

APAR - BIURO HANDLOWE

05-090 Raszyn, ul Gałczyńskiego 6 Tel. (22) 853-48-56, 853-49-30, 101-27-31 E-mail: automatyka@apar.pl Internet: www.apar.pl

INSTRUKCJA OBSŁUGI

AR507

MIERNIK TEMPERATURY

Dziękujemy za wybór naszego produktu. Niniejsza instrukcja ułatwi Państwu prawidłową obsługę, bezpieczne użytkowanie i pełne wykorzystanie możliwości urządzenia. Przed montażem i uruchomieniem prosimy o przeczytanie i zrozumienie niniejszej instrukcji. W przypadku dodatkowych pytań prosimy o kontakt z doradcą technicznym.

SPIS	TREŚCI

1. ZASADY BEZPIECZEŃSTWA	3
2. ZALECENIA MONTAŻOWE	3
3. OGÓLNA CHARAKTERYSTYKA MIERNIKA	3
4. ZAWARTOŚĆ ZESTAWU	4
5. DANE TECHNICZNE	4
6. WYMIARY OBUDOWY I DANE MONTAŻOWE	5
7. OPIS LISTEW ZACISKOWYCH I POŁĄCZEŃ ELEKTRYCZNYCH	5
8. ZNACZENIE PRZYCISKÓW	6
9. USTAWIANIE PARAMETRÓW KONFIGURACYJNYCH	6
10. SYGNALIZACJA KOMUNIKATÓW I BŁĘDÓW	8
11. PODŁĄCZANIE DO KOMPUTERA I DOSTĘPNE OPROGRAMOWANIE	8

Należy zwrócić szczególną uwagę na teksty oznaczone tym znakiem

Producent zastrzega sobie prawo do dokonywania zmian w konstrukcji i oprogramowaniu urządzenia bez pogorszenia parametrów technicznych (niektóre funkcje mogą być niedostępne w starszych wersjach).

1. ZASADY BEZPIECZEŃSTWA

- Frzed rozpoczęciem użytkowania urządzenia należy dokładnie przeczytać niniejszą instrukcję
- w celu uniknięcia porażenia prądem elektrycznym bądź uszkodzenia urządzenia montaż mechaniczny oraz elektryczny należy zlecić wykwalifikowanemu personelowi
- przed włączeniem zasilania należy upewnić się, że wszystkie przewody zostały podłączone prawidłowo
- przed dokonaniem wszelkich modyfikacji przyłączeń przewodów należy wyłączyć napięcia doprowadzone do urządzenia
- zapewnić właściwe warunki pracy, zgodne z danymi technicznymi urządzenia (napięcie zasilania, wilgotność, temperatura, rozdział 5)

2. ZALECENIA MONTAŻOWE

Przyrząd został zaprojektowany tak, aby zapewnić odpowiedni poziom odporności na większość zaburzeń, które mogą wystąpić w środowiskach przemysłowych oraz domowych. W środowiskach o nieznanym poziomie zakłóceń zaleca się stosowanie następujących środków zapobiegających ewentualnemu zakłócaniu pracy przyrządu:

- a) nie zasilać urządzenia z tych samych linii co urządzenia wysokiej mocy bez odpowiednich filtrów sieciowych
- **b**) stosować ekranowanie przewodów zasilających, czujnikowych i sygnałowych, przy czym uziemienie ekranu powinno być jednopunktowe, wykonane jak najbliżej przyrządu
- c) unikać prowadzenia przewodów pomiarowych (sygnałowych) w bezpośrednim sąsiedztwie i równolegle do przewodów energetycznych i zasilających
- d) wskazane jest skręcanie parami przewodów sygnałowych lub użycie gotowego przewodu typu skrętka
- e) unikać bliskości urządzeń zdalnie sterowanych, mierników elektromagnetycznych, obciążeń wysokiej mocy, obciążeń z fazową lub grupową regulacją mocy oraz innych urządzeń wytwarzających duże zakłócenia impulsowe
- f) uziemiać lub zerować metalowe szyny, na których montowane są przyrządy listwowe

Przed rozpoczęciem pracy z urządzeniem należy usunąć folię zabezpieczającą okno wyświetlacza.

3. OGÓLNA CHARAKTERYSTYKA MIERNIKA

- 1 uniwersalne wejście pomiarowe (obsługujące czujniki termorezystancyjne, termoparowe lub cyfrowe sondy temperatury AR182 i AR183)
- wejście BIN do zatrzymywania pomiaru funkcja HOLD
- wyświetlacz LED z regulacją jasności świecenia
- kompensacja rezystancji linii dla czujników rezystancyjnych
- kompensacja temperatury zimnych końców termopar
- Programowalny rodzaj wejścia, filtracja oraz inne parametry konfiguracyjne
- dostęp do parametrów konfiguracyjnych chroniony hasłem użytkownika
- sposoby konfiguracji parametrów:
 - z klawiatury foliowej IP65 umieszczonej na panelu przednim urządzenia
 - poprzez port PRG (programator AR955) i bezpłatny program ARSOFT-CFG (Windows 7/8/10)
- oprogramowanie oraz programator umożliwiające podgląd wartości mierzonej i szybką konfigurację pojedynczych lub gotowych zestawów parametrów zapisanych wcześniej w komputerze w celu ponownego wykorzystania, na przykład w innych urządzeniach tego samego typu (powielanie konfiguracji)
- obudowa tablicowa, IP65 od czoła
- wysoka dokładność, stabilność długoterminowa i odporność na zakłócenia
- szeroki zakres napięć zasilania: 15 ÷ 250 Vac (napięcie przemienne 50/60 Hz), 20 ÷ 350 Vdc (napięcie stałe)
- dostępne akcesoria:
 - programator AR955
 - cyfrowe sondy temperatury AR182, AR183

UWAGA:

Przed rozpoczęciem pracy z regulatorem należy zapoznać się z niniejszą instrukcją obsługi i wykonać poprawnie instalację elektryczną, mechaniczną oraz konfigurację parametrów.

4. ZAWARTOŚĆ ZESTAWU

- miernik z uchwytami mocującymi w oknie tablicy
- instrukcja obsługi
- karta gwarancyjna

5. DANE TECHNICZNE

uniwersalne wejście (ustawiane parametrem 0: ToP)		zakres pomiarowy		
- Pt100 (3- lub 2-przewodowe)		-100 ÷ 850 °C		
- termopara J (Fe-CuN	i)	0 ÷ 880 °C		
- termopara K (NiCr-N	iAl)	0 ÷ 1200 °C		
- termopara S (PtRh 10	D-Pt)	0 ÷ 1750 °C		
- termopara B (PtRh30	PtRh6)	300 ÷ 1800 °C		
- termopara R (PtRh13	B-Pt)	0 ÷ 1600 °C		
- termopara T (Cu-Cu	Ji)	0 ÷ 380 °C		
- termopara E (NiCr-C	uNi)	0 ÷ 700 °C		
- termopara N (NiCrSi-	NiSi)	0 ÷ 1300 °C		
- cyfrowa sonda temp	eratury AR182	-50 ÷ 120 °C		
- cyfrowa sonda temp	eratury AR183	-50 ÷ 80 °C		
Czas odpowiedzi (10	÷ 90 %)	0,5 ÷ 2 s (programowalny parametrem 1: F 라는)		
Rezystancja doprowa	adzeń (Pt100)	R_d < 30 Ω (dla każdej linii)		
Prąd wejścia rezystar	ncyjnego (Pt100)	~250 µA		
Błędy przetwarzania	(w temperaturze otoczenia 25 °C)):		
- podstawowy	- dla Pt100	0,2 % zakresu pomiarowego ±1 cyfra		
	- dla termopar	0,3 % zakresu pomiarowego ±1 cyfra		
- dodatkowy dla term	opar	<2 °C (temperatura zimnych końców)		
Rozdzielczość mierzo	onej temperatury	programowalna, 0,1 °C lub 1 °C		
Wejście binarne (styk	owe lub napięciowe <24 V)	bistabilne, poziom aktywny: zwarcie lub < 0,8 V		
Interfejsy komunikacyjne	- złącze programujące PRG (bez separacji), standard	- szybkość 2,4 kb/s, - format znaku 8N1 (8 bitów danych, 1 bit stopu, bez bitu parzystości) - protokół MODBUS-RTU (SLAVE)		
Wyświetlacz 7-segmentowy LED (z regulacją jasności)		czerwony, 4 cyfry 20 mm		
Sygnalizacja	- komunikatów i błędów	wyświetlacz LED		
Zasilanie (Uzas)	uniwersalne, zgodne ze	15 ÷ 250 Vac, <0,8 VA (napięcie przemienne, 50/60 Hz)		
standardami 24 V i 230 V		20 ÷ 350 Vdc, <0,8 W (napięcie stałe)		
Znamionowe warunki użytkowania		0 ÷ 50 °C, <90 %RH (bez kondensacji)		
Środowisko pracy		powietrze i gazy neutralne		
Stopień ochrony	pny IP65 od czoła, IP20 od strony złącz			

Masa	~145 g	
Kompatybilność elel	ktromagnetyczna (EMC)	odporność: wg normy PN-EN 61000-6-2
		emisyjność: wg normy PN-EN 61000-6-4
Wymagania bezpieczeństwa wg PN-EN 61010-1		kategoria instalacji - Il
		stopień zanieczyszczenia - 2
		napięcie względem ziemi dla obwodu zasilania, wyjścia - 300 V
		napięcie względem ziemi dla obwodów wejścia - 50 V
		rezystancja izolacji >20 M Ω
		wysokość n.p.m. <2000 m

6. WYMIARY OBUDOWY I DANE MONTAŻOWE

Typ obudowy	tablicowa, Incabox XT	7 72 17		•• 17	
Materiał	samogasnący NORYL 94V-0, poliwęglan				
Wymiary obudowy	96x48x79 mm				
$(S \times W \times G)$				NORYL	
Okno tablicy	92 x 46 mm				
(S x W)					
Mocowanie	uchwytami z boku obudowy				
Przekroje przewodów	2,5mm² (zasilanie),		V	VIDOK OD STRONY	
(dla złącz rozłącznych)	1,5mm ² (pozostałe)		UCH	WYTU MOCUJĄCEGO	

7. OPIS LISTEW ZACISKOWYCH I POŁĄCZEŃ ELEKTRYCZNYCH

Tabela 7. Numeracja i opis listew zaciskowych

Zaciski	Opis
1-2-3	wejście Pt100 (2- i 3-przewodowe)
2-3	wejście termoparowe TC (J, K, S, B, R, T, E, N)
2-3-4	wejście dla cyfrowych sond temperatury AR182, AR183
5-6	wejście binarne (stykowe lub napięciowe <24V)
PRG	złącze programujące do współpracy z programatorem (tylko AR955 lub AR956)
12-13	wejście zasilania

a) AR507- opis zacisków Tabela 7

8. ZNACZENIE PRZYCISKÓW

Przycisk	Opis [oraz sposób oznaczenia w treści instrukcji]
SET +	[UP] i [SET] : wyświetlenie maksimum pomiaru (przytrzymanie przycisków powyżej 6s kasuje zapamiętane maksimum pomiaru)
SET + V	[DOWN] i [SET]: wyświetlenie minimum pomiaru (przytrzymanie przycisków powyżej 6s kasuje zapamiętane minimum pomiaru)
V + A	[UP] i [DOWN] (jednocześnie): wejście w menu konfiguracji parametrów (po czasie przytrzymania większym niż 2 sek.). Jeśli parametr 4: PPro = on (ochrona hasłem jest włączona) należy wprowadzić hasło dostępu (rozdział 9)

a) funkcje przycisków w trybie wyświetlania pomiarów

b) funkcje przycisków w menu konfiguracji parametrów (rozdział 9)

Przycisk	Opis [oraz sposób oznaczenia w treści instrukcji]	
SET	[SET] : - edycja aktualnego parametru (miganie wartości edytowanej) - zatwierdzenie i zapis zmienionej wartości parametru	
V lub	[UP] lub [DOWN]: - przejście do następnego lub poprzedniego parametru - zmiana wartości edytowanego parametru	
V + A	[UP] i [DOWN] (jednocześnie): - anulowanie zmian edytowanej wartości (zatrzymanie migania) - powrót do trybu wyświetlania pomiarów (przy czasie przytrzymania > 1s)	

9. USTAWIANIE PARAMETRÓW KONFIGURACYJNYCH

Wszystkie parametry konfiguracyjne regulatora zawarte są w nieulotnej (trwałej) pamięci wewnętrznej. Przy pierwszym włączeniu urządzenia może pojawić się na wyświetlaczu sygnał błędu (rozdział 10) związany z brakiem czujnika lub dołączonym innym niż zaprogramowany fabrycznie. W takiej sytuacji należy dołączyć właściwy czujnik lub wykonać korekcję parametrów konfiguracyjnych.

Dostępne są dwa sposoby konfiguracji parametrów:

- 1. Z klawiatury foliowej umieszczonej na panelu przednim urządzenia:
- z trybu wyświetlania pomiarów wejść w menu konfiguracji (jednocześnie wcisnąć przyciski **[UP]** i **[DOWN]** na czas dłuższy niż 2sek.) Jeśli parametr 4: **PPro = on** (ochrona hasłem jest włączona) na wyświetlaczu pojawi się komunikat **[ocf]**, a następnie **[DDD]** z migającą pierwszą cyfrą, przyciskiem **[UP]** lub **[DOWN]** należy wprowadzić hasło dostępu (firmowo parametr 3: **PPS5** = **[OFF]**), do przesuwania na kolejne pozycje oraz zatwierdzenia kodu służy przycisk **[SET]**
 - po wejściu do menu konfiguracji (z komunikatem [anf]) na wyświetlaczu pokazywana jest mnemoniczna nazwa parametru (anf] <-> Fall <-> dol <-> itd.)
 - przycisk [UP] powoduje przejście do następnego, [DOWN] do poprzedniego parametru (zbiorczą listę parametrów konfiguracyjnych zawiera Tabela 9)
- w celu zmiany wartości bieżącego parametru krótko wcisnąć przycisk [SET] (miganie w trybie edycji)
- przyciskami [UP] lub [DOWN] dokonać zmiany wartości edytowanego parametru
- zmienioną wartości parametru zatwierdzić przyciskiem [SET] lub anulować [UP] i [DOWN]
 (jednoczesne, krótkie wciśnięcie), następuje powrót do wyświetlania nazwy parametru
- wyjście z konfiguracji: długie wciśnięcie klawiszy [UP] i [DOWN] lub samoczynnie po ok. 2min bezczynności
- 2. Poprzez port PRG (programator AR955/AR956) i program komputerowy ARSOFT-CFG (rozdział 11):

- podłączyć regulator do portu komputera, uruchomić i skonfigurować aplikację ARSOFT-CFG
 po nawiązaniu połączenia w oknie programu wyświetlana jest bieżąca wartość mierzona
 ustawianie i podgląd parametrów urządzenia dostępne jest w oknie konfiguracji parametrów
 nowe wartości parametrów muszą być zatwierdzone przyciskiem Zatwierdź zmiany
 bieżącą konfigurację można zapisać do pliku lub ustawić wartościami odczytanymi z pliku
 UWAGA:
 przed odłączeniem urządzenia od komputera należy użyć przycisku Odłącz urządzenie (ARSOFT-CFG)
 w przypadku braku odpowiedzi:

 sprawdzić w Opcjach programu konfigurację portu
 upewnić się czy sterowniki portu szeregowego w komputerze zostały poprawnie zainstalowane dla programatora AR955/AR956
 odłączyć na kilka sekund i ponownie podłączyć programator AR955/AR956
 - wykonać restart komputera

W przypadku stwierdzenia rozbieżności wskazań z rzeczywistą wartością sygnału wejściowego możliwe jest dostrojenie zera i czułości do danego czujnika: parametry 7: **CRLP** (zero) i 8: **CRLP** (czułość).

<u>W celu przywrócenia ustawień fabrycznych</u> należy w momencie włączenia zasilania wcisnąć przyciski **[UP]** i **[DOWN]** do chwili pojawienia się menu wprowadzania hasła (**Code**), a następnie wprowadzić kod **BUR**. Alternatywnie można użyć pliku z domyślną konfiguracją w programie ARSOFT-CFG.

UWAGA:

Nie konfigurować jednocześnie przyrządu z klawiatury i poprzez interfejs szeregowy (AR955/AR956).

Parametr	Zakres zmienności parametru i opis		
	PE	czujnik termorezystancyjny Pt100 (-100 ÷ 850 °C)	
	tc-J	czujnik termoelektryczny (termopara) typu J (0 ÷ 880 °C)	
	tc-t	czujnik termoelektryczny (termopara) typu K (0 ÷ 1200 °C)	
	tc-5	czujnik termoelektryczny (termopara) typu S (0 ÷ 1750 °C)	
o: ne rodzaj wejścia	tc-b	czujnik termoelektryczny (termopara) typu B (300 ÷ 1800 °C)	PE
pomiarowego	tc-r	czujnik termoelektryczny (termopara) typu R (0 ÷ 1600 °C)	
	tc-t	czujnik termoelektryczny (termopara) typu T (0 ÷ 380 °C)	
	tc-E	czujnik termoelektryczny (termopara) typu E (0 ÷ 700 °C)	
	tc-n	czujnik termoelektryczny (termopara) typu N (0 ÷ 1300 °C)	
	8r 18	cyfrowa sonda temperatury AR182 lub AR183	
1: F & E filtracja (1)	3÷ 15	filtracja cyfrowa pomiarów (czas odpowiedzi)	5
2: dot pozycja	Ð	rozdzielczość 1 °C	ł
kropki/rozdzielczość	8	rozdzielczość 0.1 °C	(0.1 °C)
3: PR55 hasło dostępu		hasło dostępu do menu konfiguracji parametrów	111
4: PPro ochrona konfiguracji hasłem dostępu	oFF	wejście do menu konfiguracji nie jest chronione hasłem	-
	on	wejście do menu konfiguracji jest chronione hasłem dostępu	
5: br 🔓 jasność świecenia	5日÷100 jasność świecenia wyświetlacza, skok co 10%		# # %

Tabela 9. Zbiorcza lista parametrów konfiguracyjnych

6: Func	nonE	wejście BIN nieaktywne	
funkcja wejścia BIN	hold	wstrzymanie pomiaru	none
7: c RL o kalibracja zera	przesunięcie zera dla pomiarów: 599 ÷ 599 °C		€€ °C
8: CRLE wzmocnienie	850÷8650%	kalibracja nachylenia (czułość) dla pomiarów	1000 %

Uwagi: (1) – dla ELE = czas odpowiedzi wynosi około 0,5 sekundy, dla ELE = 15 co najmniej 2 s.

Wyższy stopień filtracji oznacza bardziej "wygładzoną" wartość mierzoną i dłuższy czas odpowiedzi,

zalecany dla pomiarów o turbulentnym charakterze (np. temperatura wody w kotle)

10. SYGNALIZACJA KOMUNIKATÓW I BŁĘDÓW

a) błędy pomiarowe:

Kod	Możliwe przyczyny błędu
	- przekroczenie zakresu pomiarowego czujnika od góry () lub od dołu ()
	- podłączono inny czujnik niż ustawiony w konfiguracji (rozdział 9, parametr 0: 🖙)
	- brak komunikacji z sondą cyfrową AR182, AR183
	 uszkodzenie lub błędne podłączenie sondy cyfrowej
	- podłączono inny czujnik niż ustawiony w konfiguracji (rozdział 9, parametr 0: 🖬)

b) komunikaty i błędy chwilowe (jednokrotne oraz cykliczne):

Kod	Opis komunikatu
EodE	tryb wprowadzania hasła dostępu do parametrów konfiguracyjnych, rozdział 9
Err	wprowadzono błędne hasło dostępu
EonF	wejście w menu konfiguracji parametrów
hold	wstrzymanie pomiarów
SAJE	zapis firmowych wartości parametrów (rozdział 9)

11. PODŁĄCZANIE DO KOMPUTERA I DOSTĘPNE OPROGRAMOWANIE

Podłączenie rmiernika do komputera może być przydatne w następujących sytuacjach:

- szybka konfiguracja parametrów, w tym również kopiowanie ustawień na inne mierniki tego samego typu

- monitoring i rejestracja mierzonej temperatury.

Mierniki standardowo wyposażone są w port PRG umożliwiający połączenie z komputerem za pomocą programatora AR955/AR956 (bez separacji galwanicznej, długość kabla ≈1,2m). Programator wymaga zainstalowania w komputerze dostarczonych sterowników portu szeregowego. Należy zwrócić uwagę na konfiguracje portu w opcjach programu ARSOFT-CFG (numer wirtualnego portu COM). Komunikacja z urządzeniami odbywa się z wykorzystaniem protokołu zgodnego z MODBUS-RTU. Aplikacja ARSOFT-CFG dostępna jest na stronie internetowej *www.apar.pl* w dziale *Download* lub na płycie CD w zestawie z programatorem AR955/AR956 (dla systemów operacyjnych Windows 7/8/10). Główne cechy programu są następujące:

Nazwa	Opis programu
ARSOFT-CFG (bezpłatny)	 - wyświetlanie aktualnych danych pomiarowych z podłączonego urządzenia - szybka konfiguracja parametrów urządzenia, rodzaju wejścia pomiarowego, filtracji, dostępu, itp. (rozdział 9) - tworzenie na dysku pliku z rozszerzeniem "cfg" zawierającego aktualną konfigurację parametrów w celu ponownego wykorzystania (np. do powielania konfiguracji) - program wymaga komunikacji z miernikiem poprzez port PRG (AR955/AR956)

Szczegółowy opis w/w aplikacji znajduje się w folderze instalacyjnym.