+22dBm LoRa 868/915MHz Transceiver

Features

- 20KM+ Range
- Integrated LoRa[™] Modem Semtech SX1262
- Highly Efficient Integral Impedance Matching Network
- Provides Full Functionality of the RFIC:
- High Rx sensitivity: down to -148 dBm
- Tx +22 dBm @118mA constant RF output
- +14 dBm high efficiency PA
- 170 dB maximum link budget
- Built in RF switch
- Bullet-proof front end: IIP3 = -12.5 dBm
- 89 dB blocking immunity
- Small Form Factor: 23mm x 20mm
- Programmable bit rate up to 300 kbps
- Low RX current of 4.6 mA, (Lora Operating Mode)
- LoRa,FSK,GFSK,MSK,GMSK,OOK modulation
- Built-in bit synchronizer for clock recovery
- Preamble detection
- 127 dB Dynamic Range RSSI
- Automatic RF Sense and CAD with ultra-fast AFC
- Packet engine up to 256 bytes with CRC
- Built-in temperature sensor and low battery indicator
- 868MHz CE Compliant
- 915MHz "Modular" FCC Certification Pending

LAMBDA62

Applications

868MHz Version

- RF Alarms
- Sensor networks
- Long Range Telemetry
- Meter Reading
- Environmental Sensors
- Building Control & Automation
- Agricultural Applications

Description

The LAMBDA62 RF module is a class leading, cost effective radio module featuring the Semtech SX1262 LoRa[™] long range providing ultra-long range, spread spectrum communication and high interference immunity within minimal current consumption.

This module including crystal, RF Changeover switch, impedance matching network and track layout provide a simple digital interface and direct antenna connection. This enables a plug in RF solution with maximum efficiency. Programming of the module is via SPI interface.

The LAMBDA62 Module is CE compliant. Providing that certain procedures are followed. (please refer to application schematic later in this datasheet).

Suggested Layout

Mechanical Dimensions

Part Numbers

Part Number	Description	Package
LAMBDA62-8S	FM Transceiver Module, 868MHz	SMT
LAMBDA62-8D	FM Transceiver Module, 868MHz	DIP
LAMBDA62C-9S	FM Transceiver Module, 915MHz	SMT
LAMBDA62C-9D	FM Transceiver Module, 915MHz	DIP

Pin Description

PIN	Definition	Direction	Function		
1	Antenna	In/Out	868MHz Versions: Antenna connection 915MHz Versions: No Connect		
2	GND	-	Ground connection		
3	Vcc	In	Power connection		
			Enable RX RF Path Active High		
4	RX SWITCH	In	TX PIN5 RX PIN4		
			RX Mode 0 1		
			Enable TX RF Path Active High		
5	5 TX_SWITCH	5 TX_SWITCH	5 TX_SWITCH	In	TX PIN5 RX PIN4
6	DIOO	In/Out	Digital I/O software configured		
7	DIO1	In/Out	Digital I/O software configured		
8	DI02	In/Out	Digital I/O software configured		
9	DIO3	In/Out	Digital I/O Software configured		
10	DIO4	In/Out	Digital I/O software configured		
11	DI05	In/Out	Digital I/O software configured		
12	RESET	In	Reset Trigger Input		
13	Serial Clock	In	SPI Serial Clock Input		
14	Serial Data Out	Out	SPI Serial Data Output		
15	Serial Data In	In	SPI Serial Data Input		
16	nSEL	In	Device Select Active Low		

Block Diagram

Application Resources

The LAMBDA62 is a ready to use application of the Semtech SX1262.

Access to the programming and configuration of Semtech 1262 Transceiver are via the modules interface SPI line.

The LAMBDA62 has been developed with Semtech to provide a low cost platform application of the 1262

transceiver. This offers optimal design realisation and easy integration within the end application. The most important aspect of any RF Module is to maximise the performance of the transceiver at i

The most important aspect of any RF Module is to maximise the performance of the transceiver at the external module pads.

In particular the impedance matching network which is the most sensitive section of the RF module design.

In order to maximise signal propagation to the external pad of the module, a specific layout is required which is not (usually) the smallest physical size (beware of small RF modules!).

Many RF Module manufacturers simply reproduce the IC manufacturers data characteristics where in practice the Module RF performance is considerably lower.

We have measured the conducted power transmitted from the LAMBDA62 ufl connector at +22.4dBm, which demonstrates the efficiency of the LAMBDa62 module.

To ensure that the latest details in programming this device are offered, we have not included the 1262s programming information in this document.

You can find the datasheet at the link below:

SX1262 Datasheet

Programming, configuration and further resource data including;

LoRa Calculator: fast evaluation of link budget, time on air and energy consumption.

Packet Error Rate Firmware User Guide.

LoRa Modem Designer's Guide.

is available from Semtech at the below links Semtec Website

Application schematic Interfacing a PIC[™] Micro Controller

The above schematic shows an easy interface to a PIC Microcontroller

This is the same application circuit that we used for range testing (please see our range test information later in the document).

We also have application source code available for download on our website. This configures the RF LoRa Module for maximum range.

Walk Test application

Also available is the source code used to carry out a simple range test.

In order to use this two application boards are required, one acts as a beacon transmitter, the other as the beacon receiver. The TX board will illuminate the GREEN LED when transmitting and the Receiver will illuminate the RED LED when RECEIVING

The Transmitter board transmits an RF beacon every second (Green LED flashes to indicate transmission).

This enables a one man range test, by placing either board in a fixed location and monitoring the beacon signals.

Electrical Specifications

Absolute Maximums

Symbol	Parameter	Minimum	Maximum	Unit
V_{dd}	Positive power supply	-0.3	+3.9	V
V _{in}	Voltage on Digital Inputs	-0.3	Vdd+0.3	V
V_{in}	Voltage on Analogue Inputs	-0.3	Vdd+0.3	V
RX	Max Rx input power		+10	dBm
T _{op}	Operating temperature	-40	+85	°C
T_{st}	Storage temperature	-55	115	°C

Recommended Operating Conditions

Symbol	Parameter	Minimum	Maximum	Unit
V_{dd}	Positive power supply	1.8	3.7	V
T _{op}	Working temperature	-40	85	°C

DC Characteristics

Parameter	Symbol	Test Condi-	Min	Тур	Ma	Unit
		tion			x	
Supply Voltage Range	V_{DD}		1.8	3.3	3.7	V
	Shutdown	All blocks of IC OFF.	_	160	_	nA
Power Saving Modes	Standby	Register values maintained.		600	_	nA
	I _{Ready}	Crystal Oscillator and Main Digital Regulator ON, all other blocks OFF.		0.6		mA
		FSK Mode 4.8Kbps		4.2		mΑ
RX Mode Current		LORA Mode 125KHz		4.6		mΑ
Using onboad DC-DC		Rx Boosted FSK Mode 4.8Kbps	_	4.8		mΑ
		Rx Boosted LORA Mode 125KHz		5.3		mΑ
TX Mode Current I_{T}		RFOP = +22dBm @ 868/915MHz $RFOP = +20dBm$ $RFOP = +17dBm$ $BFOP = + 14dBm$		118 102 95 90		mA

Power Consumption in Transmit mode

Symbol	Frequency Band	Conditions	Power Output	Typical	Uni t
		+22dBm	+22dBm	118	mΑ
		+20dBm	+20dBm	102	mΑ
		+17dBm	+17dBm	95	mΑ
IDDTX	868/915MHz	+14dBm	+14dBm	90	mΑ
		Optimal Settings for low current and	+20dBm	84	
		output power. Please see SX1262	+17dBm	58	mΑ
		PA optimal settings in Datasheet.	+14dBm	45	

Receive Mode Specifications

Symbol	Description	Conditions	Тур	Max	Unit
RXS_2FB	Sensitivity 2-FSK RX boosted gain	BR_F=0.6 kb/s FDA=0.8 KHz BW_F=4KHz BR_F=1.2 kb/s FDA=5 KHz BW_F=20KHz BR_F=4.8 kb/s FDA=5 KHz BW_F=20KHz BR_F=38.4 kb/s FDA=40 KHz BW_F=160KHz BR_F=250 kb/s FDA=125 KHz BW_F=500KHz	-125 -123 -118 -109 -104		dBm dBm dBm dBm dBm
RXZ_LB	Sensitivity LoRa RX boosted gain	BW_L=10.4 KHz SF=7 BW_L=10.4 KHz SF=12 BW_L=125 KHz SF=7 BW_L=125 KHz SF=12 BW_L=250 KHz SF=7 BW_L=250 KHz SF=12 BW_L=500 KHz SF=7 BW_L=500 KHz SF=12	-134 -148 -124 -137 -121 -134 -117 -129		dBm dBm dBm dBm dBm dBm dBm dBm
CCR_F	Co-channel Rejec- tion FSK		133		dB
CCR_L	Co-channel Rejec- tion LoRa	SF=7 SF=12	5 19		dB dB
ACR_f	Adjacent channel Rejection FSK	Offset = +/- 50KHz	45		dB
ACR_L	Adjacent channel Rejection LoRa	Offset = +/- 1.5 x BW_L BW_L=125 KHz SF=7 BW_L=125 KHz SF=12	60 72		dB

General Specifications

Symbol	Description	Conditions	Min	Тур	Max	Unit
FR	Synthesizer Frequency Range	SX1261**	150		960	MHz
FSTEP	Synthesizer Frequency Step			0.95		MHz
PHN	Synthesizer Phase Noise 868/915MHz	1 KHz offset 10 KHz offset 100 KHz offset 1 MHz offset 10 MHz offset		-75 -95 -100 -120 -135		dBc/ Hz
TS_FS	Synthesizer wakeup time	From standby to XOSC Mode		40		uS
TS_HOP	Synthesizer hop time	10MHz step		30		uS
TS_OSC	Crystal Oscillator Wakeup time	From Standby_RC		150		uS
OSC_TR M	Crystal Oscillator trimming range for crystal frequency error compensation	Min/max specification	+/- 15	+/- 30		Ppm
BR_F	Bit Rate FSK	Programmable Min Modulation index is 0.5	0.6		300	Kb/s
FDA	Frequency Deviation FSK	Programmable FDA + BR_F/2=<250KHz	0.6		200	KHz
BR_L	Bit Rate LoRa	Min for SF12 BW_L=7.8KHz Min for SF12 BW_L=500KHz	0.01 8		62. 5	Kb/s
BW_L	Signal BW, LoRa	Programmable	7.8		500	KHz
SF	Spreading Factor for LoRa	Programmable chips/ symbol=2 ^{sf}	5		12	
VTCXO	Regulated voltage range for TCXO voltage supply		1.6	1.7	3.3	V
ILTCXO	Load current for TCXO regu- lator					mA
TSVTCXO	Startup time for TCXO regula- tor	From enable to regulated volt- age within 25mV from target				uS
IDDTCXO	Current Consumption for TCXO regulator	Quiescent current Relative to load current		1	70 2	uA %
ATCXO	Amplitude voltage for external TCXO applied to XTA pin	Provided through a 220ohm resistor in series with 10pF Cap	0.4	0.6	1.2	Vpk- pk

The module contains the Semetch SX1262 which is capable of these operating frequencies however the module contains an impedance matching network which is optimised for operation at 868/915, operating at other frequencies will be impractical.

Range Test Notes

Transmitter and Receiver boards were built using simple Vero board and a PIC microcontroller (16F886). The transmitter sent a beacon signal at 1 second intervals. The receiver acknowledges this signal back to the transmitter.

A simple piece of wire was used as antenna for both transmitter and receiver.

This test was designed to represent a real life application. It is often difficult to design an application with all RF features to an optimum potential i.e. the antenna was not 100% ideal as there was no antenna ground plane, and the motherboard was rudimentary,

Our Range Testing was conducted on Brighton to Shoreham Seafront providing an open Line of Sight Test.

- 1. The Transmitter was mounted on a plastic wheelie bin 4ft from the ground.
- 2. The Receiver was carried on the dashboard of a vehicle (5ft above ground) along the seafront. Line of sight was not achieved until the receiver was at least 9km distance
- 3. As the receiver travelled away from the transmitter Line of sight was lost . A Reliable signal was observed to about 3K range, thereafter the signal became intermittent. When the Transmitter and Receiver regained Line of sight a reliable signal was again observed. This continued for the available distance (about 12KM) at which point the terrain prevented further testing. At the longest available range the signal was 100% reliable.

Test conditions

- T_A = +25 °C
- $-V_{DD} = +3.3 \text{ Vdc}$
- Dry, Broken Sunshine, Relative Humidity 45%

RF input and output levels can typically be achieved at the antenna port after filtering components.

Conclusion

The product performed as expected. Unfortunately we ran out of land to test a LOS beyond 12Km ,so the maximum range is further than tested here.

It is also clear that the product performs considerably better when in LOS.

Range Test Results (Line of

Range Test Results (Non Line of Sight)

This is subjective as the buildings were random!

LAMBDA62 Types and Device Marking

The LAMBDA62 RF module is available at 868 and 915MHz in the following types

LAMBDA module is CE Compliant and at the time of writing is being submitted for modular FCC part 15 certification

Note:

868MHz : Open module with antenna connection via pin 1 of the module. This provides the lowest cost whilst achieving CE Compliance

915MHz: With Screen Can fitted and antenna connection via ufl . This is in order to achieve Fcc Certification.

RF LoRa module re-flow guide

Profile feature	Value (lead free)
Ramp up rate	3°C /s
Pre-heat Temperature - Temperature Min (T _{Smin}) - Temperature Max (T _{smax}) - Pre-heat time	150ºC 200ºC 60-100s
Peak Temperature (T _P)	240°C
Time at T_P	10-20sec
Ramp down rate	6ºC/s
Time from 25°C to peak	8 mins max.

RF Solutions Ltd. Recycling Notice

Meets the following EC Directives:

DO NOT

Discard with normal waste, please recycle.

ROHS Directive 2002/95/EC

Specifies certain limits for hazardous substances.

WEEE Directive 2002/96/EC

Waste electrical & electronic equipmust be disposed of through a lipoint. RF Solutions Ltd., fulfills its membership of an approved compli-

ment. This product censed WEEE collection WEEE obligations by ance scheme.

Disclaimer:

Whilst the information in this document is believed to be correct at the time of issue, RF Solutions Ltd does not accept any liability whatsoever for its accuracy, adequacy or completeness. No express or implied warranty or representation is given relating to the information contained in this document. RF Solutions Ltd reserves the right to make changes and improvements to the product(s) described herein without notice. Buyers and other users should determine for themselves the suitability of any such information or products for their own particular requirements or specification(s). RF Solutions Ltd shall not be liable for any loss or dam-age caused as a result of user's own determination of how to deploy or use RF Solutions Ltd's products. Use of RF Solutions Ltd products or components in life support and/or safety applications is not authorised except with express written approval. No licences are created, implicitly or otherwise, under any of RF Solutions Ltd's intellectual property rights. Liability for loss or damage resulting for a sware of the product for caused by reliance on the information contained herein or from the use of the product (including liability resulting from negligence or where RF Solutions Ltd was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict RF Solutions Ltd's liability for least or personal injury resulting from its negligence.

 \mathbf{b}

www.rfsolutions.co.uk

RF Solutions Ltd William Alexander House, William Way, Burgess Hill, West Sussex, RH15 9AG Sales: +44(0)1444 227 910 Tech Support: +44(0)1444 227909