Specification			
Part	MC192032A6WC-BNMLW		
Number:	MC		
Version:			
Date:			
		Revision	
No.	Date	Description	

Contents

2. General Specification

Page 4
3. Module Classification Information

Page 5
4. Interface Pin Function

Page 6
5. Outline dimension \& Block Diagram

Page 7
6. Function Description
7. Instructions

Page 8
8. Parallel interface

Page 14
9. Optical Characteristics

Page 22
10. Absolute Maximum Ratings

Page 32
Page 33
11. Electrical Characteristics

Page 33
12. Backlight Information

Page 34
13. Reliability

Page 35
14. Inspection specification

Page 36
15. Precautions in use of LCD Modules

Page 40
16. Material List of Components for RoHs

Page 41
17. Recommendable storage

Page 41

2. General Specification

The Features of the Module is description as follow:
■ Module dimension: $116.0 \times 37.0 \times 13.9$ (max.) mm^{3}
■ View area: $85.0 \times 18.6 \mathrm{~mm}^{2}$
■ Active area: $80.6 \times 15.96 \mathrm{~mm}^{2}$
■ Number of Dots: 192×32
■ Dot size: $0.46 \times 0.38 \mathrm{~mm}^{2}$
■ Dot pitch: $0.5 \times 0.42 \mathrm{~mm}^{2}$
■ LCD type: STN Negative, Blue Transmissive

- Duty: $1 / 32$
- View direction: 6 o'clock
- Backlight Type: LED, White

Midas LCD Part Number System

4. Interface Pin Function

Pin No.	Symbol	Level	Description
1	VSS	0 V	Ground
2	VDD	5.0 V	Supply voltage for logic
3	Vo		Contrast Adjus tment
4	RS		H: Data , L : Instruction
5	R/W	H/L	H: Read (MPU \leftarrow Module) , L: Write (MPU \rightarrow Module)
6	E	H/L	ENABLE SIGNAL
7	DB0	H/L	Data bus line
8	DB1	H/L	Data bus line
9	DB2	H/L	Data bus line
10	DB3	H/L	Data bus line
11	DB4	H/L	Data bus line
12	DB5	H/L	Data bus line
13	DB6	H/L	Data bus line
14	DB7	H/L	Data bus line
15	Vout		Positive voltage output
16	NC	Y	No connection

5. Outline Dimension \&Block Diagram

LED B/L

IN $\backslash 0$	Y MDO:
1	Vss
2	Vdd
3	VO
4	RS
5	R/W
6	E
7	DB0
8	DB1
9	DB2
10	DB3
11	DB4
12	DB5
13	DB6
14	DB7
15	Vout
16	NC

DOT Size
Scale 20/1

[^0]
6. Function Description

function Description :
Sys tem interface
ST7920 supports 3 kinds of bus interface to MPU. 8 bits parallel, 4 bits parallel and clock synchronized serial interface. Parallel interface is selected by PSB="I" and serial interface by PSB="0". 8 bit / 4 bit interface is selected by function set instruction DL bit.

Two 8 bit registers (data register DR, instruction register IR) are used in ST7920's write and read operation. Data Register (DR) can access DDRAM/CGRAM/GDRAM and IRAM's data through the address pointer implemented by Address Counter (AC). Instruction Register (IR) s tores the instruction by MPU to ST7920.
4 modes of read/write operation specified byRS and RW :

RS	RW	Description
L	L	MPU write instruction to instruction register (IR)
L	H	MPU read busy flag (BF) and address counter (AC)
H	L	MPU write data to data register (DR)
H	H	MPU read data from data register (DR)

Busy Flag (BF)

Internal operation is in progress when BF="I", ST7920 is in busy state. No new instruction will be accepted until $B F=" 0$ ". MPU must check BF to determine whether the internal operation is finished and new instruction can be sent.

Address counter (AC)

Address counter(AC) is us ed for address pointer of DDRAM/CGRAM/IRAM/GDRAM. (AC) can be set by instruction and after data read or write to the memories (AC) will increase or decrease by 1 according to the setting in "entry mode set". When $R S=" 0 "$ and $R W=" 1 "$ and $E=" 1 "$ the value of ($A C$) will output to DB6~DB0.

16x16 character generation ROM (CGROM) and 8x1 6 half height ROM (HCGROM)

ST7920 provides character generation ROM supporting 819216×16 character fonts and 1268×16 alphanumeric characters. It is easy to support mult languages application such as Chinese and English. Two consecutive bytes are used to specify one 16×16 character or two 8×16 half-height characters. Character codes are written into DDRAM and the corresponding fonts are mapped from CGROM or HCGROM to the displaydrivers.

Character generation RAM (CGRAM)

ST7920 provides RAM to support user-defined fonts. Four sets of 16×16 bit map area are available. These user-defined fonts are displayed the same ways as CGROM fonts through writing character cod data to DDRAM

ICON RAM（IRAM）

ST7920 provides 240 ICON display．It consists of 15 sets of IRAM address．Each IRAMaddress has 16 bits data $\mathbb{R} A M$ address should be set first before writing to the IRAM．Two bytes for each address．First higher byte（D15～D8）and then lower byte（D7～D0）．

Display data RAM（DDRAM ）

There are 64×2 bytes for display data RAM area．Can store display data for 16 characters（ 6×16 ）by 4 lines or 32 characters $(8 x 16)$ by 4 lines．However， only 2 lines can be displayed at a time．Character codes are stored in DDRAM point to the fonts specified by CGROM，HCGROM and CGRAM．ST7920 display half height HC GROM fonts，user－defined CGRAM fonts and full 16×16 CGROM fonts．Data codes $0000 \mathrm{H} \sim 0006 \mathrm{H}$ are for C GRAM user－defined fonts． Data codes $02 \mathrm{H} \sim 7 \mathrm{FH}$ are for half height alpha numeric fonts．Data codes （A140－－～D75F）are for BIG5 code and（A1A0～F7FF）are for GB code．

1．Display HCGROM fonts：Write 2 bytes data to DDRAM to display two 8×16 fonts．Each byte represents 1 character font．The data of each byte is $02 \mathrm{H} \sim 7 \mathrm{FH}$ ．

2．Display CGRAM fonts：Write 2 bytes data to DDRAM to display one 16×16 font．Only $0000 \mathrm{H}, 0002 \mathrm{H}, 0004 \mathrm{H}, 0006 \mathrm{H}$ are allowed．

3．Display CGROM fonts：Write 2 bytes data to DDRAM to display one 16×16 font．A140H～D75FH are for（BIG5）code，A1A0H～F7FFH are for （GB）code．

Higher byte（D15－－，D8）are written first and then lower byte（D7～DO）．Refer to Table 5 for address map

CGRAM fonts and CGROM fonts can only be displayed in the start position of each address．（Refer to Table 4）

	81	82	83	8		85	8		87		88		8		8		8B		C		D	8		8F	
H ${ }^{\prime}$ L	H ${ }^{\text {L }}$	H ${ }^{\text {L }}$	H｜L	H	L	H	H	L	H	L	H	L	H	L	H		H ${ }^{\text {L }}$	H	L	H	L	H	L	H	L
S 1	t r	0 n	I x		S	T 7	9	2	0																
矽	創	電	子			中	文		編		碼			（	正		確		）						
矽	創	電	子				中	文		編		碼													
Incorrect position																									

Graphic RAM（GDRAM）

Graphic display RAM supports 64×256 bits bit－mapped memory space．GDRAM address is set by writing 2 consecutive bytes for vertical address and horizontal address．Two Bytes data write to GDRAM for one address．Address counter will automatically increase by one for the next two－byte data．The procedure is as followings．

1. Set vertical address (Y) for GDRAM
2. Set horizontal address (X) for GDRAM
3. Write D 15~ D8 to GDRAM (first byte)
4. Write D7~D0 to GDRAM (second byte)

Graphic display memory map please refer to Table-8

LCD driver

LCD driver have 33 common and 64 segments to drive the LCD panel. Segment data from CGRAM /CGROM/HCGROM are shifted into the 64 bits segment latches to display. Extended segment driver ST7921 can be used to extend the segment drivers to 256.

Table 5 : DDRAM data (character code) , CGRAM data / address map

Note

1. DDRAM data (character code) bit1 and bit2 are the same as CGRAM address bit4 and bit5.
2. CGRAM address bit0 to bit3 specify total 16 rows. Row 16 is for cursor display. The data in row 16 will be logical OR to the cursor.
3. CGRAM data for each address is 16 bits.
4. DDRAM data to select CGRAM bit4 to bit15 must be " 0 ". Bit0 and bit3 value are "don't care".

ICON RAM address Set SR "0", and then set IRAM address AC3...AC0				ICON RAM data															
				Higher byte							Lower byte								
		AC1	AC 0 0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	SEG0	SEG1	SEG2	EG3	SEG4	SEG5	SEG6	SEG7	SEG8	SEG9	SEG10	SEG11	SEG12	SEG13	SEG14	SEG15
0	0	0	1	SEG16	SEG17	SEG18	SEG19	SEG20	SEG21	SEG22	SEG23	SEG24	SEG25	SEG26	SEG27	SEG28	SEG29	SEG30	SEG31
0	0	1	0	SEG32	SEG33	SEG34	SEG35	SEG36	SEG37	SEG38	SEG39	SEG40	SEG41	SEG42	SEG43	SEG44	SEG45	SEG46	SEG
0	0	1	1	SEG48	SEG49	SEG50	SEG51	SEG52	SEG53	SEG54	SEG55	SEG56	SEG57	SEG58	SEG59	SEG60	SEG61	SEG6	SEG6
0	1	0	0	SEG64	SEG65	SEG66	SEG67	SEG68	SEG69	SEG70	SEG71	SEG72	SEG73	SEG74	SEG75	SEG76	SEG7	EG	SEG
0	1	0	1	SEG80	SEG81	SEG82	SEG83	SEG84	SEG85	SEG86	SEG87	SEG88	SEG89	SEG90	SEG91	SEG92	SEG93	SEG94	SEG95
0	1	1	0	SEG96	SEG97	SEG98	SEG99	SEG10	${ }_{1}^{\text {SEG10 }}$	${ }_{2}^{\text {SEG10 }}$	${ }_{3}^{\text {SEG10 }}$	${ }_{4}^{\text {SEG10 }}$	SEG10	${ }_{6}^{\text {SEG10 }}$	${ }_{7}^{\text {SEG10 }}$	${ }_{8}^{\text {SEG10 }}$	${ }_{\text {SEG10 }}^{9}$	SEG11	SEG111
0	1	1	1	SEG112	${ }_{\text {SEG11 }}$	SEG11	$\underset{5}{\text { SEG11 }}$	$\underset{\substack{\text { SEG11 } \\ 6}}{\text { cta }}$	$\xrightarrow{\text { SEG11 }}$	${ }_{\text {SEG11 }}$	$\xrightarrow{\text { SEG11 }}$	$\underset{\substack{\text { SEG12 } \\ 0}}{\text { S }}$	SEG12	SEG12	$\underset{3}{\text { SEG12 }}$	${ }_{4}^{\text {SEG12 }}$	SEG12	$\underset{\text { SEG12 }}{6}$	SEG12
1	0	0	0	SEG128	${ }_{9}^{\text {SEG12 }}$	${ }_{0}^{\text {SEG13 }}$	${ }_{1}^{\text {SEG13 }}$	${ }_{2}^{\text {SEG13 }}$	${ }_{3}^{\text {SEG13 }}$	${ }_{4}^{\text {SEG13 }}$	SEG13	$\begin{array}{\|c\|c\|c\|c\|} \hline \text { SEG13 } \\ \hline \end{array}$	${ }_{7}^{\text {SEG13 }}$	${ }_{8}^{\text {SEG13 }}$	$\stackrel{\text { SEG13 }}{9}$	${ }_{\text {SEG14 }}$	${ }_{1}^{\text {SEG14 }}$	${ }_{2}^{\text {SEG14 }}$	${ }_{3}^{\text {SEG14 }}$
1	0	0	1	SEG144	${ }_{\text {SEG14 }}^{5}$	${ }_{6}^{\text {SEG14 }}$	${ }_{\text {SEG14 }}$	${ }_{8}^{\text {SEG14 }}$	SEG14	SEG15	SEG15	${ }_{2}^{\text {SEG15 }}$	$\mathrm{SEG15}_{3}$	${ }_{4}^{\text {SEG15 }}$	SEG15	SEG15	${ }_{7}{ }_{7}{ }_{7}$	${ }_{8}^{\text {SEG15 }}$	${ }_{9}^{\text {SEG15 }}$
1	0	1	0	SEG160	SEG16	SEG16	SEG16	$\begin{gathered} \delta \\ \hline \text { SEG16 } \\ \hline \end{gathered}$	SEG16	${ }_{6}{ }_{6}{ }_{6} 6$	${ }_{7}^{\text {SEG16 }}$	SEG16	SEG16	SEG17	${ }_{1}^{\text {SEG17 }}$	SEG17	$\mathrm{SEG17}_{3}$	${ }_{4}^{\text {SEG17 }}$	${ }_{5}^{\text {SEG17 }}$
1	0	1	1	SEG176	$\underset{\substack{\text { SEG17 } \\ 7}}{\text { cher }}$	${ }_{8}^{\text {SEG17 }}$	${ }_{9}^{\text {SEG17 }}$	${ }_{0}^{\text {SEG18 }}$	${ }_{1}^{\text {SEG18 }}$	${ }_{2}^{\text {SEG18 }}$	$\begin{array}{\|c\|c\|c\|} \hline \text { SEG18 } \\ \hline \end{array}$	$\begin{gathered} \hline \text { SEG18 } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ \hline \text { SE18 } \\ 5 \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|c\|} \hline \text { SEG18 } \\ \hline \end{array}$	${ }_{7}^{\text {SEG18 }}$	${ }_{8}^{\text {SEG18 }}$	$\begin{array}{\|c\|c\|c\|c\|} \hline \text { SEG18 } \\ \hline \end{array}$	${ }_{\text {SEG19 }}^{0}$	${ }_{1}^{\text {SEG19 }}$
1	1	0	0	SEG192	${ }_{\substack{\text { SEG19 }}}$	${ }_{4}^{\text {SEG19 }}$	${ }_{5}^{\text {SEG19 }}$	SEG19	${ }_{7}^{\text {SEG19 }}$	${ }_{8}^{\text {SEG19 }}$	${ }_{\text {SEG19 }}$	SEG20	${ }_{1}^{\text {SEG20 }}$	${ }_{\text {SEG20 }}$	${ }_{3}^{\text {SEG20 }}$	${ }_{4}^{\text {SEG20 }}$	${ }_{5}^{\text {SEG20 }}$	${ }_{6}^{\text {SEG20 }}$	${ }_{7}^{\text {SEG20 }}$
1	1	0	1	SEG208	$\begin{gathered} \hline \text { SEG20 } \\ \hline 9 \end{gathered}$	$\begin{aligned} & \mathrm{SEG21} \\ & 0 \end{aligned}$	${ }_{\text {SEG21 }}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \hline \text { SE21 } \end{array}$	$\begin{array}{\|c\|c\|c\|} \hline \text { SEG21 } \\ \hline \end{array}$	${ }_{4}^{\text {SEG21 }}$	$\stackrel{5}{5}{ }_{5}^{512}$	$\underset{6}{\text { SEG21 }_{6}}$	${ }_{7}^{\text {SEG21 }}$	${ }_{8}^{\text {SEG21 }}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \hline \end{array}$	SEG22	${ }_{1}^{\text {SEG22 }}$	${ }_{2}^{\text {SEG22 }}$	${ }_{3}{ }^{\text {SEG22 }}$
1	1	1	0	SEG224	$\stackrel{\text { SEG22 }}{5}$	${ }_{\text {SEG22 }}$	SEG22	SEG22	$\mathrm{SEG22}^{\text {S }}$	SEG23	SEG23	SEG23	$\mathrm{SEG23}_{3}$	${ }_{\text {SEG23 }}$	${ }_{\text {SEG23 }}^{5}$	${ }_{\text {SEG23 }}^{6}$	SEG23	$\mathrm{SEG23}_{8}^{\text {S }}$	$\stackrel{\text { SEG23 }}{\text { S }}$
1	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Table 6 ICON RAM address, data and segment pins

Table 6 16x8 half-height characters

Table 8 GDRAM display coordinates and corresponding address

7. Instruction

Instructions

ST7920 offers basic instruction set and extended instruction set:

Ins	code										Description	$\begin{aligned} & \text { Exec time } \\ & \text { (540KHZ) } \end{aligned}$
	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
CLEAR	0	0	0	0	0	0	0	0	0	1	Fill DDRAM with " 20 H ", and set DDRAM address counter (AC) to " 00 H "	1.6 ms
HOME	0	0	0	0	0	0	0	0	1	X	Set DDRAM address counter (AC) to " 00 H ", and put cursor to origin; to content of DDRAM are not changed.	72 us
ENTRY MODE	0	0	0	0	0	0	0	1	I/D	S	Set cursor position and shift when doing write or read operation.	72 us
DISPLAY ON/OFF	0	0	0	0	0	0	1	D	C	B	$\begin{aligned} & D=1: \text { display ON } \\ & C=1: \text { cursor ON } \\ & B=1: \text { blink ON } \end{aligned}$	72 us
$\begin{array}{\|c\|} \hline \text { CURSOR } \\ \text { DISPLAY } \\ \text { CONTROL } \end{array}$	0	0	0	0	0	1	S/C	R/L	X	X	Cursor position and display shift control ; the content of DDRAM are not changed.	72 us
$\begin{gathered} \text { FUNCTIO } \\ \text { N } \\ \text { SET } \end{gathered}$	0	0	0	0	1	DL	X	$\begin{gathered} 0 \\ \text { RE } \end{gathered}$	X	X	$\mathrm{DL=1}$ $\mathrm{DL}=0$ 8-BIT interface 4-BIT interface $\mathrm{RE}=1:$ extended instruction $\mathbf{R E}=\mathbf{0}:$: basic instruction	72 us
SET CGRAM ADDR.	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address to address counter (AC) Make sure that in extended instruction SR=0 (scroll or RAM address select)	72 us
SET DDRAM ADDR.	0	0	1	$\begin{gathered} 0 \\ \text { AC6 } \end{gathered}$	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address to address counter(AC) AC6 is fixed to 0	72 us
READ BUSY FLAG(BF) \& ADDR.	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Read busy flag (BF) for completion of internal operation, also Read out the value of address counter(AC)	0 us
WRITE RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data to internal RAM (DDRAM/CGRAM/IRAM/GDRAM)	72 us
READ RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM/IRAM/GDRAM)	72 us

Instruction set 2: (RE=1: extended instruction)

Ins	code										Description	$\begin{array}{\|l\|} \hline \text { Exec time } \\ (540 \mathrm{KHZ}) \end{array}$
	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
STAND BY	0	0	0	0	0	0	0	0	0	1	Enter stand by mode, any other instruction can terminate (Com1.. 32 halted, only Com33 ICON can display)	72 us
SCROLL or RAM ADDR. SELECT	0	0	0	0	0	0	0	0	1	SR	$\begin{aligned} & \hline \mathrm{SR}=1: \text { enable vertical scroll } \\ & \text { position } \\ & \mathrm{SR}=0: \text { enable IRAM address } \\ & \text { (extended instruction) } \\ & \mathrm{SR}=0: \text { enable CGRAM address } \\ & \text { (basic instruction) } \end{aligned}$	72 us
REV ERSE	0	0	0	0	0	0	0	1	R1	R0	Select 1 out of 4 line (in DDRAM) and decide whether to reverse the display by toggling this instruction. $R 1, R 0$ initial value is $\mathbf{0 0}$	72 us
SLEEP	0	0	0	0	0	0	1	SL	X	X	SL=1 : leave sleep mode SL=0 : enter sleep mode	72 us
$\begin{gathered} \text { EXTENDED } \\ \text { FUNCTION } \\ \text { SET } \end{gathered}$	0	0	0	0	1	DL	X	$\begin{gathered} 1 \\ \text { RE } \end{gathered}$	G	0	$\mathrm{DL}=1$ 8-BIT interface $\mathrm{DL}=0$ 4-BIT interface $\mathrm{RE}=1:$ extended instruction $\mathrm{RE}=0:$ basic instruction $\mathrm{G}=1:$ graphic display ON $\mathrm{G}=0:$ graphic display OFF	72 us
$\begin{gathered} \text { SET IRA M } \\ \text { or SCROLL } \\ \text { ADDR } \end{gathered}$	0	0	0	1	AC5	AC4	AC3	AC2	AC1	ACO	SR=1: AC5~AC0 the address of vertical scroll $S R=0$: AC3~AC0 the address of ICON RAM	72 us
$\begin{gathered} \text { SET } \\ \text { GRAPHIC } \\ \text { RAM } \\ \text { ADDR. } \end{gathered}$	0	0	1	$\begin{gathered} 0 \\ \text { AC6 } \end{gathered}$	$\underset{\text { AC5 }}{0}$	$\left\lvert\, \begin{gathered} 0 \\ \text { AC4 } \end{gathered}\right.$	$\begin{aligned} & \text { AC3 } \\ & \text { AC3 } \end{aligned}$	$\begin{aligned} & \mathrm{AC2} \\ & \mathrm{AC} 2 \end{aligned}$	$\begin{array}{\|l\|l} \mathrm{AC} \\ \mathrm{AC} \end{array}$	$\begin{aligned} & \text { ACO } \\ & \text { ACO } \end{aligned}$	Set CGRAM address to address counter (AC) First set vertical address and the horizontal address by consecutive writing. Vertical address range AC6..AC0 Horizontal address range AC3..AC0	72 us

Note :

1. Make sure that ST7920 is not in busy state by reading the busy flag before sending instruction or data. If use delay loop instead please make sure the delay time is enough. Please refer to the instruction execution time.
2. "RE" is the selection bit of basic and extended instruction set. Each time when altering the value of RE it will remain. There is no need to set RE every time when using the same group of instruction set.

Initial setting(Register flag) (RE=0: basic instruction)

Ins	code										Description
	RS	RW	$\left\|\begin{array}{c\|} \mathrm{DB} \\ 7 \end{array}\right\|$	$\begin{array}{\|c\|} \hline \mathrm{DB} \\ 6 \end{array}$	$\left\|\begin{array}{c\|} \mathrm{DB} \\ 5 \end{array}\right\|$	$\left\lvert\, \begin{array}{c\|} \hline \mathrm{DB} \\ 4 \end{array}\right.$	$\begin{gathered} \mathrm{DB} \\ 3 \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{DB} \\ 2 \end{gathered}\right.$	$\begin{gathered} \mathrm{DB} \\ 1 \end{gathered}$	$\left\|\begin{array}{c} \mathrm{DB} \\ 0 \end{array}\right\|$	
$\left\lvert\, \begin{gathered} \text { ENTRY } \\ \text { MODE SET } \end{gathered}\right.$	0	0	0	0	0	0	0	1	ID	s	Cursor move to right, DDRAM address counter (AC) plus 1
									1	0	
DISPLAY STATUS	0	0	0	0	0	0	1	D	c	B	Display, cursor and blink ALL OFF
								0	0	0	
CURSOR DISPLAY SHIFT	0	0	0	0	0	1	s/c	R/L	x	x	No cursor or display shift operation
							x	x			
$\begin{gathered} \text { FUNCTION } \\ \text { SET } \end{gathered}$	0	0	0	0	1	DL	\times	$\left\|\begin{array}{c} 0 \\ R E \end{array}\right\|$	x	x	8 BIT MPU interfce, basic instruction set
						1		0			

Initial setting(Register flag) (RE=1 : extended instruction set)

Ins	cod										Description
	RS	RW	DB	$\begin{array}{\|c\|} \hline \mathrm{DB} \\ 6 \end{array}$	(${ }^{\text {DB }}$	DB	-	$\begin{array}{c\|} \hline \text { DB } \\ 2 \end{array}$	$\begin{gathered} \hline \mathrm{DB} \\ 1 \end{gathered}$	(DB	
SCROLL OR RAM ADDR. SELECT	0	0	0	0	0	0	0	1	1	SR	Allow IRAM address or set CGRAM address
										0	
REVERSE	0	0	0	0	0	0	0	1	R1	R0	Begin with normal and toggle to reverse
									0	0	
SLEEP	0	0	0	0	0	0	1	SL	x	x	Not in sleep mode
								1			
$\left\lvert\, \begin{gathered} \text { EXTENDED } \\ \text { FUNCTION } \\ \text { SET } \end{gathered}\right.$	0	0	0	0	1	DL	x	$\begin{gathered} 0 \\ \mathrm{RE} \end{gathered}$	G	x	Graphic display OFF
									0		

Description of basic instruction set

- CLEAR
code

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1		B0
	0	0	0	0	0	0	0	0		

Fill DDRAM with " 20 H "(space code). And set DDRAM address counter (AC to"00H". Set entry mode I/D bit to be "1".
Cursor moves right and AC adds 1 after write or read operation.

- HOME
code
RS RW DB7

	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
0	0	0	0	0	0	0	0	1	X

Set DDRAM address counter AC to " 00 H ". Cursor moves to origin. Then content of DDRAM is not changed.

- ENTRY MODE SET

code | RS | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | I/D | S |

Set the cursor movement and display shift direction when doing write or read operation.
I/D :address counter increase / decrease
When I/D = "1", cursor moves right, DRAM address counter AC add by 1 .
When I/D = " 0 ", cursor moves left, DRAM address counter AC subtract by 1 .
S: Display shift

S	I/D	DESCRIPTION
H	H	Entire display shift left by 1
H	L	Entire dis play shift right by 1

- DISPLAY STATUS
code

RS	RW	DB7	DB6	DB5	DB		D	DB	
0	0	0	0	0	0		D	C	B

Controls display, cursor and blink ON/OFF.
D : Display ON/OFF control bit
When D = "1", display ON
When $\mathrm{D}=\mathrm{=} 0$ ",display OFF , the content of DDRAM is not changed

C : Cursor ON/OFF control bit

When C = "1", cursor ON.
When C = "0", cursor OFF.

B : Blink ON/OFF control bit

When B = "1", cursor position blink ON. Then dis play data in cursor position will blink.
When $B=" 0$ ", cursor position blink OFF

- CURSOR AND DISPLAYSHIFT CONTROL

code

Instruction to move the cursor or shift the entire display. The content of DDRAM is not changed.

S/C	R/L	Description	AC Value
L	L	Curs or moves left by 1	AC=AC-1
L	H	Cursor moves right by 1	AC=AC+1
H	L	Display shift left by 1, cursor also follows to shift.	AC=AC
H	H	Display shift right by 1, cursor also follows to shift.	AC=AC

- FUNCTION SET
\(\begin{array}{cc} \& RS

code

\quad\)| 0 | 0 | 0 | 0 | 0 | 1 | DL | X | RE | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | \& \end{array}

DL : 4/8 BIT interface control bit

When DL = "1", 8 BIT MPU bus interface
When DL = "0", 4 BIT MPU bus interface
RE : extended instruction set control bit
When RE = " 1 ", extended instruction set
When RE = "0", basic instruction set
In same instruction cannot alter DL and RE at once. Make sure that change DL first then RE.

- SET CGRAM ADDRESS

code

RS R		7		DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	AC5	AC4	AC3	AC2	AC1	ACO

Set CGRAM address to address counter AC
AC range is $00 \mathrm{H} . .3 \mathrm{FH}$
Make sure that in extended instruction SR=0 (scroll address or RAM address select)

- SET DDRAM ADDRESS

code

$$
\begin{aligned}
& \text { RS } \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\text { RW } & \text { DB7 } & \text { DB6 } & \text { DB5 } & \text { DB4 } & \text { DB3 } & \text { DB2 } & \text { DB1 } & \text { DB0 } \\
\hline \hline 0
\end{array}
\end{aligned}
$$

Set DDRAM address to address counter (AC).
First line AC range is $80 \mathrm{H} . .8 \mathrm{FH}$
Second line AC range is 90 H .. 9 FH
Third line AC range is AOH .. AFH

Fourth line $A C$ range is $B 0 H$.. $B F H$
Please note that only 2 lines can be display at a time.

- READ BUSY FLAG (BF) AND ADDRESS

code

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	ACO

Read busy flag BF can check whether internal operation is finished. At the same time the value of address counter (AC) is also read. When BF $=$ " 1 " new instruction will not be accepted. Must wait for $B F=$ " 0 " for new instruction.

- WRITE DATA TO RAM

code

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	D7	D6	D5	D4	D3	D2	D1	D0

Write data to internal RAM and alter the (AC) by 1
Each RAM address (CGRAM,DDRAM,IRAM.....) must write 2 consecutive bytes for 16 bit data. After the second byte the address counter will add or subtract by 1 according to the entry mode set control bit.

- READ RAM DATA

code

1	1	D7	D6	D5	D4	D3	D2	D1	D0

Read data from internal RAM and alter the (AC) by 1
After address set to read (CGRAM,DDRAM,IRAM.....) a DUMMY READ is required.
There is no need to DUMMY READ for the following bytes unless a new address set instruction is issued.

Description of extended instruction set

- STAND BY

code

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	1

Instruction to enter stand by mode. Any other instruction follows this instruction can terminate stand by.
The content of DDRAM remain the same.

VERTICAL SCROLL OR RAM ADDRESS SELECT

code

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	SR

When $\mathrm{SR}=$ = 11 ", the vertical scroll address set is enabled.
When SR = "0", the IRAM address set(extended instruction) and CGRAM address set(basic instruction) is enabled.

- REVERSE

code

Select 1 out of 4 lines to reverse the display and to toggle the reverse condition by repeating this instruction.
$\mathrm{R} 1, \mathrm{R} 0$ initial vale is 00 . When set the first time the dis play is reversed and set the second time the display become nomal.

R1	R0	Description
L	L	First line nomal or reverse
L	H	Second line nomal or reverse
H	L	Third line normal or reverse
H	H	Fourth line nomal or reverse

Please note that only 2 lines out of 4 line display data can be dis played.

- SLEEP

code

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	0	0	0	0	0	1	SL	0	0

SL=1: leave sleep mode
SL=0: enter sleep mode

- EXTENED FUNCTION SET

code

RS
RS
RW

DL : 4/8 BIT interface control bit

When DL = "1", 8 BIT MPU interface
When DL = "0", 4 BIT MPU interface
RE : extended instruction set control bit
When RE = "1", extended instruction set
When RE = " 0 ", basic instruction set

G : Graphic display control bit

When G = "1", graphic display ON
When $G=$ " 0 ", Graphic dis play OFF
In same instruction cannot alter DL, RE and G at once. Make sure that change DL or G first and then RE.

SET IRAM OR SCROLL ADDRESS

code

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0

$\mathrm{SR}=1$: $\mathrm{AC} 5 \sim \mathrm{AC} 0$ is vertical scroll displacement address
$S R=0$: AC3~AC0 is ICON RAM address

- SET GRAPHIC RAM ADDRESS
code

| RS | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 |

Set GDRAM address to address counter AC
First set vertical address and then horizontal address(write 2 consecutive bytes to com plete vertical and horizontal address set)
Vertical address range is AC6...AC0
Horizontal address range is AC3...AC0
The address counter AC of graphic RAM(GRAM) only increment after write for horizontal address. After horizontal address=0FH it will automatically back to 00H. However, the vertical address will not increase as the result of the same action.

8. Parallel interface

ST7920 is in parallel mode by pulling up PSB pin. And can select 8 bit or 4-bit bus interface by function set instruction DL control bit. MPU can control (RS, RW, E, and DB0..DB7) pins to complete the data transmission.

In 4-bit transfer mode, every 8 bits data or instruction is separated into 2 parts. Higher 4 bits DB7~DB4 data will trans fer.
First and placed into data pins (DB7~DB4). Lower 4 bits (DB3~DB0) data will transfer second and placed into data pins (DB7~DB4). (DB3~DB0) data pins are not used.

Timing Diagram of 8-bit Parallel Bus Mode Data Transfer

Timing Diagram of 4-bit Parallel Bus Mode Data Transfer

Serial interface :

ST7920 is in serial interface mode when pull down PSB pin. Two pins (SCLK and SID) are used to complete the data transfer. Only write data is available.

When connecting several ST7920, chip select (CS) must be used. Only when (CS) is high the serial dock (SCLK) can be accepted. On the other hand, when chip select (CS) is low ST7920 serial counter and data will be reset. Transmission will be teminated and data will be cleared. Serial transfer counter is set to the first bit. For a minimal system with only one ST7920 and one MPU,
only SCLK and SID pins are necessary. CS pin should pull to high.
ST7920's serial clock SCLK is asynchronous to the internal clock and is generated by MPU. When multiple instruction/data is transferred instruction execution time must be considered. Must wait for the previous instruction to finish before sending the next. ST7920 has no internal instruction buffer area.

When starting a transmission a start byte is required. It consists of 5 consecutive " 1 "(sync character). Serial transfer counter will be reset and synchronized. Following 2 bits for read/write (RW) and register/data select (RS). Last 4 bits is filled by " 0 "

After receiving the sync character and RW and RS bits, every 8 bits instruction/data will be separated into 2 groups. Higher 4 bits (DB7~DB4) will be placed in firstsection followed by 4 " 0 ". And lower 4 bits DB3~DB0 will be placed in second section followed by 4 " 0 ".

Timing Diagram of Serial Mode Data Transfer

8 bit interface :

4 bit interface :

8 bit interface timing diagram

- MPU write data to ST7920

- MPU read data from ST7920

Serial interface timing diagram

- MPU write data to ST7920

Absolute Mazimum Ratings

Characteristics	Symbol	Value
Power Supply Voltage	VDD	-0.3 V to +5.5 V
LCD Driver Voltage	VLCD	-0.3 V to +7.0 V
Input Voltage	V IN	-0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$
Operating Temperature	TA	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	Tsто	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{d} D}=2.7 \mathrm{~V}-4.5 \mathrm{~V}$)

Symbol	Characteristics	Test Condition	Min.	Typ.	Max.	Unit
VdD	Operating Voltage	-	2.7	-	5.5	V
VLCD	LCD Voltage	V0 - Vss	3.0	-	5.5	V
Icc	Power Supply Cruuent	$\begin{gathered} \text { fosc }=530 \mathrm{KHz}, \mathrm{VDD}=3.0 \mathrm{~V} \\ \operatorname{Rf}=18 \mathrm{k} \Omega \end{gathered}$	-	0.20	0.45	mA
ViH1	Input High Voltage (Except OSC1)	-	0.7 VDD	-	Vdd	V
VIL1	Input Low Voltage (Except OSC1)	-	-0.3	-	0.6	V
VIH2	Input High Voltage (OSC1)	-	Vdo-1	-	Vdd	V
VIL2	Input Low Voltage (OSC1)	-	-	-	1.0	V
Voh1	Output High Voltage $(\mathrm{DBO}-\mathrm{DB} 7)$	Іон $=-0.1 \mathrm{~mA}$	0.8 VdD	-	Vdd	V
Vol1	Output Low Voltage (DB0-DB7)	$\mathrm{loL}=0.1 \mathrm{~mA}$	-	-	0.1	V
Voh2	Output High Voltage (Except DB0 - DB7)	Іон $=-0.04 \mathrm{~mA}$	0.8 Vdo	-	Vdd	V
Vol2	Output Low Voltage (Except DB0 - DB7)	$\mathrm{lol}=0.04 \mathrm{~mA}$	-	-	$\begin{aligned} & \hline 0.1 \\ & \text { VDD } \end{aligned}$	V
ILEAK	Input Leakage Current	V In $=0 \mathrm{~V}$ TO V do	-1	-	1	$\mu \mathrm{a}$
IPUP	Pull Up MOS Current	$V \mathrm{DD}=3 \mathrm{~V}$	22	27	32	$\mu \mathrm{A}$

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}-5 \mathrm{~V}$)

Symbol	Characteristics	Test Condition	Min.	Typ.	Max.	Unit
Vdd	Operating Voltage	-	4.5	-	5.5	V
Vlcd	LCD Voltage	V0 - Vss	3.0	-	5.5	V
Icc	Power Supply Cruuent	$\begin{gathered} \text { fosc }=540 \mathrm{KHz}, \mathrm{VdD}=5 \mathrm{~V} \\ \mathrm{Rf}=33 \mathrm{k} \Omega \end{gathered}$	-	0.45	0.75	mA
ViH1	Input High Voltage (Except OSC1)	-	0.7 Vdo	-	Vod	V
VIL1	Input Low Voltage (Except OSC1)	-	-0.3	-	0.6	V
VIH2	Input High Voltage (OSC1)	-	Vdo-1	-	Vod	V
VIL2	Input Low Voltage (OSC1)	-	-	-	1.0	V
Voh1	Output High Voltage $(\mathrm{DB} 0-\mathrm{DB} 7)$	$\mathrm{I} \mathrm{OH}=-0.1 \mathrm{~mA}$	0.8Vdd	-	Vod	V
Vol1	Output Low Voltage (DB0 - DB7)	$\mathrm{loL}=0.1 \mathrm{~mA}$	-	-	0.4	V
Voh2	Output High Voltage (Except DB0 - DB7)	Іон $=-0.04 \mathrm{~mA}$	0.8 Vdd	-	Vod	V
Vol2	Output Low Voltage (Except DB0 - DB7)	$\mathrm{loL}=0.04 \mathrm{~mA}$	-	-	$\begin{aligned} & \hline 0.1 \\ & V_{D D} \end{aligned}$	V
ILEAK	Input Leakage Current	$\mathrm{VIN}=0 \mathrm{~V}$ TO VDd	-1	-	1	$\mu \mathrm{A}$
IPUP	Pull Up MOS Current	$\mathrm{Vdd}=5 \mathrm{~V}$	75	80	85	$\mu \mathrm{A}$

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VDD}_{\mathrm{D}}=4.5 \mathrm{~V}$) Parallel Mode Interface

Symbol	Characteristics	Test Condition	Min.	Typ.	Max.	Unit
Internal Clock Operation						
fosc	LCD Voltage	V0 - Vss	3.0	-	7	V
fex	Power Supply Cruuent	$\begin{gathered} \hline \text { fosc }=540 \mathrm{KHz}, \mathrm{VDD}=5 \mathrm{~V} \\ \mathrm{Rf}=33 \mathrm{k} \Omega \\ \hline \end{gathered}$	-	0.45	0.75	mA
$\mathrm{V}_{1}{ }^{1}$	Input High Voltage (Except OSC1)	-	0.7 Vdo	-	Vdd	V
VIL1	Input Low Voltage (Except OSC1)	-	-0.3	-	0.6	V
VIH2	Input High Voltage (OSC1)	-	Vod-1	-	Vdd	V
VIL2	Input Low Voltage (OSC1)	-	-	-	1.0	V
Vor1	Output High Voltage (DB0 - DB7)	I он $=-0.1 \mathrm{~mA}$	0.8 Vdd	-	Vdd	V
Vol1	Output Low Voltage (DB0 - DB7)	$\mathrm{loL}=0.1 \mathrm{~mA}$	-	-	0.4	V
Voh2	Output High Voltage (Except DB0 - DB7)	Іон $=-0.04 \mathrm{~mA}$	0.8 Vdd	-	Vod	V
Vol2	Output Low Voltage (Except DB0 - DB7)	$\mathrm{loL}=0.04 \mathrm{~mA}$	-	-	$\begin{aligned} & 0.1 \\ & V_{D D} \end{aligned}$	V
ILEAK	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ TO VDD	-1	-	1	$\mu \mathrm{A}$
Ipup	Pull Up MOS Current	$\mathrm{Vdd}=5 \mathrm{~V}$	75	80	85	$\mu \mathrm{A}$

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$) Parallel Mode Interface

Symbol	Characteristics	Test Condition	Min.	Typ.	Max.	Unit
Internal Clock Operation						
fosc	OSC Frequency	$\mathrm{R}=33 \mathrm{k} \Omega$	480	540	600	KHz
External Clock Operation						
fex	External Frequency	-	480	540	600	KHz
	Duty Cycle	-	45	50	55	\%
$\mathrm{T}_{\mathrm{R}, \mathrm{T}} \mathrm{F}$	Rise/Fall Time	-	-	-	0.2	$\mu \mathrm{S}$
Write Mode (Writing data from MPU to ST7920)						
Tc	Enable Cycle Time	Pin E	1200	-	-	nS
Tpw	Enable Pulse Width	Pin E	140	-	-	nS
$\mathrm{T}_{\mathrm{R},} \mathrm{T}_{\mathrm{F}}$	Enable Rise/Fall Time	Pin E	-	-	25	nS
TAS	Address Setup Time	Pins : RS,RW,E	10	-	-	nS'
TAH	Address Hold Time	Pins: RS,RW, E	20	-	-	nS
Tosw	Data Setup Time	Pins: DB0-DB7	40	-	-	nS
TH	Data Hold Time	Pins: DB0-DB7	20			nS
Read Mode (Reading Data from ST7920 to MPU)						

Tc	Enable Cycle Time	Pin : E	1200	-	-	nS
Tpw	Enable Pulse Width	Pin: E	140	-	-	nS
$\mathrm{T}_{\mathrm{R}, \mathrm{T}} \mathrm{F}$	Enable Rise/Fall Time	Pin : E	-	-	25	nS
TAS	Address Setup Time	Pins : RS,RW,	10	-	-	nS
ТАн	Address Hold Time	Pins : RS,RW,E	20	-	-	nS
Tddr	Data Delay Time	Pins: DB0-DB7	-	-	100	nS
TH	Data Hold Time	Pins : DB0-DB7	20	-	-	nS
Interface Mode with LCD Driver (ST7921)						
Tсwh	Clock Pulse with High	Pins: CL1, CL2	800	-	-	nS
Tcw	Clock Pulse With Low	Pins : CL1, CL2	800	-	-	nS
Tcst	Clock Setup time	Pins: CL1, CL2	500	-	-	nS
Tsu	Data Setup Time	Pin: D	300	-	-	nS
Tdm	Data Hold Time	Pin: D	300	-	-	nS
Tpw	Enable Pulse Width	Pin : M	-1000	-	1000	nS

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VDD}_{\mathrm{D}}=2.7 \mathrm{~V}$) Parallel Mode Interface

Symbol	Characteristics	Test Condition	Min.	Typ.	Max.	Unit
Internal Clock Operation						
fosc	OSC Frequency	$\mathrm{R}=18 \mathrm{k} \Omega$	470	530	590	KHz
External Clock Operation						
fex	External Frequency	-	470	530	590	KHz
	Duty Cycle	-	45	50	55	\%
$\mathrm{T}_{\mathrm{R}, \mathrm{T}} \mathrm{F}$	Rise/Fall Time	-	-	-	0.2	$\mu \mathrm{S}$
Write Mode (Writing data from MPU to ST7920)						
Tc	Enable Cycle Time	Pin E	1800	-	-	nS
TPW	Enable Pulse Width	Pin E	160	-	-	nS
$\mathrm{T}_{\mathrm{R}, \mathrm{T}} \mathrm{F}$	Enable Rise/Fall Time	Pin E	-	-	25	nS
TAS	Address Setup Time	Pins : RS,RW,	10	-	-	nS'
TAH	Address Hold Time	Pins: RS,RW, E	20	-	-	nS
Tosw	Data Setup Time	Pins: DB0-DB7	40	-	-	nS
TH	Data Hold Time	Pins : DB0-DB7	20			nS
Read Mode (Reading Data from ST7920 to MPU)						

Tc	Enable Cycle Time	Pin: E	1800	-	-	nS
TPW	Enable Pulse Width	Pin: E	320	-	-	nS
Tr, T_{F}	Enable Rise/Fall Time	Pin: E	-	-	25	nS
TAS	Address Setup Time	Pins : RS,RW,	10	-	-	nS
TAH	Address Hold Time	Pins : RS,RW,	20	-	-	nS
Tddr	Data Delay Time	Pins: DB0-DB7	-	-	260	nS
TH	Data Hold Time	Pins : DB0-DB7	20	-	-	nS
Interface Mode with LCD Driver (ST7921)						
Tсwh	Clock Pulse with High	Pins : CL1, CL2	800	-	-	nS
Tcw	$\begin{gathered} \text { Clock Pulse With } \\ \text { Low } \end{gathered}$	Pins : CL1, CL2	800	-	-	nS
Tcst	Clock Setup time	Pins: CL1, CL2	500	-	-	nS
Tsu	Data Setup Time	Pin: D	300	-	-	nS
Tdm	Data Hold Time	Pin: D	300	-	-	nS
Tpw	Enable Pulse Width	Pin : M	-1000	-	1000	nS

9. Optical Characteristics

Item	Symbol	Condition	Min	Typ	Max	Unit
View Angle	$(\mathrm{V}) \theta$	$\mathrm{CR} \geqq 2$	20	-	40	deg
	$(\mathrm{H}) \varphi$	$\mathrm{CR} \geqq 2$	-30	-	30	deg
Contrast Ratio	CR	-	-	3	-	-
	T rise	-	-	150	200	ms
	T fall	-	-	150	200	ms

Definition of Operation Voltage (Vop)

Definition of Response Time (Tr , Tf)

Conditions :
Operating Voltage : Vop Viewing Angle $(\theta, \varphi): 0^{\circ}$, 0°
Frame Frequency : 64 HZ Driving Waveform : 1/N duty, 1/a bias

Definition of vie wing angle(CR $\geqq 2$)

10. Absolute Maximum Ratings

Item	Symbol	Min	Typ	Max	Unit
Operating Temperature	T_{OP}	-20	-	+70	${ }^{\circ} \mathrm{C}$
Storage Temperature	T_{ST}	-30	-	+80	${ }^{\circ} \mathrm{C}$
Input Voltage	V_{I}	0	-	V_{DD}	V
Supply Voltage For Logic	V_{DD}	0	-	6.7	V
Supply Voltage For LCD	$\mathrm{Vo}_{\mathrm{C}}-\mathrm{V}_{\mathrm{SS}}$	0	-	7.0	V

11. Electrical Characteristics

Item	Symbol	Condition	Min	Typ	Max	Unit
Supply Voltage For Logic	$V_{D D}-V_{S S}$	-	4.5	5.0	5.5	V
Supply Voltage For LCD *Note	$V_{0}-V_{s s}$	$\begin{gathered} \mathrm{Ta}=-20^{\circ} \mathrm{C} \\ \mathrm{Ta}=25^{\circ} \mathrm{C} \\ \mathrm{Ta}=+70^{\circ} \mathrm{C} \end{gathered}$	3.8	- 4.5 -	5.4	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Input High Volt.	V_{IH}	-	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
Input Low Volt.	VIL	-	-0.3	-	0.6	V
Output High Volt.	V_{OH}	-	$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
Output Low Volt.	$\mathrm{V}_{\text {OL }}$	-	0	-	0.4	V
Supply Current	I_{DD}	-	1.5	2.0	2.8	mA

12. Backlight Information

Specification

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITION
Supply Current	ILED	168	210	315	mA	$\mathrm{~V}=4.2 \mathrm{~V}$
Supply VoItage	V	4.0	4.2	4.4	V	-
Reverse Voltage	VR	-	-	8	V	-
Luminous Intensity	IV	95	155	-	$\mathrm{cd} / \mathrm{m}^{2}$	ILED=210mA
Wave Length	λp	560	570	580	nm	ILED=210mA
Life Time	-	-	100 K	-	Hr.	ILED $\leqq 210 \mathrm{~mA}$
Color	Yellow Green					

Note: The LED of B/L is drive by current only, drive voltage is for reference only. drive voltage can make driving current under safety area (current between minimum and maximum).

LED B \backslash L Drive Method

13. Reliability

Content of Reliability Test (wide temperature, $-20^{\circ} \mathrm{C} \boldsymbol{\sim 7 0 ^ { \circ }} \mathrm{C}$)

Environmental Test			
Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test apply ing the high storage temperature for a long time.	$\begin{aligned} & 80^{\circ} \mathrm{C} \\ & 200 \mathrm{hrs} \end{aligned}$	2
Low Temperature storage	Endurance test apply ing the high storage temperature for a long time.	$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & 200 \mathrm{hrs} \end{aligned}$	1,2
High Temperature Operation	Endurance test applying the electric stress (Voltage \& Current) and the thermal stress to the element for a long time.	$\left\{\begin{array}{l} 70^{\circ} \mathrm{C} \\ 200 \mathrm{hrs} \end{array}\right.$	-
Low Temperature Operation	Endurance test applying the electric stress under low temperaturefor a long time.	$\begin{aligned} & -20^{\circ} \mathrm{C} \\ & 200 \mathrm{hrs} \end{aligned}$	1
High Temperature/ Humidity Operation	The module should be allowed to stand at $60^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ max For 96 hrs under no-load condition excluding the polarizer, Then taking it out and drying it at nomal temperature.	$60^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$	1,2
Thermal shock resistance	The sample should be allowed stand the following 10 cycles of operation	$-20^{\circ} \mathrm{C} / 70^{\circ} \mathrm{C}$ 10 cycles	
Vibration test	Endurance test apply ing the vibration during transportation and using.	Total fixed amplitude : 15 mm Vibration Frequency $10 \sim 55 \mathrm{~Hz}$ One cycle 60 seconds to 3 directions of X, Y, Z for Each minutes	3
Static electricity test	Endurance test apply ing the electric stress to the terminal.	$\begin{aligned} & \mathrm{VS}=800 \mathrm{~V}, \mathrm{RS}=1.5 \mathrm{k} \Omega \\ & \mathrm{CS}=100 \mathrm{pF} \\ & 1 \text { time } \end{aligned}$	-

Note1: No dew condensation to be observed.
Note2: The function test shall be conducted after 4 hours storage at the normal
Temperature and humidity after remove from the test chamber.
Note3: Vibration test will be conducted to the product itself without putting it in a container.
14. Inspection specification

NO	Item	Criterion 1.1 Missing vertical, horizontal segment, segment contrast defect. 1.2 Missing character, dot or icon. 1.3Display malfunction. 1.4 No function or no display. 1.5Current consumption exceeds product specifications. 1.6 LCD viewing angle defect. 1.7 Mixed product types. 1.8Contrast defect.			AQL
01	Electrical Testing				0.65
02	Black or white spots on LCD (displayonly)	2.1 White and black spots on display $\leqq 0.25 \mathrm{~mm}$, no more than three white or black spots present. 2.2 Densely spaced: No more than two spots or lines within 3 mm			2.5
03	LCD black spots, white spots, contaminatio	3.1 Round type: As following drawing $\Phi=(x+y) / 2$			2.5
	$\begin{gathered} \mathrm{n} \\ \text { (non-display) } \end{gathered}$	3.2 Line type: (As followi	Wing drawing) Width $\mathrm{W} \leqq 0.02$ $0.02<\mathrm{W} \leqq 0.03$ $0.03<\mathrm{W} \leqq 0.05$ $0.05<\mathrm{W}$	Acceptable Q TY Accept no dense 2 As round type	2.5
04	Polarizer bubbles	If bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction.	Size Φ $\Phi \leqq 0.20$ $0.20<\Phi \leqq 0.50$ $0.50<\Phi \leqq 1.00$ $1.00<\Phi$ Total Q TY	Acceptable Q TY Accept no dense 3 2 0 3	2.5

NO	Item	Criterion	AQL
07	Cracked glass	The LCD with extens ive crack is not acceptable.	2.5
08	Backlight elements	8.1 Illumination source flickers when lit. 8.2 Spots or scratched that appear when lit must be judged. Using LCD spot, lines and contamination standards. 8.3 Backlight does n't light or color wrong.	$\begin{aligned} & \hline 0.65 \\ & 2.5 \\ & \\ & 0.65 \end{aligned}$
09	Bezel	9.1 Bezel may not have rust, be deformed or have fingerprints, stains or other contamination. 9.2 Bezel must comply with job specifications.	$\begin{aligned} & 2.5 \\ & 0.65 \end{aligned}$
10	PCB , COB	10.1 COB seal may not have pinholes larger than 0.2 mm or contamination. 10.2 COB seal surface may not have pinholes through to the IC. 10.3 The height of the COB should not exceed the height indicated in the assembly diagram. 10.4 There may not be more than 2 mm of sealant outside the seal area on the PCB. And there should be no more than three places. 10.5 No oxidation or contamination PCB terminals. 10.6 Parts on PCB must be the same as on the production characteristic chart. There should be no wrong parts, missing parts or excess parts. 10.7 The jumper on the PCB should conform to the product characteristic chart. 10.8 If solder gets on bezel tab pads, LED pad, zebra pad or screw hold pad, make sure it is smoothed down. 10.9 The Scraping testing standard for Copper Coating of $X^{*} Y<=2 \mathrm{~mm}^{2}$	$\begin{aligned} & 2.5 \\ & \\ & 2.5 \\ & 0.65 \\ & 2.5 \\ & \\ & 2.5 \\ & 0.65 \\ & \\ & 0.65 \\ & 2.5 \\ & 2.5 \end{aligned}$
11	Soldering	11.1 No un-melted solder paste may be present on the PCB. 11.2 No cold solder joints, missing solder connections, oxidation or icide. 11.3 No residue or solder balls on PCB. 11.4 No short circuits in components on PCB.	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \\ & 2.5 \\ & 0.65 \end{aligned}$

NO	Item	Criterion	AQL
12	General appearance	12.1 No oxidation, contamination, curves or, bends on interface Pin (OLB) of TCP. 12.2 No cracks on interface pin (OLB) of TCP. 12.3 No contamination, solder residue or solder balls on product. 12.4 The IC on the TCP may not be damaged, circuits. 12.5 The uppermost edge of the protective strip on the interface pin must be present or look as if it cause the interface pin to sever. 12.6 The residual rosin or tin oil of soldering (component or chip component) is not burned into brown or black color. 12.7 Sealant on top of the ITO circuit has not hardened. 12.8 Pin type must match type in specification sheet. 12.9 LCD pin loose or missing pins. 12.10 Product packaging must the same as specified on packaging specification sheet. 12.11 Product dimension and structure must conform to product specification sheet.	$\begin{aligned} & 2.5 \\ & \\ & 0.65 \\ & 2.5 \\ & 2.5 \\ & 2.5 \\ & \\ & 2.5 \\ & \\ & 2.5 \\ & 0.65 \\ & 0.65 \\ & 0.65 \\ & \\ & 0.65 \end{aligned}$

15. Precautions in use of LCD Modules

(1)Avoid applying excessive shocks to the module or making any alterations or modifications to it.
(2)Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
(3)Don't dis ass emble the LCM.
(4)Don't operate it above the absolute maximum rating.
(5)Don't drop, bend or twist LCM.
(6)Soldering: only to the I/O terminals.
(7)Storage: please storage in anti-static electricity container and clean environment.
(8)0 LGDVhave the right to change the passive components
(Resistors,capacitors and other passive components will have different appearance and color caused by the different supplier.)
(9) 0 LGDVhave the right to change the PCB Rev.

16. Material List of Components for RoHs

1. 0 LGDV\&RP SRQHQN, Ltd. hereby declares that all of or part of products, including, but not limited to, the LCM, accessories or packages, manufactured and/or delivered to your company (including your subsidiaries and affiliated company) directly or indirectly by our company (including our subsidiaries or affiliated companies) do not intentionally contain any of the substances listed in all applicable EU directives and regulations, including the following substances.
Exhibit A : The Harmful Material List

Material	(Cd)	(Pb)	(Hg)	$(\mathrm{Cr} 6+)$	PBBs	PBDEs
Limited Value	100 ppm	1000 ppm				

2. Process for RoHS requirement :
(1) Use the $\mathrm{Sn} / \mathrm{Ag} / \mathrm{Cu}$ soldering surface; the surface of Pb -free solder is rougher than we used before.
(2) Heat-res istance temp. :

Reflow : $250^{\circ} \mathrm{C}, 30$ seconds Max. ;
Connector soldering wave or hand soldering : $320^{\circ} \mathrm{C}, 10$ seconds max.
(3) Temp. curve of reflow, max. Temp. : $235 \pm 5^{\circ} \mathrm{C}$;

Recommended customer's soldering temp. of connector : $280^{\circ} \mathrm{C}, 3$ seconds.

17. Recommendable storage

1. Place the panel or module in the temperature $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ and the humidity below $65 \% \mathrm{RH}$
2. Do not place the module near organics solvents or corrosive gases.
3. Do not crush, shake, or jolt the module

[^0]: External contrast adjustment.

