** Sym. Min. Typ. Max. Conditions/Comments Small Signal Switch On-Resistance $I_{SIG} = 5 \text{ mA}$ 14 23 Ω R_{ONS} $I_{SIG} = 200 \text{ mA}$ 14.5 23 Ω Small Signal Switch On-Resistance 5 20 ΔR_{ONS} $I_{SIG} = 5 \text{ mA}$ Matching Large Signal Switch On-Resistance **RONL** 12 Ω V_{SIG} = 90V, R_{LOAD} = 70 Ω (Note 1) Value of Output Bleed Resistor 20 35 50 kΩ $I_{RINT} = 0.1 \text{ mA}$ **RINT** (HV2707/HV2708 only) Switch Off Leakage per Switch 10 μΑ V_{SIG} = +100V, 500 µs pulse, I_{SOL} see Figure 3-1 μΑ $V_{SIG} = -100V$, 100 µs pulse, 10 see Figure 3-1 (Note 1) HV2607 Switch Off Bias per Switch 3 V_{SIG} = +100V, 500 µs pulse, I_{SOB} μΑ see Figure 3-2 V_{SIG} = -100V, 100 µs pulse, 100 μΑ see Figure 3-2 (Note 1) HV2707 Switch Off Bias of All SWA and V_{SIG} = +100V, 500 µs pulse, 3 μΑ I_{SOB} SWB Switches see Figure 3-2 $V_{SIG} = -100V, 100 \, \mu s \, pulse,$ 3 mΑ see Figure 3-2 (Note 1) HV2708 Switch Off Bias of All SWA (with μΑ V_{SIG} = +100V, 500 µs pulse, I_{SOB} Bleed Resistor) Switches see Figure 3-2 V_{SIG} = -100V, 100 μ s pulse, 1.5 mΑ see Figure 3-2 (Note 1) Switch Off Bias per SWB (without 3 V_{SIG} = +100V, 500 µs pulse, μΑ Bleed Resistor) Switch see Figure 3-2 100 uА $V_{SIG} = -100V$, 100 µs pulse, see Figure 3-2 (Note 1) Switch Off DC Offset Vos 1 10 $R_{LOAD} = 25 \text{ k}\Omega \text{ (HV2607)/50 k}\Omega \text{ (HV2708)},$ no load (HV2707), see Figure 3-3 (Note 1) Switch On DC Offset 1 10 All switches off 10 μΑ Quiescent V_{DD} Supply Current IDDO 10 All switches on, $V_{SW} = 1V$ 1 Quiescent VII Supply Current 10 μΑ All logic inputs are GND I_{LLQ} Switch Output Peak Current 1.3 Α V_{SIG} duty cycle < 0.1% (Note 1) I_{SW} 1.9 Output Switching Frequency f_{SW} 50 kHz Duty cycle = 50% (Note 1) Average V_{DD} Supply Current I_{DD} 3.7 6 All output switches are turning on and off at 50 kHz with no load Average VII Supply Current I_{LL} 0.3 0.5 mΑ $f_{CLK} = 5.0 \text{ MHz}, f_{DIN} = 2.5 \text{ MHz}$ Data Out Source Current 10 mΑ $V_{OUT} = V_{LL} - 0.7V$ I_{SOR} Data Out Sink Current 10 mΑ $V_{OUT} = 0.7V$ I_{SINK} Logic Input Capacitance 8 Note 2 C_{IN}

Note 1: Specification is obtained by characterization and is not 100% tested.

2: Design guidance only.

AC ELECTRICAL CHARACTERISTICS

Unless otherwise specified, V_{LL} = +5V, V_{DD} = +5V, t_R = t_F ≤ 5.0 ns, 50% duty cycle, T_A = +25°C. **Boldface** specifications apply over the full operating temperature range.

Boldface specifications apply ove	· ·	rating te	· ·	ı	je.	T
Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions/Comments
Setup Time Before LE Rises	t _{SD}	25	_	_	ns	Note 1
Time Width of LE	t _{WLE}	12	_	_	ns	Note 1
Clock Delay Time to Data Out	t _{DO}	_	_	13.5	ns	
Time Width of CLR	t _{WCLR}	55	_	_	ns	Note 1
Setup Time Data to Clock	t _{SU}	1.5	_	_	ns	Note 1
Hold Time Data from Clock	t _H	1.5	_	_	ns	Note 1
Clock Frequency	f _{CLK}	_		66	MHz	50% duty cycle, f _{DIN} = (1/2)f _{CLK} , C _{DOUT} = 20 pF (Note 1)
Clock Rise and Fall Times	t _R , t _F	_	_	50	ns	
Turn-On Time	t _{ON}	_	_	5	μs	V_{SIG} = 5V, R_{LOAD} = 550 Ω , see Figure 3-4
Turn-Off Time	t _{OFF}	_	_	5	μs	V_{SIG} = 5V, R_{LOAD} = 550 Ω , see Figure 3-4
Input Large Signal Pulse Width	t _{PW}	_	_	2.5	μs	V _{PULSE} = 0V to ±100V, measured at 90% amplitude, see Figure 3-5 (Note 1)
Maximum V _{SIG} Slew Rate	dV/dt	_	_	20	V/ns	Note 1
Analog Small Signal Frequency	f _{BWS}	_	100	_	MHz	Note 1
Off Isolation	K _O	_	-64	-60	dB	f = 5.0 MHz,1.0 kΩ//15 pF load, see Figure 3-6 (Note 1)
		_	-76	-70	dB	f = 5.0 MHz, 50Ω load, see Figure 3-6 (Note 1)
Switch Crosstalk	K _{CR}	_	-70	-60	dB	f = 5.0 MHz, 50Ω load, see Figure 3-7 (Note 1)
Off Capacitance SW to GND	C _{SG(OFF)}	_	9	_	pF	V _{SIG} = 50 mV @1 MHz, no load (Note 1)
On Capacitance SW to GND	C _{SG(ON)}	_	17	_	pF	V _{SIG} = 50 mV @ 1 MHz, no load (Note 1)
Output Voltage Spike at SWA,	+V _{SPK}	_	_	40	mV	$R_{LOAD} = 50\Omega$, see Figure 3-8
SWB	-V _{SPK}	-10	_	_	mV	(Note 1)
Charge Injection	QC	_	110	_	рC	See Figure 3-8 (Note 1)
Second Harmonic Distortion	HD2	_	-64	_	dBc	V _{SIG} = 1.5V @ 5 MHz, 50Ω load (Note 1)
		_	-60	_	dBc	V _{SIG} = 1.5V @ 5 MHz, 1 kΩ//15 pF load (Note 1)

Note 1: Specification is obtained by characterization and is not 100% tested.

TEMPERATURE SPECIFICATION

Parameters	Sym	Min	Тур	Max	Units	Conditions
Temperature Range						
Operating Temperature	T _A	0	_	+70	°C	
Storage Temperature	T _S	-65	_	+150	°C	
Maximum Junction Temperature	T_J	_	_	+125	°C	
Package Thermal Resistance						
Thermal Resistance, LQFP	Θ_{JA}	_	52	_	°C/W	

TABLE 1-1: TRUTH TABLE^(1,2,3,4,5,6)

D0	D1		D7	D8		D15	LE	CLR	SW0	SW1		SW7	SW8		SW15
L	_		_	_		_	L	L	OFF	_		_			_
Н	_		_	_		_	L	L	ON	_		_	_		_
_	L		_	_		_	Ш	L	_	OFF		_	1		_
_	Н		_	_		_	L	L	_	ON		_	1		_
_	_		_	_		_	L	L	_	_		_	1		_
_	_		_	_		_	L	L	_	_		_			_
	_		L	-			L	L	_	_		OFF	_		_
_	_		Н	-		_	L	L	_	_	•••	ON	1	•••	_
_	_		_	L		_	L	L	_	_		_	OFF		_
	_			Н			L	L	_	_			ON		_
_	_		_	_		_	L	L	_	_			1		_
_	_		_	_		_	L	L	_	_		_			_
_	_		_	_		L	L	L	_	_		_			OFF
	_		_	_		Н	L	L	_	_					ON
Χ	Χ	Χ	Χ	Χ	Х	Χ	Н	L	HOLD PREVIOUS STATE						
Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Н	ALL SWITCHES OFF						

Note 1: The 16 switches operate independently.

- **2:** Serial data are clocked in on the L to H transition of the CLK.
- **3:** All 16 switches go to a state retaining their latched condition at the rising edge of $\overline{\text{LE}}$. When $\overline{\text{LE}}$ is low, the shift registers' data flow through the latch.
- **4:** D_{OUT} is high when the data in Register 15 are high.
- 5: Shift register clocking has no effect on the switch states if $\overline{\text{LE}}$ is high.
- **6:** The CLR (clear) input overrides all of the inputs.

1.1 Typical Timing Diagram

Figure 1-1 shows the timing of AC characteristic parameters graphically.

FIGURE 1-1: Logic Input Timing Diagram.

2.0 PIN DESCRIPTION

This section details the pin description for the 48-Lead LQFP package (Figure 2-1). The descriptions of the pins are listed in Table 2-1.

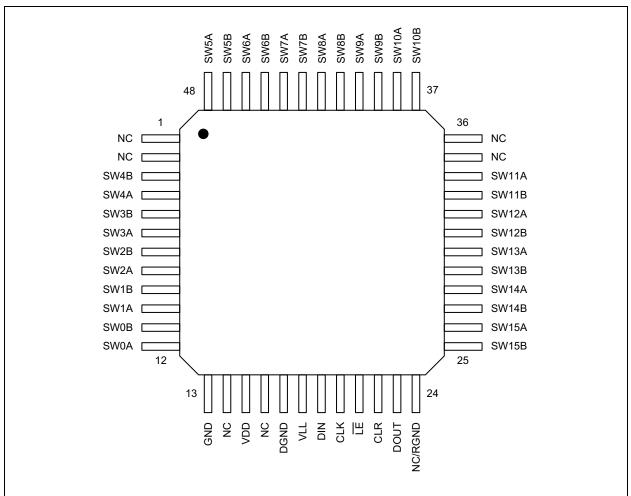


FIGURE 2-1: 48-Lead LQFP Package – Top View.

TABLE 2-1: PIN FUNCTION TABLE

ABLE 2-1: PIN FUNCTION TABLE		CHON TABLE				
Dim Number	S	ymbol	Description			
Pin Number	HV2607	HV2707/HV2708	Description			
1	NC	NC	No Connection			
2	NC	NC	No Connection			
3	SW4B	SW4B	Analog Switch 4 Terminal B			
4	SW4A	SW4A	Analog Switch 4 Terminal A			
5	SW3B	SW3B	Analog Switch 3 Terminal B			
6	SW3A	SW3A	Analog Switch 3 Terminal A			
7	SW2B	SW2B	Analog Switch 2 terminal B			
8	SW2A	SW2A	Analog Switch 2 Terminal A			
9	SW1B	SW1B	Analog Switch 1 Terminal B			
10	SW1A	SW1A	Analog Switch 1 Terminal A			
11	SW0B	SW0B	Analog Switch 0 Terminal B			
12	SW0A	SW0A	Analog Switch 0 Terminal A			
13	GND	GND	Ground			
14	NC	NC	No Connection			
15	V _{DD}	V _{DD}	Positive Supply Voltage			
16	NC	NC	No Connection			
17	DGND	DGND	Digital Ground			
18	V _{LL}	V _{LL}	Logic Supply Voltage			
19	D _{IN}	D _{IN}	Data In Logic Input			
20	CLK	CLK	Clock Logic Input for Shift Register			
21	LE	LE	Latch Enable Logic Input, Low Active			
22	CLR	CLR	Latch Clear Logic Input			
23	D _{OUT}	D _{OUT}	Data Out Logic Output			
24	NC	RGND	No Connection/Ground for Bleed Resistor			
25	SW15B	SW15B	Analog Switch 15 Terminal B			
26	SW15A	SW15A	Analog Switch 15 Terminal A			
27	SW14B	SW14B	Analog Switch 14 Terminal B			
28	SW14A	SW14A	Analog Switch 14 Terminal A			
29	SW13B	SW13B	Analog Switch 13 Terminal B			
30	SW13A	SW13A	Analog Switch 13 Terminal A			
31	SW12B	SW12B	Analog Switch 13 Terminal A Analog Switch 12 Terminal B			
32	SW12B SW12A	SW12B	Analog Switch 12 Terminal A			
33	SW12A SW11B	SW11B	Analog Switch 11 Terminal B			
34	SW11A	SW11A	Analog Switch 11 Terminal A			
35	NC	NC NC	No Connection			
36	NC	NC NC	No Connection			
37	SW10B	SW10B	Analog Switch 10 Terminal B			
38	SW10B SW10A	SW10B SW10A	Analog Switch 10 Terminal A			
39	SW10A SW9B	SW9B	Analog Switch 10 Terminal A Analog Switch 9 Terminal B			
40	SW9A	SW9A	Analog Switch 9 Terminal A			
41	SW8B	SW8B				
42	SW8A	SW8A	Analog Switch 8 Terminal B			
43	SW7B	SW7B	Analog Switch 8 Terminal R			
43	SW7A	SW7A	Analog Switch 7 Terminal B			
45	SW/A SW6B	SW6B	Analog Switch 7 Terminal A			
			Analog Switch 6 Terminal B			
46	SW6A	SW6A	Analog Switch 6 Terminal A			
47	SW5B	SW5B	Analog Switch 5 Terminal B			
48	SW5A	SW5A	Analog Switch 5 Terminal A			

3.0 TEST CIRCUIT EXAMPLES

This section details a few examples of test circuits.

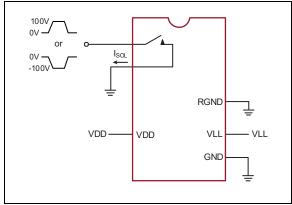


FIGURE 3-1: Switch Off Leakage per Switch.

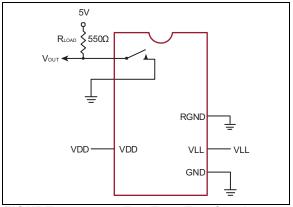


FIGURE 3-4: T_{ON}/T_{OFF} Test Circuit.

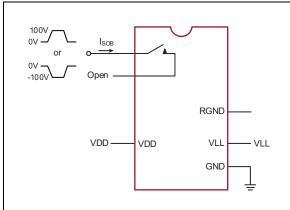


FIGURE 3-2: Switch Off Bias per Switch.

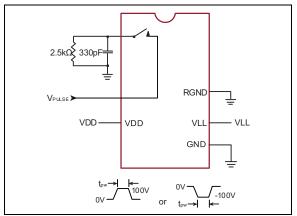
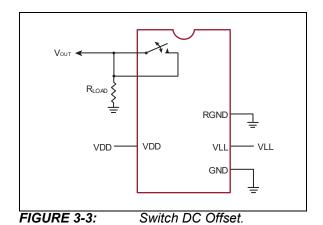
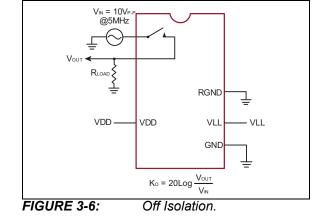




FIGURE 3-5: Tx Pulse Width.

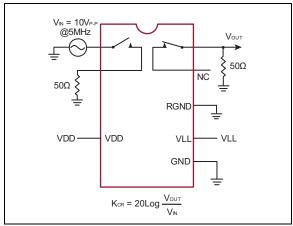


FIGURE 3-7:

Switch Crosstalk.

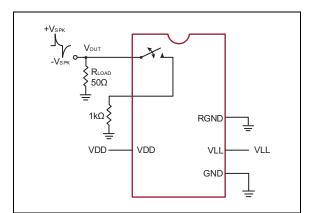
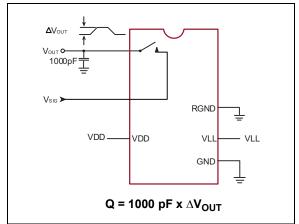
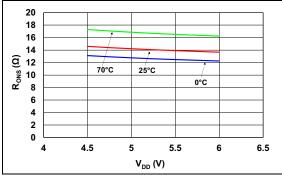


FIGURE 3-8:

Output Voltage Spike.




FIGURE 3-9:

Charge Injection.

4.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise specified, $V_{LL} = +5V$, $V_{DD} = +5V$, $T_A = +25$ °C.

FIGURE 4-1: R_{ONS} at 5 mA vs V_{DD} .

FIGURE 4-4: T_{ON}/T_{OFF} vs. Temperature.

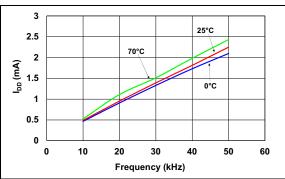


FIGURE 4-2: I_{DD} vs. Switching Frequency.

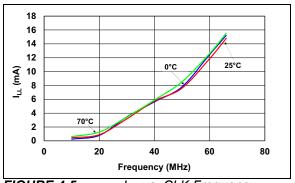


FIGURE 4-5: I_{LL} vs. CLK Frequency.

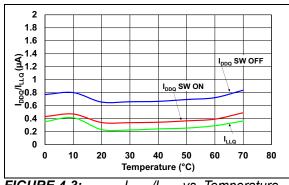
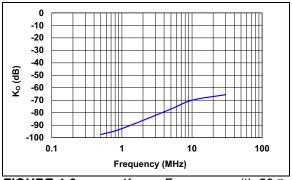



FIGURE 4-3: I_{DDQ}/I_{LLQ} vs. Temperature.

FIGURE 4-6: K_O vs. Frequency with 50Ω Load.

5.0 DETAILED DESCRIPTION AND APPLICATION INFORMATION

5.1 Device Overview

The HV2607/HV2707/HV2708 devices are low harmonic distortion, low charge injection, 16-channel, high-voltage analog switches without high-voltage supplies. The high-voltage analog switches are used for multiplexing a piezoelectric transducer array in a probe to multiple channel transmitter (Tx) arrays in a medical ultrasound system.

The HV2607/HV2707/HV2708 devices are distinguished by bleed resistors that eliminate voltage build-up in capacitance load, such as piezoelectric transducers. These devices can pass ± 100 V high-voltage pulses without high-voltage bias, such as ± 100 V. These devices have typical 14Ω on-resistance and 100 MHz bandwidth for small signals.

Figure 5-1 shows a typical medical ultrasound image system consisting of 64 channels of transmit pulsers, 64 channels of receivers (LNA and ADC) and 64 channels of T/R switches connecting to 192 elements of an ultrasound probe via a HV2XXX high-voltage analog switch array.

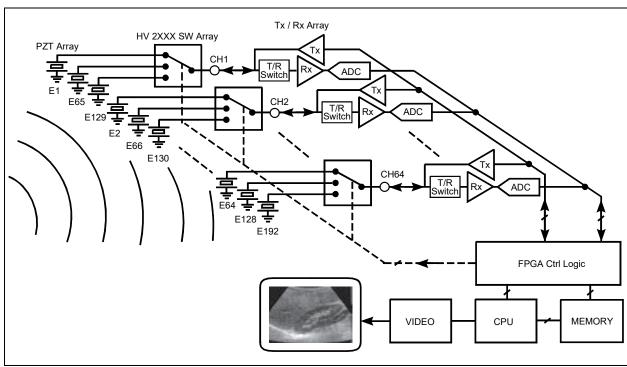


FIGURE 5-1: Typical Medical Ultrasound Imaging System.

5.2 Logic Input Timing

The HV2607/HV2707/HV2708 devices have a digital serial interface consisting of Data In (D_{IN}) , Clock (CLK), Data Out (D_{OUT}), Latch Enable (LE) and Clear (CLR) to control 16 switches individually. The digital circuits are supplied by V_{LL} and connected to DGND. The serial clock frequency is up to 66 MHz.

The switch state configuration data are shifted into the shift registers on the rising edge (low-to-high transition) of the clock. The switch Configuration bit of SW15 is shifted in first and the Configuration bit of SW0 is shifted in last. To change all the switch states at the same time, the Latch Enable $(\overline{\text{LE}})$ input should remain high while the 16-bit Data In signal is shifted into the 16-bit register. After the valid 16-bit data com-

plete shifting into the shift registers, the high-to-low transition of the $\overline{\text{LE}}$ signal transfers the contents of the shift registers into the latches. Finally, setting the $\overline{\text{LE}}$ high again allows all the latches to keep the current state, while new data can now be shifted into the shift registers without disturbing the latches.

It is recommended to change all the latch states at the same time through this method to avoid possible clock feed through noise (see Figure 5-2 for details).

When the CLR input is set high, it resets the data of all 16 latches to low. Consequently, all the high-voltage switches are set to the OFF state. However, the CLR signal does not affect the contents of the shift register, so the shift register can operate independently of the CLR signal. Therefore, when the CLR input is low, the shift register still retains the previous data.

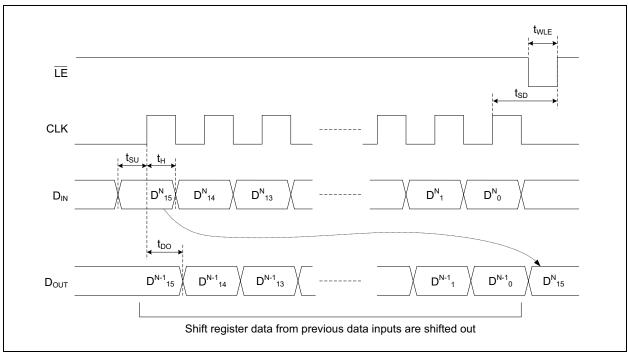


FIGURE 5-2: Latch Enable Timing Diagram.

5.3 Multiple Devices Connection

The serial input interface of the HV2607/HV2707/HV2708 allows multiple devices to daisy-chain together. In this configuration, the D_{OUT} of a device is connected to the D_{IN} of the subsequent device, and so forth. The last D_{OUT} of the daisy-chained HV2607/HV2707/HV2708 can either be floating or fed back to an FPGA to check the previously stored shift register data.

To control all the high-voltage analog switch states in daisy-chained N devices, N-times 16 clocks and N-times $\underline{16}$ bits of data are shifted into shift registers, while $\overline{\text{LE}}$ remains high and CLR remains low. After all the data finish shifting in, one single negative pulse of $\overline{\text{LE}}$ transfers the data from all shift registers to all the latches simultaneously. Consequently, all N-times 16 high-voltage analog switches change states simultaneously.

5.4 Power-up/Down Sequence and Decoupling Capacitor

The recommended power-up sequence of the HV2607/HV2707/HV2708 is V_{LL} first, then V_{DD} . The power-down sequence is in reverse order of power-up. During the power-up/down period, all the analog switch inputs should be within V_{DD} and GND or floating.

5.5 Layout Considerations

The HV2607/HV2707/HV2708 devices have two separate ground connections. DGND is the ground connection for digital circuitry and GND is the ground connection for substrate and analog switches. Since the analog switch passes large transient current from the pulser, the GND should be shared with the pulser output stage ground. It is important to have a good PCB layout which minimizes noise and ground bounce. It is recommended to use two separate ground planes in the PCB, connected together at the return terminal of the input power line, as shown in Figure 5-3. It is recommended that 0.1 µF or larger ceramic decoupling capacitors with low-ESR (Equivalent Series Resistance) and appropriate voltage ratings be connected between ground and power supplies, as shown in Figure 5-3. The decoupling capacitor of V_{LL} and V_{DD} should be connected to DGND. These decoupling capacitors should be placed as close as possible to the device.

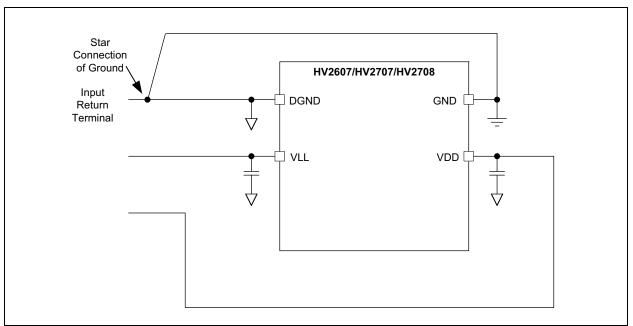
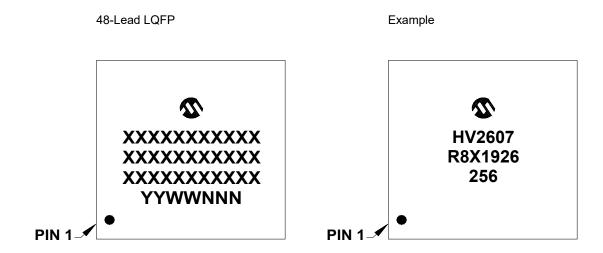



FIGURE 5-3: Layout Guidelines.

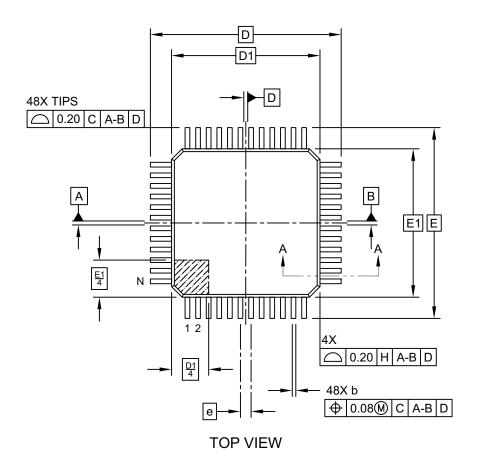
6.0 PACKAGING INFORMATION

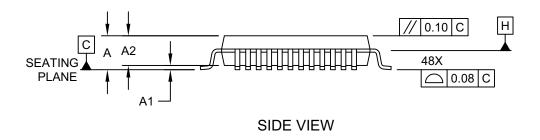
6.1 Package Marking Information

Legend: XX...X Product Code or Customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

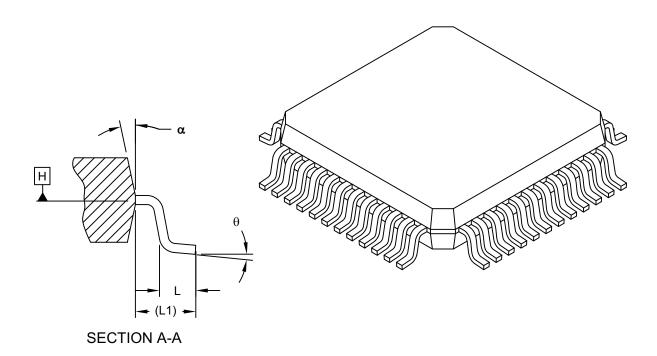

can be found on the outer packaging for this package.


Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include

the corporate logo.

48-Lead Low-profile Plastic Quad Flat Pack Package (R8) -7x7 mm Body [LQFP] Supertex Legacy Package

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-278 Rev A Sheet 1 of 2

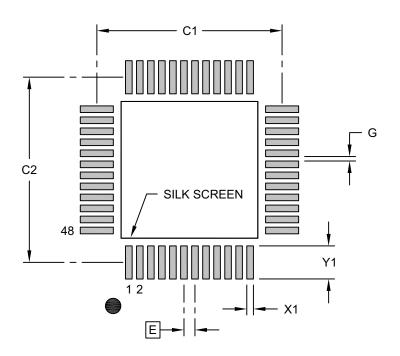
48-Lead Low-profile Plastic Quad Flat Pack Package (R8) -7x7 mm Body [LQFP] Supertex Legacy Package

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	Limits	MIN	NOM	MAX			
Number of Leads	N		48				
Lead Pitch	е		0.50 BSC				
Overall Height	Α	1.40	1.50	1.60			
Standoff	A1	0.05	0.10	0.15			
Molded Package Thickness	A2	1.35	1.40	1.45			
Foot Length	L	0.45	0.60	0.75			
Footprint	L1	1.00 REF					
Foot Angle	θ	0°	3.5°	7°			
Overall Width	Е		9.00 BSC				
Overall Length	D	9.00 BSC					
Molded Package Width	E1		7.00 BSC				
Molded Package Length	D1	7.00 BSC					
Lead Width	b	0.17	0.22	0.27			
Mold Draft Angle Top	α	11°	12°	13°			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-278 Rev A Sheet 2 of 2

48-Lead Low-profile Plastic Quad Flat Pack Package (R8) -7x7 mm Body [LQFP] Supertex Legacy Package

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	<i>I</i> ILLIMETER	S			
Dimension	Dimension Limits					
Contact Pitch		0.50 BSC				
Contact Pad Spacing	C1		8.40			
Contact Pad Spacing	C2		8.40			
Contact Pad Width (X48)	X1			0.30		
Contact Pad Length (X48)	Y1			1.50		
Contact Pad to Contact Pad (X44)	G	0.20				

Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2278 Rev A

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (July 2020)

• Original Release of this Document.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>x</u> T	<u>-x</u>	<u>/XX</u>	Examples:
Device	Tape and Reel	Environmental	Package	a) HV2607T-C/R8X: No High-Voltage Bias, 16-Channel High-Voltage Analog Switch, 48-Lead LQFP package.
Device:		Analog Switch (Tap No High-Voltage B Analog Switch with	ias, 16-Channel High-Volt n Bleed Resistor at Both S	nge
	HV2708:		ias, 16-Channel High-Volt Bleed Resistor at One Sid	
Environmental:	C =	Lead (Pb)-Free/RC	DHS-Compliant Package	Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your
Package:	R8X=	Low Profile Plastic 7x7 mm Body, 48-L	Quad Flat Pack Package Lead (LQFP)	Microchip Sales Office for package availability with the Tape and Reel option.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-6399-3

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 **Technical Support:**

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820