Data Sheet

AEAT-9922

10-Bit to 18-Bit Programmable Angular Magnetic Encoder IC for On- and Off-Axis Applications

Description

The Broadcom[®] AEAT-9922 is an angular magnetic rotary sensor that provides accurate angular measurement over a full 360 degrees of rotation.

It is a sophisticated system that uses integrated Hall sensor elements with complex analog and digital signal processing within a single device.

A simple two-pole magnet generates the necessary magnetic field by rotating it in perpendicular. Wide magnetic field sensor configurations allow On-Axis (end of shaft) or Off-Axis (side of shaft) modes in application.

The Broadcom AEAT-9922 is a versatile solution capable of supporting a broad range of applications with its robust architecture to measure and deliver both absolute and incremental signals.

The absolute angle measurement provides an instant indication of the magnet's angular position with a selectable and reprogrammable resolution from 10 bits to 18 bits.

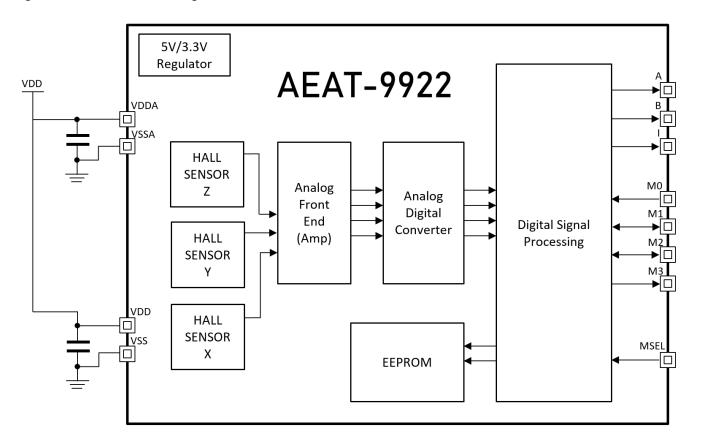
When selected, its positioning data is then represented in its digital form to be assessed through a standard SSI (parity) and SPI (with CRC and Parity option) communication protocol. Where desired, users may also choose to receive its absolute angle position in PWM-encoded output signals with initialization and error bits option.

The incremental positions are indicated on ABI and UVW signals with wide user configurable resolution from 1CPR and up to 10,000 CPR of ABI signals and pole pairs from 1 to 32 pole pairs (2 to 64 poles) for UVW commutation signals.

Features

- 5V and 3.3V operation
- Programmable 10 bits to 18 bits of absolute resolution
- Flexible Incremental ABI resolution ranging from 1 to 10,000 CPR
- Commutation angle output UVW 1 to 32 pole-pair
- PWM output modes with initialization and error bits option
- User-programmable zero position, direction, index width and index position
- Programmable hysteresis
- Absolute output over 2-wire SSI, 3-wire SSI, and 4-wire SPI. Each available in different mode.
- Compact QFN-24 leads (4 mm × 4 mm) package
- RoHS compliant
- INL angle correction for high accuracy
- Wide operating temperature –40°C to 125°C

Applications


- Brushless DC motor and stepper motor
- Resolver and potentiometer replacement
- Industrial automation and robotics
- Industrial sewing machine and textiles equipment

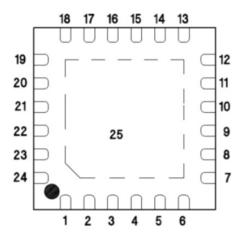
NOTE: This product is not specifically designed or manufactured for use in any specific device.

Customers are solely responsible for determining the suitability of this product for its intended application and solely liable for all loss, damage, expense, or liability in connection with such use.

Functional Description

Figure 1: AEAT-9922 Block Diagram

The AEAT-9922 is manufactured with a CMOS standard process. It is capable of accurately measuring a magnet's rotational angle when it is placed in alignment and in perpendicular to the device by using its integrated Hall sensors to detect its magnetic field. The detected magnetic signals are then taken as input signals to be properly conditioned to negate its non-idealities before inputting them into the analog amplifiers for strength amplification and filtering. After which, the amplified analog signals are then fed into the internal analog-to-digital converter (ADC) to be converted into digital signals for the final stage of digital processing. The digital processing provides a digitized output of the absolute and incremental signals.


The used magnet should have sufficient magnetic field strength mT to generate the magnetic field for the signal generation (see Recommended Magnetic Input Specifications). The device provides digital information of magnetic field strength high MHi and magnetic field strength low MLo from output protocols to indicate whether the magnets are too close or too far away from our device's surface.

Users can access the device's digitized absolute data using standard Synchronous Serial Interface (SSI) or Serial Peripheral Interface (SPI) protocols. In addition, an absolute angular representation also can be selected using a pulse width modulated (PWM) signal.

The incremental outputs are available from digital outputs of their dedicated A, B, and I pins. The U, V, and W commutation outputs are switchable on the general I/O pins.

Pin Assignment

Figure 2: Pin Configurations

Pinout Description

Pin QFN24	Pin Name	I/O	Туре	Functional Description
1 to 6	NC	_	_	No Connection
7	VDDA	_	Power	3.3V/5V Supply Input (Analog)
8	VSSA	_	Power	Supply Ground (Analog)
9	M0	I/O	Digital	SPI3 and SSI Selection/SPI Chip Select/ERR Output
10	M1	I/O	Digital	SPI Data Input/SSI NSL Pin/U Commutation Output (UVW)
11	M2	I/O	Digital	SPI/SSI Clock Input/V Commutation Output (UVW)
12	М3	0	Digital	SPI/SSI Data Out/W Commutation Output (UVW)/PWM Output
13 to 18	NC	_	_	No Connection
19	MSEL	I	Digital	Mode Selection
20	I	0	Digital	Incremental Index Output (ABI)
21	VDD	_	Power	3.3V/5V Supply Input (Digital)
22	VSS	_	Power	Supply Ground (Digital)
23	В	0	Digital	Incremental B Output (ABI)
24	Α	0	Digital	Incremental A Output (ABI)
25	VSS	_	Power	Supply Ground

Electrical Characteristics

Absolute Maximum Ratings

Table 1: Maximum Rating

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T _S	-40	125	°C	
DC Supply Voltage					
VDDA Pin	VDD	-0.3	6	V	
Input Voltage Range	V _{in}	-0.3	6	V	
ElectrostaticDischarge(HBM)		-4.0	+4.0	kV	
Moisture Sensitivity Level		_	1		

CAUTION!

- Subjecting the product to stresses beyond those listed in this section may cause permanent damage to the devices.
- These are stress ratings only and do not imply that the devices will function beyond these ratings. Exposure to the extremes of these conditions for extended periods may affect product reliability.

Recommended Operating Conditions

Table 2: Recommended Operating Conditions for the Encoder IC

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Operating Ambient Temperature	T _A	-40	_	125	°C	
DC Supply Voltage to VDD Pin 5V Operation 3.3V Operation	VDD	4.5 3.0	5.0 3.3	5.5 3.6	V	
Incremental Output Frequency	f _{MAX}	_	_	1.0	MHz	Frequency = Velocity(rpm) × CPR/60
Load Capacitance	C _L	_	_	15	pF	

Systems Parameters

Table 3: Systems Parameters

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Current Consumption		<u>"</u>		1		
Supply Current Normal Operation	I _{DD}	_	25	_	mA	5V
Mode	I _{DD}	_	24	_	mA	3.3V
Digital Outputs (DOs)						
High Level Output Voltage	V _{OH}	VDD - 0.5	_	_	V	Normal operation
Low Level Output Voltage	V _{OL}	_	_	GND + 0.4	V	
Power-Up Time Absolute Output Incremental Output PWM Output	t _{PwrUp}	_	10	_	ms	
Digital Inputs (DIs)						
Input High Level	V_{IH}	0.7 × VDD	_	_	V	
Input Low Level	V_{IL}	_	_	0.3 × VDD	V	
Pull-Up Low Level Input Current	I _{IL}	_	_	120	μA	
Pull-Down High Level Input Current	I _{IH}	_	_	120	μΑ	

NOTE: Electrical characteristics over the recommended operating conditions. Typical values specified at VDD = 5.0V and 25°C, at optimum placement of magnet.

Encoding Characteristics

Table 4: Encoding Output Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Absolute Output			1			
Resolution	RES	10	_	18	Bit	Programmable 10 to 18 bits
Integral Non-Linearity On-Axis	INL _{nom}	_	± 0.1	_	Degree	Best fit line, centered magnet.
Integral Non-Linearity Off-Axis		_	± 0.15	_		T _A = 25°C, Voltage = 5V, INL angle correction
Integral Non-Linearity On-Axis	INL _{dis}	_	± 0.2	_	Degree	Best fit line, over displacement
Integral Non-Linearity Off-Axis		_	± 0.3	_		of magnet. T _A = 25°C, Voltage = 5V
Integral Non-Linearity On-Axis	INL _{temp}	-	± 0.5	_	Degree	Best fit line, over displacement
Integral Non-Linearity Off-Axis		_	± 0.7	_		of the magnet and temperature variation. T _A = -40°C to +125°C, Voltage = 5V
Code Monotony		_	1	_	LSB	14-bits absolute (Static)
Output Sampling Rate	f _S	_	10	_	MHz	Based on SSI3 protocol
Latency		_	80	_	ns	
Incremental Output (Channel AE	BI)					
Resolution	R _{INC}	1	_	10000	CPR	Programmable
Index Pulse Width	P _O	90	_	360	°e	Programmable options: 90, 180, 270, or 360 °e. See Figure 25.
Index State		90	_	360	°e	Programmable options: 90, 180, 270, or 360 °e. See Figure 25.
Relative Angular Accuracy	%	_	10	_	%	Reference to an output period at output A and B, at 512 CPR, 5V, and 3000 RPM
PWM Output	<u>'</u>					
PWM Frequency	f _{PWM}	122	_	976	Hz	Adjustable based on PWM settings
Minimum Pulse Width	PW _{MIN}	_	1	_	μs	
Maximum Pulse Width	PW _{MAX}	_	16,384		μs	

NOTE: Encoding characteristics over recommended operating range unless otherwise specified.

Encoding Timing Characteristics

Table 5: Encoder Timing Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Incremental Output (ABI and UVV	/)					
System Reaction Time	t _{delay}	_	10	_		First ABI pulse detection upon power up.

Mechanical and Magnetic Specifications

Recommended Magnetic Input Specifications

Table 6: Magnet Specifications

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Diameter	d					Recommended magnet:
Disc Magnet		4	6		mm	Cylindrical magnet or ring
Ring Magnet ID		_	ID,15	_	mm	magnet diametrically
/OD			OD,25		mm	magnetized and 1-pole pair.
Thickness	t					
Disc Magnet		_	2.5	_	mm	
Ring Magnet		2	6	_	mm	
Magnetic Input Field Magnitude	Bpk					Required vertical/horizontal
On-Axis (Disc Magnet)		45	_	100	mT	component of the magnetic
Off-Axis (Ring Magnet)		30	_	150	mT	field strength on the die's
						surface, measured along concentric circle.
Magnet Displacement Radius	R_m	_	_	0.25	mm	Displacement between
						magnet axis to the device
						center.
Recommended Magnet Material		_	-0.12	_	%/K	NdFeB (Neodymium Iron
and Temperature Drift						Boron), grade N35SH.

Figure 3: Direction Definition When the Magnet Rotates

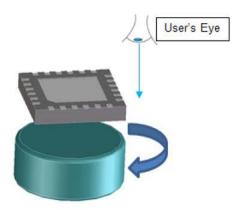
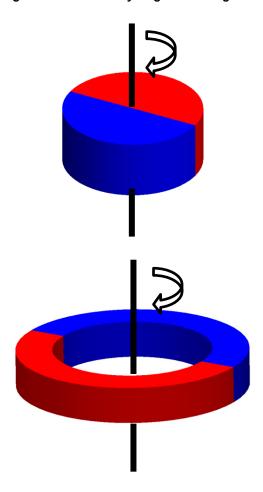
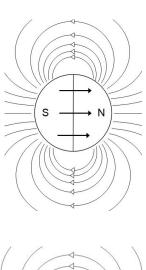
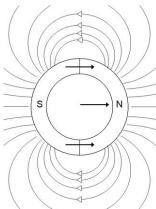
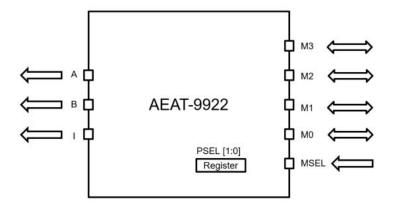





Figure 4: Diametrically Magnetized Magnet

Communication Protocol

AEAT-9922 has a total of 10 interfaces; one is dedicated for incremental ABI and remaining are multiplexed to I/O pin M0, M1, M2, and M3. Each output is configurable using the M0 pin, the MSEL pin, and the PSEL registers as shown in the following table.

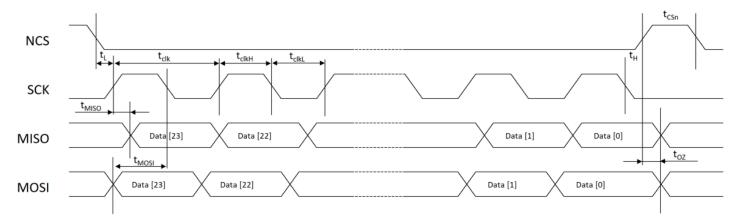

Table 7: Configurable interface IO and selection

	Mode													
Pin	SPI-3	SSI-3(A)	SSI-3(B)	SSI-2(A)	SSI-2(B)	SPI-4(A)	SPI-4(B)	UVW	PWM	Remarks				
MSEL	0	0	0	0	0	1	1	1	1	I/O Pin				
PSEL[1]	Х	х	Х	Х	х	0	0	1	1	Memory				
PSEL[0]	Х	0	1	0	1	0	1	0	1	Memory				
МО	0	1	1	1	1	NCS	NCS	ERR	ERR	I/O Pin				
M1	DIN	NSL	NSL	0	0	MOSI	MOSI	U	N/A	I/O Pin				
M2	SCK	SCL	SCL	SCL	SCL	SCK	SCK	V	N/A	I/O Pin				
М3	DO	DO	DO	DO	DO	MISO	MISO	W	PWM	I/O Pin				

NOTE:

- 1. PSEL[1] and PSEL[0] are configurable through memory.
- 2. MSEL, M0, M1, M2, and M3 are configurable through I/O pads.

Figure 5: Interface Selection and IO Pins


SPI4 Protocol

SPI4 protocol uses four pins from AEAT-9922. These four pins are shared between the UVW, SSI, and SPI protocols. MSEL (input pin) selects one of these protocols at a time. Assert 1 on the MSEL pin to select the SPI4 protocol.

SPI4 protocols allow user to access memory read or write and position data. They use CPOL=0, CPHA=1 for triggering.

- M0 → SPI Chip Select (NCS) signal for SPI protocol, input to AEAT-9922
- M1 → SPI_Data Input (MOSI) signal for SPI protocol, input to AEAT-9922
- M2 → SPI Clock Input (SCK) signal for SPI protocol, input to AEAT-9922
- $M3 \rightarrow SPI_Data Output (MISO) signal for SPI protocol, output from AEAT-9922$

Figure 6: SPI4 Timing Diagram

Table 8: SPI4 Timing Characteristics

Symbol	Description	Min.	Тур.	Max.	Units
t_	Time between NCS falling edge and CLK rising edge	350	_	_	ns
t _{clk}	Serial clock period	100	_	_	ns
t _{clkL}	Low period of serial clock	50	_	_	ns
t _{clkH}	High period of serial clock	50	_	_	ns
t _H	Time between last falling edge of SCK and rising edge of NCS	t _{clk} /2	_	_	ns
t ^{CSn}	High time of NCS between two transmission	350	_	_	ns
t _{MOSI}	Data input valid to clock edge	20	_	_	ns
t _{MISO}	SCK edge to data output valid	_	51	_	ns
t _{OZ}	Time between NCS rising edge and MISO	_	10	_	ns

NOTE: The user should read back data to confirm data is written successfully.

SPI4 Command and Data Frame

Figure 7: SPI4 Read Sequence



Figure 8: SPI4 Write Sequence

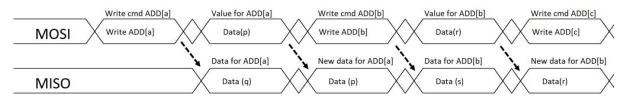


Figure 9: SPI-4(A) 16-bit (Parity)

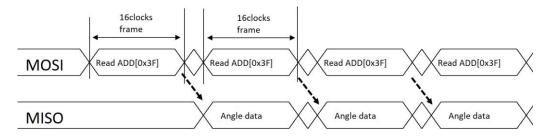
By default, the chip is configured to SPI4 16-bit selection, PSEL [1] = 0, PSEL [0] = 0 in the register setting.

									Da	ita F	orm	at								
	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Master to Slave					Р	RW	0	0	0	0	0	0			Add	r/Da	ta[7	:0]		
Slave to Master (memory)					Р	EF	0	0	0	0	0	0			Data[7:0]					
Slave to Master (pos 10b)					Р	EF					Pos	9:0]					0	0	0	0
Slave to Master (pos 11b)					Р	EF					Pos[10:0]						0	0	0
Slave to Master (pos 12b)					Р	EF					Pos[11:0]							0	0
Slave to Master (pos 13b)					Р	EF					Pos[12:0]								0
Slave to Master (pos 14b)				Ī	Р	EF					Pos[13:0]								
Slave to Master (pos 15b)				Р	EF						Pos[14:0]								
Slave to Master (pos 16b)			Р	EF							Pos[15:0]								
Slave to Master (pos 17b)		Р	EF			Pos[16:0]														
Slave to Master (pos 18b)	Р	EF				Pos[17:0]														

NOTE: P: Parity; EF: Error Flag; RW: Read = 1, Write = 0

Figure 10: SPI4-(B) 24-bit (CRC)

To configure the chip to SPI4 24-bit selection, set PSEL [1] = 0, PSEL [0] = 1 in the register setting.


													Da	ata F	orma	at												
	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Master to Slave					0	RW	0	0	0	0	0	0			Add	dr/D	ata[7	' :0]					C	RC[7	7:0]			
Slave to Master (memory)					W	Е	0	0	0	0	0	0				Data	[7:0]						C	RC[7	7:0]			
Slave to Master (pos 10b)					W	Е					Pos[9:0]					0	0	0	0			C	RC[7	7:0]			
Slave to Master (pos 11b)					W	Е					Pos[10:0						0	0	0			C	RC[7	7:0]			
Slave to Master (pos 12b)					W	Ε					Pos[11:0							0	0			C	RC[7	7:0]			
Slave to Master (pos 13b)					W	Е					Pos[12:0								0			C	RC[7	7:0]			
Slave to Master (pos 14b)					W	Е					Pos[13:0											C	RC[7	7:0]			
Slave to Master (pos 15b)				W	Ε						Pos[14:0											С	RC[7	7:0]			
Slave to Master (pos 16b)	_		W	Ε							Pos[15:0]											C	RC[7	7:0]			
Slave to Master (pos 17b)		W	Ε								Pos[16:0]											C	RC[7	7:0]			
Slave to Master (pos 18b)	W	Ε									Pos[:	17:0]											C	RC[7	7:0]			

NOTE: W: Warning; E: Error; RW: Read = 1, Write = 0

Position Read

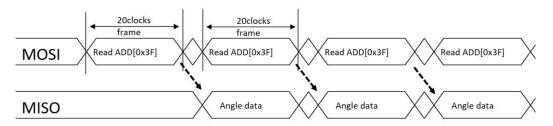

Absolute position data can be obtained by sending a read command to address 0x3F.

Figure 11: Read Command

In the event of higher single turn resolution (15-bit and above), the command and data frame size is adjusted accordingly.

Figure 12: Command and Data Frame Example for 18-bit (Position) + 2-bit (Parity and Error)

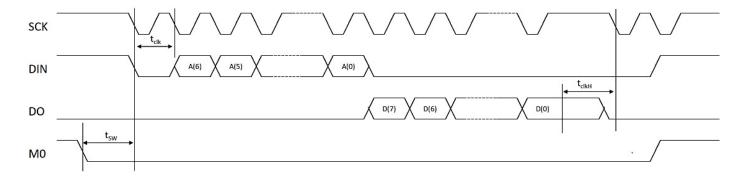
Warning and Error Bit

Error bit is triggered if either Magnet High (MHI), Magnet Low (MLO), Memory Error (MEM_Err) or communication error.

Details of error bits are available in the register address that follows.

Table 9: Error Bits Register

Address					Bit				
[decimal]	[hex]	7	6	5	4	3	2	1	0
33	0x21	RDY	MHI	MLO	MEM_Err				


- Magnet High (MHI) Error: This indicates that the magnet strength detected by the chip is too strong. When this is flagged high consistently, change to a weaker magnet or increase the distance between the chip and the magnet. The value for this alarm is represented as 1.
- Magnet Low (MLO) Error: This indicates that the magnet strength detected by the chip is too weak. When this is flagged high consistently, change to a stronger magnet or decrease the distance between the chip and the magnet. The value for this alarm is represented as 1.
- Ready (RDY): The chip is ready, and the ready value is 1.
- Memory Error (MEM_Err): The chip memory content is corrupted (per CRC check)

SPI3 Protocol

SPI3 protocols only allow access to memory read write. Assert 0 on the MSEL and M0 pins to configure it.

- M1 → SPI Data Input (DIN) signal for SPI protocol, input to AEAT-9922
- M2 → SPI_Clock Input (SCK) signal for SPI protocol, input to AEAT-9922
- M3 → SPI_Data Output (DO) signal for SPI protocol, output from AEAT-9922

Figure 13: SPI3 Timing Diagram

Table 10: SPI3 Timing Characteristics

Symbol	Description	Min.	Тур.	Max.	Units
t _{SW}	Time between M0 falling edge and SCK falling edge 1 —				
t _{clk}	Serial clock period — — 100		100	ns	
t _{clkH}	SCK clock high time after end of last clock period	300	_	_	ns

NOTE: The user should read back data to confirm data is written successfully.

Figure 14: SPI3 Read

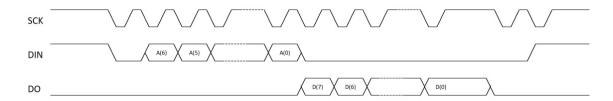
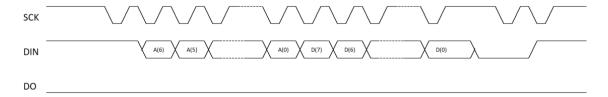
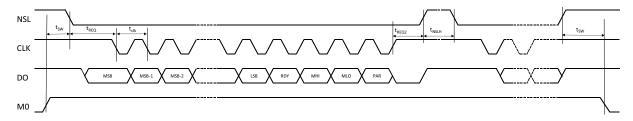



Figure 15: SPI3 Write



Serial Synchronous Interface 3-wire (SSI3)

SSI3 protocol uses three pins from AEAT-9922. These three pins are shared between the UVW, SSI, and SPI protocols. MSEL (input pin) selects one protocol at a time. Assert 0 on the **MSEL** pin and 1 on the **M0** pin to select the SSI protocol.

- M1 → SSI NSL Input (NSL) signal for SSI protocol, input to from AEAT-9922
- M2 → SSI_Clock Input (CLK) signal for SSI protocol, input to AEAT-9922
- M3 → SSI_Data Output (DO) signal for SSI protocol, output from AEAT-9922

Figure 16: SSI-3A Protocol Timing Diagram

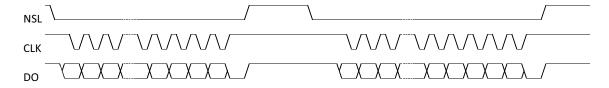

Default: Data Output with 3-wire SSI to 10-MHz clock rates.

Table 11: SSI3 Protocol Timing

Symbol	Description	Min.	Тур.	Max.	Units
t _{sw}	Time between M0 and NSL switching edges 1 — —		_	μs	
t _{clk}	Serial clock period 100 — —		ns		
t _{REQ}	CLK high time between NSL falling edge and first CLK falling edge	300	_	_	ns
t _{REQ2}	NSL low time after rising edge of last clock period for an SSI read	200	_	_	ns
t _{NSLH}	NSL high time between two successive SSI reads	200	_	_	ns

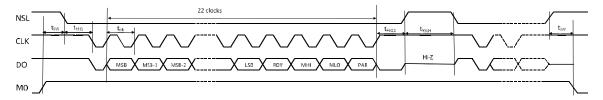

SSI3 is available in two options per the PSEL register setting,

Figure 17: SSI-3(A)

The DO pin is held at high state when the NSL pin is high.

Figure 18: SSI-3(B)

The DO pin is at tristate (high impedance) when the NSL pin is high.

Serial Synchronous Interface 2-Wire (SSI2)

SSI2 protocol uses two pins from AEAT-9922. These two pins are shared among the UVW, SSI, and SPI protocols. MSEL (input pin) selects one protocol at a time. Assert 0 on the **MSEL** pin and the **M1** pin and 1 on the **M0** pin upon power-up.

- M2 → SSI Clock Input (CLK) signal for SSI protocol, input to AEAT-9922
- M3 → SSI_Data Output (DO) signal for SSI protocol, output from AEAT-9922

Figure 19: SSI 2-Wire Timing Diagram

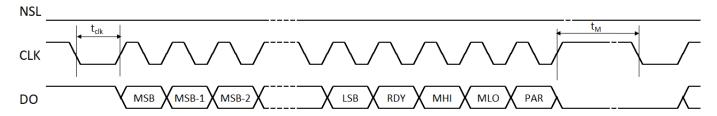
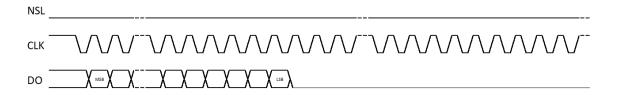



Table 12: SSI 2-Wire Timing Characteristics

Symbol	Description	Min.	Тур.	Max.	Units
t _{clk}	CLK low time after the first falling edge for an SSI read	250	_	t _M / 2	ns
t _M	CLK high time between 2 successive SSI reads		16.5	18.0	μs

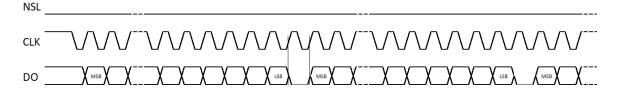

SSI2 is available in two options per the PSEL register setting:

Figure 20: SSI-2(A)

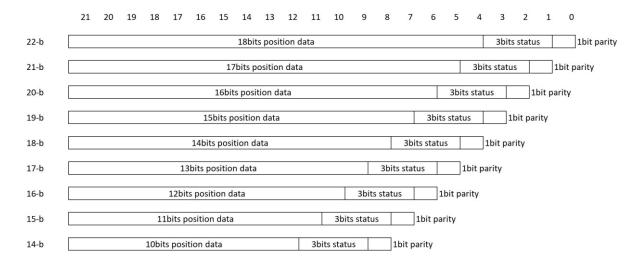
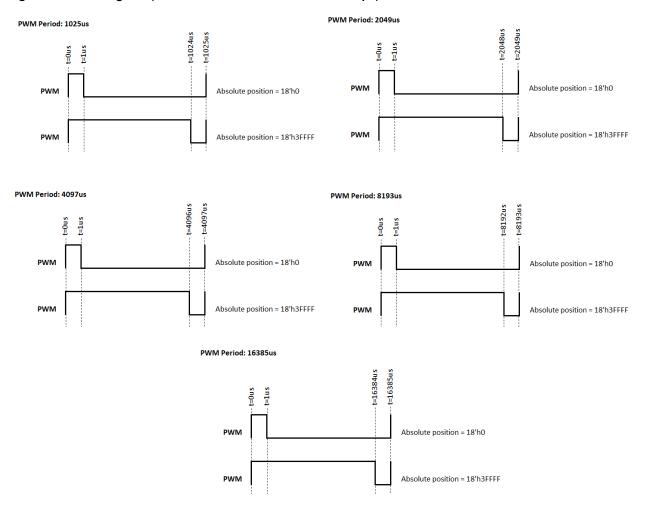

Output single data position and remains low after LSB until the next monoflop (t_M) expires.

Figure 21: SSI-2(B)

The same position data can be continuously output by sending clock train and data is separated by a single low pulse. Data will be refreshed on the next monoflop (t_M) expires.

Figure 22: SSI2 Read Data Format


NOTE: 3-b status: {Ready, MHI, MLO}.

- Magnet High (MHI) Error: This indicates that the magnet strength detected by the chip is too strong. When this is flagged high consistently, change the weaker magnet or increase the distance between the chip and the magnet. The value for this alarm is represented as 1.
- Magnet Low (MLO) Error: This indicates that the magnet strength detected by the chip is too weak. When this is flagged high consistently, change the stronger magnet or decrease the distance between the chip and the magnet. The value for this alarm is represented as 1.
- **Ready**: The chip is ready, and the ready value is 1.
- Parity: 1-b parity is even parity.

PWM

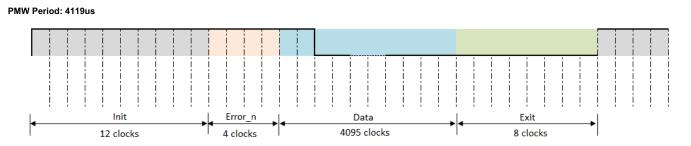

PWM protocol uses one output pin (W_PWM) from AEAT-9922. Note that W_PWM pin is shared between UVW and PWM protocols. The PWM signals are configurable to have period of 1025, 2049, 4097, 8193 or 16385 μs. During power-up, the PWM signal is 0 before chip ready.

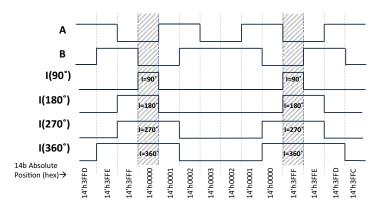
Figure 23: PWM Signals (Period = 1025/2049/4097/8193/16385 μs)

PWM protocols are also available with Init, Error_n, and Exit along with Data information.

Figure 24: PWM Signals (Period = $1047/2071/4119/8215/16407 \mu s$)

Incremental Output Format

The AEAT-9922 provides ABI and UVW signals to indicate incremental position of the motor.

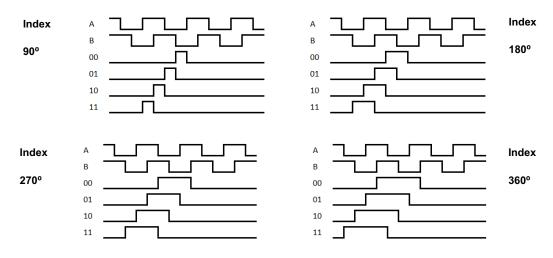

ABI

The ABI incremental interface is available to provide position data and direction data from the three output pins (A, B, and I).

The index signal marks the absolute angular position and typically occurs once per revolution The ABI signal is configurable using the memory map registers. It supports the following configurations:

- Programmable CPR: 1 to 10,000 CPR
- Programmable I-width 90, 180, 270, or 360 electrical degrees (°e)
- Programmable I-State: 90, 180, 270, or 360 electrical degrees (°e)

Figure 25: ABI Signal (4096 CPR, with Different I-Width Settings)

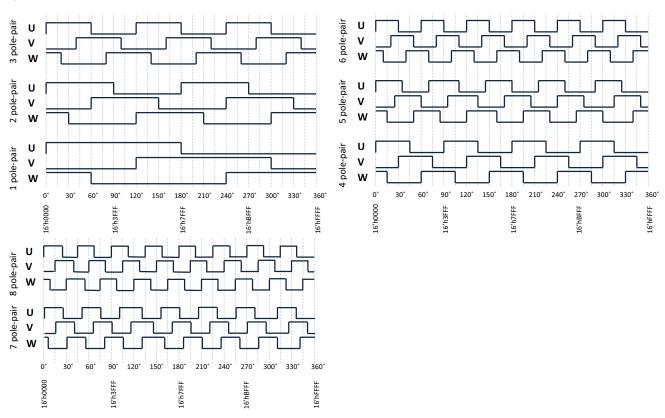


NOTE: Assuming the user sets the hysteresis at 0.02 mechanical degrees.

The Index position is configurable among the incremental state.

Index signal rises high once per revolution at the absolute zero position.

Figure 26: Index Signal Configuration



UVW

Three-channel integrated commutation output (U, V, W) emulates Hall sensor feedback and is available using three output pins. AEAT-9922 can configure from 1 to 32 pole pairs, equivalents to 2 to 64 poles.

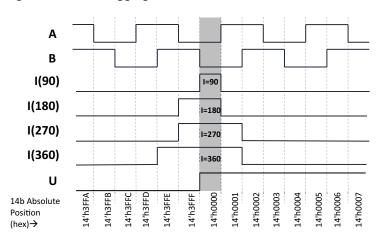
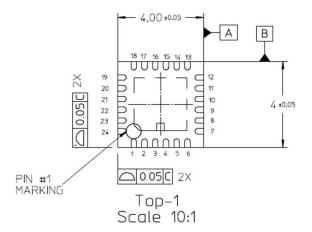
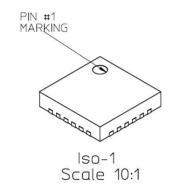
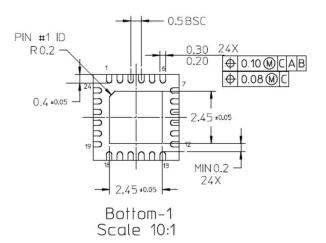

Note that W_PWM pin is shared between the UVW and PWM protocols.

Figure 27: Commutation Output

Note that signal U from UVW protocol is tagged to signal I from the ABI protocol as shown in the following figure.


Figure 28: U-to-I Tagging




Package Drawings

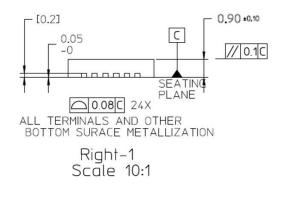

Dimensions are in mm unless otherwise specified.

Figure 29: AEAT-9922, 24 QFN Dimensions

Recommended PCB Land Pattern and Soldering Profile

Figure 30: Land Pattern Dimensions in mm

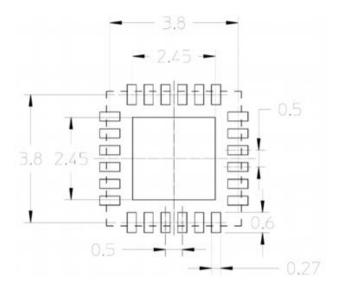
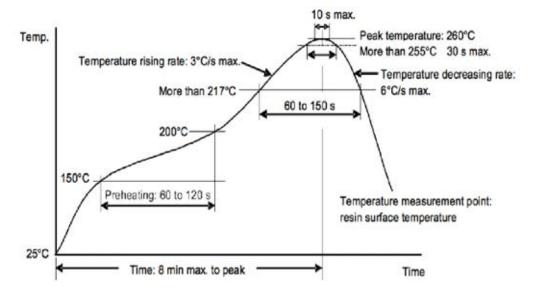



Figure 31: Recommended Lead-Free Solder Reflow Soldering Temperature Profile

Product Ordering Information

Ordering Part Number	Product Description	Package	Delivery Form
AEAT-9922-100	18 Bits Magnetic Encoder On-Off Axis Tape and Reel, 1000 pieces	QFN 24 leads, 4 mm × 4 mm	Tape and Reel
AEAT-9922-102	18 Bits Magnetic Encoder On-Off Axis Tape and Reel, 100 pieces	QFN 24 leads, 4 mm × 4 mm	Tape and Reel
AEAT-9922-Q24	18 Bits Magnetic Encoder On-Off Axis Tube, 73 pieces	QFN 24 leads, 4 mm × 4 mm	Tube

Accessories Ordering Information

Ordering Part Number	Product Description	Remarks
		1 unit of SPI programming kit, 2 units of sensor board, 2 pieces of on-axis magnets, USB cable for PC interface and the associated software
HEDS-9922EVB	AEAT-9922 Evaluation Board	1 unit of sensor board

Packaging Information

Figure 32: Reel Dimensions

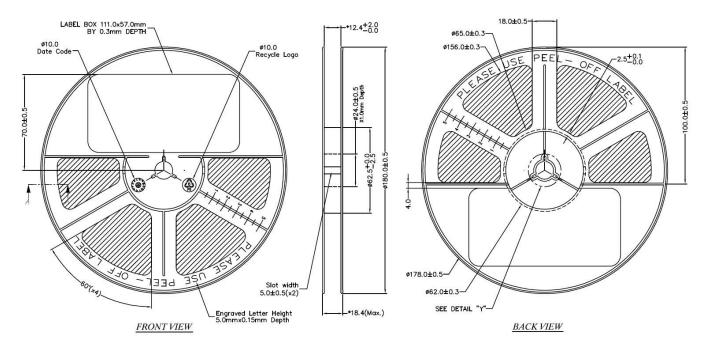


Figure 33: User Feed Direction

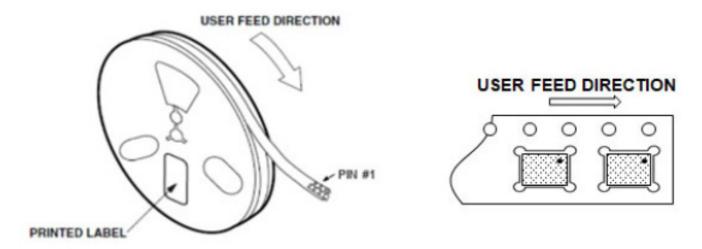


Figure 34: Top Cavity Dimensions

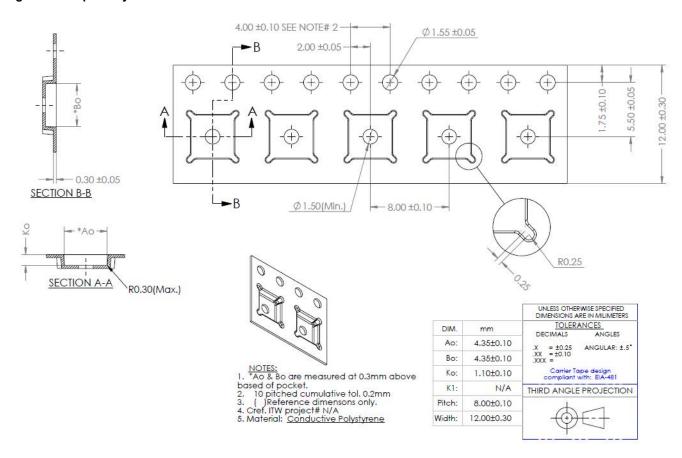


Figure 35: AEAT-9922 Series Package Marking

Table 13: AEAT-9922 Series Package Marking

Row	Length	Description
1	9 digits	Product part number
2	4 digits	Manufacturing date code, "YY" is year, "WW" is work week
3	6 digits	Wafer batch number

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU.

Copyright © 2021 Broadcom. All Rights Reserved.

The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

