Aufnahme der Schneideisen

Das Schneideisen muss sorgfältig in die Aufnahme eingelegt werden. Es dürfen keine Späne am Schneideisen oder im Halter haften, da sonst die Stirnseite des Schneideisens nicht genau anliegt und die Gewinde verschnitten werden.

Ohne Spannschrauben: Arretierung des Schneideisens über die Nut mit einer verstellbaren Backe, ähnlich wie beim Windeisen. Durch die besondere Konstruktion der Backe und der geringen Toleranzen sitzen die Schneideisen absolut sicher und fest im Schneideisenhalter.

Spanwinkel

Um gute Schneidergebnisse zu erhalten, ist der Spanwinkel dem zu bearbeitenden Werkstoff anzupassen. Das gilt auch beim Gewindeschneiden. Die Regel: Langspanende Werkstoffe erfordern größere Spanwinkel, kurzspanende Werkstoffe erfordern kleinere Spanwinkel.

Wenn in der Bestellung keine Werkstoffangaben enthalten sind, liefern wir unsere Schneideisen mit einem Spanwinkel für Stahl mittlerer Festigkeit.

Anschnitt

Normaler Anschnitt: Die HSS-Schneideisen für Stahlbearbeitung haben in der Normalausführung eine Anschnittlänge von ca. 1,75 x Steigung. VA-Schneideisen liefern wir mit einer Anschnittlänge von ca. 2 x Steigung. Schneideisen für Messing-Bearbeitung haben eine Anschnittlänge von ca. 1,25 x Steigung.

Kurzer Anschnitt: Sollen Gewinde dicht an einem Bund geschnitten werden, liefern wir Anschnitt kurz mit einer Anschnittlänge von ca. 1,25 x Steigung. Ein kurzer Anschnitt kann nicht durch Planschleifen erzielt werden, da der notwendige Anschnitt-Ø dann zu klein ist und das Schneideisen nicht mehr richtig schneidet.

Langer Anschnitt: Wenn das Werkstück es zulässt, mit längerem Anschnitt zu arbeiten, erreicht man vor allem bei schwer zerspan baren Werkstoffen bessere Schneidergebnisse. Wir liefern deshalb auch Schneideisen mit einer Anschnittlänge von ca. 3 x Steigung auf Anfrage.

Schälanschnitt

Der Schälanschnitt bewirkt ein freies Abfließen der Späne nach vorne und eine Verringerung des Schnittmomentes. Spänestauungen in den Spanlöchern werden dadurch vermieden. Das Ergebnis ist eine verbesserte Oberflächengüte bei den geschnittenen Gewinden und höhere Standzeit des Werkzeuges.

Schneideisen, die auf Maschinen ein gesetzt werden, müssen deshalb mit Schälanschnitt bestellt werden.

HSS-Schneideisen sind ab Gewinde-Ø 3 mm mit Schälanschnitt lieferbar. Alle VA-Schneideisen werden ab Gewinde-Ø 2 mm mit Schälanschnitt geliefert.

Schnittgeschwindigkeit

Die nachfolgend aufgeführten Schnittgeschwindigkeiten können nur als Richtwerte gelten. Bestwerte müssen in eigenen Schneidver suchen ermittelt werden, da sie nicht nur von dem zu bearbeitenden Werkstoff, sondern auch von der Qualität des Kühl- bzw. Schmier mittels und dem Zustand der Maschine abhängig sind. Eine zu hohe Schnittgeschwindigkeit bewirkt jedoch eine Verkürzung der Standzeit des Schneideisens und bei den zu schneidenden Gewinden eine herabgesetzte Maßhaltigkeit und Oberflächengüte.

Kühl- und Schmiermittel

Um die Zerspanungswärme abzuleiten und die Reibung zu vermindern, ist ein möglichst großes Kühl- bzw. Schmiermittelvolumen auf die Zerspanungsstelle zu richten. Der Kühlmittelstrahl muss die Späne im Schneideisen bis zum Wiedereinleiten des Gewindeschneidvorganges ausspülen. Dadurch wird eine gute Oberflächengüte erzielt und das Werkzeug geschont. Unsere Kühl- und Schmiermittelempfehlungen entnehmen Sie bitte nachstehender Tabelle.

GH-Schneideisen

Gewindegeschliffene Schneideisen (mit Gewindehinterschliff) können ein Mehrfaches der Standzeit normaler Schneideisen erreichen. Das Schneidmoment ist kleiner und die Neigung zu Kaltschweiß ungen gering. Wir liefern diese Ausführung > Gewinde-Ø ca. 16 mm auf Anfrage.

Schneideisen ab Seite 1/140.

HSSE-Schneideisen

Sind aus hochlegiertem Schnellarbeitsstahl mit entsprechendem Cobaltanteil gefertigt. VA-Schneideisen sind zum Gewindeschneiden von Stählen bis 1200 N/mm² geeignet, besonders aber für rost- und säurebeständige Stähle, Vergütungsstähle, Einsatzstähle usw. Es können auch gut zerspanbare Stähle wie z. B. Automaten stähle bearbeitet werden. Man erreicht damit wesentlich höhere Standzeiten oder höhere Schnittgeschwindigkeiten als dies mit HSS-Schneideisen möglich ist. Für andere Werkstoffe liefern wir ebenfalls HSSE-Schneideisen mit der darauf abgestimmten Geo metrie, z. B. für Rotguss (HSSE-RG nitr. bezeichnet), für Messing (HSSE-Ms bezeichnet) usw. auf Anfrage.

Richtwerte für Schnittgeschwindigkeit, Kühl,- Schmiermittel und Spanwinkel. Angaben über zu verwendende Schneideisen

zu bearbeitende Werkstoffe		Schnittgeschw.	Kühl-Schmiermittel	Spanwinkel	zu verwendende
		Richtwerte in m/min			Schneideisen
allgemeine Baustähle	St 37-2, St 50-2 usw.	8–12	Schneidöl	17–22°	HSS
Automatenstähle	9 S Mn 28, 9 S MnPb 28 usw.	10-14	Schneidöl	17-22°	HSS
Einsatzstähle	C 15, Ck 15, 16 MnCr 5 usw.	6–10	Schneidöl, Spezial-Schneidöl	17–22°	HSSE (HSS-nitriert)
Vergütungsstähle	C 35 Pb, C 45 usw.	5–8	Schneidöl, Spezial-Schneidöl	13–18°	HSSE
rost- und säurebest. Stähle	X12CrMoS17, X12CrNiS188 usw.	4–6	Spezial-Schneidöl	13–18°	HSSE
Grauguss	GG 15, GG 25	5–8	Schneidöl, Petroleum	8-12°	HSS-nitriert-GG
Messing kurzspan. Ms 58	CuZn 39 Pb 2, CuZn 40 Pb 2	20-30	Schneidöl	3–7°	HSS-Ms
Messing langspan. Ms 60	CuZn 20, CuZn 37	12–18	Schneidöl	10-15°	HSS-Ms
Bronze	CuSn 8	5–8	Schneidöl, Emulsion	8-12°	HSS-Bz
Rotguss	G-CuSn 5 Zn Pb	7–11	Schneidöl, Emulsion	8–12°	HSS-nitriert-Rg
Kupfer	E-Cu 57, SF-Cu	11–15	Schneidöl, Emulsion	23-28°	HSS-Cu
Alu-Leg. langspanend	AlCuMg 1, AlMg 3 Si	15–25	Spezial-Schneidöl, Petroleum	23–28°	HSS-Alu
Alu-Leg. kurzspanend	GD-AlSi 8 Cu 3, GD AlSi 12	8–12	Spezial-Schneidöl, Petroleum	13–18°	HSSE
Rein-Titan	ASTMS 67	5–8	Spezial-Schneidöl	19–24°	HSSE