Hydraulic Motor
M5A*/M5B* Series
Vane Motors

Pressure up to 320 bar
Fixed Displacement from 6 to 45 ml/rev.

Catalogue HY29-0018/UK
January 2007
WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin, its subsidiaries, sales offices and authorized distributors provide product or system options for further investigation by users having technical expertise. Before you select or use any product or system it is important that you analyse all aspects of your application and review the information concerning the product or system in the current product catalogue. Due to the variety of operating conditions and applications for these products or systems, the user, through his own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance and safety requirements of the application are met.

The products are subject to change by Parker Hannifin at any time without notice.

Offer of Sale

Please contact your Parker representation for a detailed “Offer of Sale.”
<table>
<thead>
<tr>
<th>General Characteristics</th>
<th>Vane Motors</th>
<th>M5A* / M5B*</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW NOISE MOTOR</td>
<td></td>
<td>12 vanes and a patented cartridge design allows a very low noise level, whatever the speed.</td>
</tr>
<tr>
<td>HIGH PERFORMANCE MOTOR</td>
<td></td>
<td>The M5B series have been designed especially for severe duty applications which require high pressure, high speed and low fluid lubricity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. pressure (intermittent)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M5A* 006 to 018 : 300 bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M5A* 023 - 025 : 280 bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M5B* 012 to 036 : 320 bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M5B* 045 : 280 bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. speed (intermittent, low loaded cond.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M5A* 006 to 018 : 4000 RPM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M5A* 023 - 025 : 3000 RPM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M5B* 012 - 018 : 6000 RPM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M5B* 023 - 028 - 036 : 4000 RPM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M5B* 045 : 3000 RPM</td>
</tr>
<tr>
<td>HIGH EFFICIENCY</td>
<td></td>
<td>Up to 90% overall at 300 bar for M5A* and 320 bar for M5B*.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vane motors begin life with a high volumetric efficiency, and maintain that efficiency throughout their operating life.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vane pin holdout design improves the mechanical efficiency at low pressure.</td>
</tr>
<tr>
<td>HIGH STARTING TORQUE</td>
<td></td>
<td>The high starting torque efficiency of the vane type motors allows them to start under high load without pressure overshoots, jerks and high instantaneous horsepower loads.</td>
</tr>
<tr>
<td>LOW TORQUE RIPPLE</td>
<td></td>
<td>This 12 vane type motor exhibits a very low torque ripple (typical ± 1.5%), even at low speeds.</td>
</tr>
<tr>
<td>HIGH LIFETIME</td>
<td></td>
<td>The vane, rotor and cam ring are pressure balanced to increase life over the full speed range. Double lip vanes reduce the sensitivity to fluid pollution.</td>
</tr>
<tr>
<td>INTERCHANGEABLE ROTATING GROUPS</td>
<td></td>
<td>Our precise manufacturing allows any component to be interchangeable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rotating groups may be easily replaced to renew the motor or change the displacement to suit altered requirements for speed or torque.</td>
</tr>
<tr>
<td>ROTATION AND DRAIN</td>
<td></td>
<td>The M5B-M5BS are bi-directional motors, externally drained.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The M5AF and M5BF, externally drained, are available in three types of rotation: bi-directional, clockwise, counter-clockwise.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The M5AF1 and M5BF1, internally drained, are available in two types of rotation: clockwise, and counter-clockwise.</td>
</tr>
<tr>
<td>CROSS PORT CHECK VALVE</td>
<td></td>
<td>The uni-directional M5AF, M5AF1, M5BF and M5BF1 are designed with an internal valve that allows smooth dynamic braking, with a very simple hydraulic circuit and without risk of motor cavitation.</td>
</tr>
<tr>
<td>MOUNTING</td>
<td></td>
<td>M5B - M5BS: Cylindrical keyed or splined shaft according to SAE J744, ISO 3019-2 or J498.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>These products are designed primarily for coaxial drives which do not impose axial or side loading on the shaft.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M5AF - M5AF1: Cylindrical keyed or taper shaft, and a high load capacity double ball bearing allows the direct mounting on shaft (fan, ...).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M5BF: A stiff taper or cylindrical keyed shaft and a high load capacity double ball bearing allow the direct mounting on shaft (fan, ...).</td>
</tr>
</tbody>
</table>
Description

- The motor shaft is driven by the rotor. Vanes, closely fitted into the rotor slots move radially to seal against the cam ring. The ring has two major and two minor radial sections joined by transitional sections called ramps. These contours and the pressures exposed to them are balanced diametrically.

- Hydraulic pins and light springs urge the vanes radially against the cam contour assuring a seal at zero speed so that the motor can develop starting torque. The springs and pins are assisted by centrifugal force at higher speeds. Radial grooves and holes through the vanes equalize radial hydraulic forces on the vanes at all times. Fluid enters and leaves the motor cartridge through openings in the side plates at the ramps. Each motor port connects to two diametrically opposed ramps. Pressurized fluid entering at Port A torques the rotor clockwise. The rotor transports it to the ramp openings which connect to Port B from which it returns to the low pressure side of the system. Pressure at Port B torques the rotor counter-clockwise.

- The rotor is separated axially from the sideplate surface by the fluid film. The front sideplate is clamped against the cam ring by the pressure, maintains optimum clearance as dimensions change with temperature and pressure. A 3-way shuttle valve in the sideplate causes clamping pressure in Port A or B, whichever is the highest.

- Materials are chosen for long life efficiency. The vanes, rotor and cam ring are made out of hardened high alloy steels. Cast semi-steel sideplates are chemically etched to have a fine crystalline surface for good lubrication at start-up.
EXTERNA DRN MOTOR

This motor may be alternately pressurized on ports A and B to 300 bar max. int. (280 bar for 025) for M5AF and 320 bar max. int. (280 bar for 045) for M5BF. Whichever port is at low pressure, it should not be subjected to more than 60% of the high pressure, eg. for M5B*: When 320 bar in A, B is limited to 200 bar.

This motor must have a drain line connected to the center housing drain connection of sufficient size to prevent back pressure in excess of 3.5 bar, and returned to the reservoir below the surface of the oil as far away as possible from the suction pipe of the pump.

INNRRAL DRAIN MOTOR

This unidirectional motor may be pressurized only on the port corresponding to its rotation type.

The outlet pressure must not be higher than 3.5 bar.

RECOMMENDED FLUIDS

Petroleum base anti-wear R & O fluids (covered by Parker Denison HF-0 and HF-2 specifications).

Maximum catalog ratings and performance data are based on operation with these fluids.

FIRE RESISTANT FLUIDS

They are easily used in the M5A* and M5B* motors. These include phosphate or organic ester fluids and blends, water-glycol solutions and water-oil invert emulsions.

ACCEPTABLE ALTERNATE FLUIDS

The use of fluids other than petroleum base anti-wear R & O fluids requires that the maximum ratings of the motor will be reduced. In some cases, the minimum replenishment pressure must be increased.

HF-1: non antiwear petroleum base.
HF-3: water in oil invert emulsion.
HF-4: water glycols solutions.
HF-5: synthetic fluids.

<table>
<thead>
<tr>
<th>Model of motor</th>
<th>Maximum speed</th>
<th>Maximum pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RPM</td>
<td>Int.</td>
</tr>
<tr>
<td>M5A*</td>
<td>1500</td>
<td>225</td>
</tr>
<tr>
<td>M5B*</td>
<td>1800</td>
<td>240</td>
</tr>
</tbody>
</table>

VISCOSITY

Max. (cold start, low speed and pressure) 860 mm²/s (cSt)
Max. (full speed and pressure) 100 mm²/s (cSt)
Optimum (max. lifetime) 30 mm²/s (cSt)
Min. (full speed and pressure, HF-1 fluid) 18 mm²/s (cSt)
Min. (full speed and pressure, HF-0 & HF-2 fluids) 10 mm²/s (cSt)

For cold starts, the motor should operate at low speed and pressure until fluid warms up to an acceptable viscosity for full power operation.

VISCOSITY INDEX

90 min.

Higher values extend the range of operating temperatures and lifetime.

TEMPERATURE

Max. fluid temperature (HF-0, HF-1 & HF-2) + 100° C
Min. fluid temperature (HF-0, HF-1 & HF-2) - 18° C

FLUID CLEANLINESS

The fluid must be cleaned before and during operation to maintain a contamination level of NAS 1638 class 8 (or ISO 18/14) or better. Filters with 25 micron (or better, 610 > 100) nominal ratings may be adequate but do not guarantee the required cleanliness levels.

WATER CONTAMINATION IN FLUID

Maximum acceptable content of water is:
• 0.10 % for mineral base fluids.
• 0.05 % for synthetic fluids, crankcase oils, biodegradable fluids.
If amount of water is higher, then it should be drained off the circuit.
Check if available power is greater than required power (0.85 estimated overall efficiency).

\[
0.85 \times \frac{q \cdot V}{1000} \geq \frac{T \cdot \pi \cdot n}{50 \times 1000}
\]

\[
0.85 \times \frac{55 \cdot 280}{600} \geq \frac{110 \cdot \pi \cdot 1500}{30 \times 1000}
\]

21.8 > 17.3 kW

Two ways of calculation: Calculate \(V_i \) from \(T \) required torque, or from \(q \), available flow.

\[
v_i = \frac{20 \cdot \pi \cdot T}{p} = \frac{20 \cdot \pi \cdot 110}{280} = 28.0 \text{ ml/rev.}
\]

\[
v_i = \frac{1000 \cdot q}{n} = \frac{1000 \cdot 55}{1500} = 36.7 \text{ ml/rev.}
\]

3a. Choose motor from \(V_i \) immediately greater M5B* 028 : \(V_i = 28.0 \text{ ml/rev.} \)

4a. Check theoretical motor pressure

\[
p = \frac{20 \cdot \pi \cdot T}{V_i} = \frac{20 \cdot \pi \cdot 110}{280} = 247 \text{ bar}
\]

Torque loss at this pressure = 9.5 Nm

(See page 12)

Calculate real pressure

\[
p = \frac{20 \cdot \pi \cdot (T + T_l)}{V_i} = \frac{20 \cdot \pi \cdot 119.5}{280} = 268 \text{ bar}
\]

5a. Flow loss at this pressure : 5 l/min

(See page 12)

Real flow used by the motor : 55 - 5 = 50 l/min

6a. Real speed of the motor :

\[
n = \frac{q \cdot V}{V_i} = \frac{50 \cdot 1000}{280} = 1785 \text{ RPM}
\]

Real performances

\(V_i = 28.0 \text{ ml/rev.} \)

\(n = 1785 \text{ RPM} \)

\(T = 110 \text{ Nm.} \)

\(p = 268 \text{ bar} \)

In each case always choose the smallest motor which will operate at the highest speed and pressure, and will offer the most efficient solution.

FLUID POWER FORMULAS

Volumetric efficiency

\[
\frac{1}{1 + \text{total leakage} \times 1000 / \text{speed} \times \text{displacement}}
\]

Mechanical efficiency

\[
1 - \frac{\text{torque loss} \times 20 \times \pi}{\Delta \text{pressure} \times \text{displacement}}
\]

Fluid motor speed

\[
\text{rpm} = \frac{1000 \times \text{flow rate} \times \text{volumetric eff.}}{\text{displacement}}
\]

Fluid motor torque

\[
\text{Nm} = \frac{\Delta \text{pressure} \times \text{displacement} \times \text{mech. eff.} \times 20 \times \pi}{\text{rpm}}
\]

Fluid motor power

\[
\text{kW} = \frac{\text{speed} \times \text{displacement} \times \Delta \text{pressure} \times \text{overall eff.}}{600000}
\]

\[
\text{kW} = \frac{\text{torque} \times \text{speed} \times 20 \times \pi}{600000}
\]
Performance data

M5A* / M5B*

Mounting flange

<table>
<thead>
<tr>
<th>Flange</th>
<th>Ports</th>
<th>Drain</th>
<th>Shaft ends</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5AF</td>
<td>SAE 3/4" - 4 bolts UNC or SAE 3/4" - 4 bolts metric (ISO/DIS 6162 - SAE J518)</td>
<td>ISO 6149 - M12 x 1.5 or ISO 6149 - M22 x 1.5</td>
<td>Keyed taper non SAE Keyed non SAE</td>
</tr>
<tr>
<td>M5AF1</td>
<td>SAE 12"/1/16 - 12 UNF-2B J1926 or ISO 6149 - M22 x 1.5</td>
<td>No drain connection</td>
<td></td>
</tr>
<tr>
<td>M5BS</td>
<td>SAE 3/4" - 4 bolts metric (ISO/DIS 6162 - SAE J518)</td>
<td>M18 x 1.5</td>
<td>Keyed cyl. SAE "C"</td>
</tr>
<tr>
<td>M5BF</td>
<td>SAE 3/4" - 4 bolts metric (ISO/DIS 6162 - SAE J518)</td>
<td>No drain connection</td>
<td>Keyed taper non SAE Keyed cyl. SAE "C"</td>
</tr>
</tbody>
</table>

Series

<table>
<thead>
<tr>
<th>Series</th>
<th>Theoretical displacement</th>
<th>Theoretical torque</th>
<th>Theoretical power at 100 RPM</th>
<th>Typical data 2000 RPM - 300 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m³/rev</td>
<td>N.m/bar</td>
<td>kW/bar</td>
<td>N.m</td>
</tr>
<tr>
<td>M5A*</td>
<td>6.3</td>
<td>0.100</td>
<td>0.0011</td>
<td>26.1</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>0.159</td>
<td>0.0017</td>
<td>43.7</td>
</tr>
<tr>
<td></td>
<td>12.5</td>
<td>0.199</td>
<td>0.0021</td>
<td>55.7</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>0.235</td>
<td>0.0027</td>
<td>72.4</td>
</tr>
<tr>
<td></td>
<td>18.0</td>
<td>0.286</td>
<td>0.0030</td>
<td>81.2</td>
</tr>
<tr>
<td></td>
<td>23.0</td>
<td>0.366</td>
<td>0.0038</td>
<td>102.5(1)</td>
</tr>
<tr>
<td></td>
<td>25.0</td>
<td>0.398</td>
<td>0.0042</td>
<td>107.4(1)</td>
</tr>
</tbody>
</table>

023 - 025 = 280 bar max.

<table>
<thead>
<tr>
<th>Series</th>
<th>Theoretical displacement</th>
<th>Theoretical torque</th>
<th>Theoretical power at 100 RPM</th>
<th>Typical data 2000 RPM - 320 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m³/rev</td>
<td>N.m/bar</td>
<td>kW/bar</td>
<td>N.m</td>
</tr>
<tr>
<td>M5B*</td>
<td>12.0</td>
<td>0.191</td>
<td>0.0020</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>18.0</td>
<td>0.286</td>
<td>0.0030</td>
<td>81.2</td>
</tr>
<tr>
<td></td>
<td>23.0</td>
<td>0.366</td>
<td>0.0038</td>
<td>117.4</td>
</tr>
<tr>
<td></td>
<td>28.0</td>
<td>0.446</td>
<td>0.0047</td>
<td>132.1</td>
</tr>
<tr>
<td></td>
<td>36.0</td>
<td>0.572</td>
<td>0.0060</td>
<td>172.8</td>
</tr>
<tr>
<td></td>
<td>45.0</td>
<td>0.716</td>
<td>0.0075</td>
<td>190.0(1)</td>
</tr>
</tbody>
</table>

045 = 280 bar max.

Starting Performances

- **Maximum cross-flow** 100 bar : 0.6 l/min 1,8 l/min 200 bar : 7.4 l/min 7.8 l/min 320 bar : 10.7 l/min 12.5 l/min
- **Minimum stalled torque efficiency** for M5B* only 100 bar : 78.3 % 200 bar : 81.0 % 320 bar : 80.8 %

Permissible Axial and Radial Loads

1. **Max. axial load** : Fa max. = 6 000 N
2. **Max. radial load cylindrical shaft** : Fr max. = 8 000 N
taper shaft : Fr max. = 5 500 N
3. **Theoretical lifetime [hour]** : \(L_{10H} \) = \(\frac{16 666}{N \text{ [rpm]}} \times L_{10} \)
4. **Theoretical lifetime [10⁶ rev]** : \(L_{10} \)
5. **Eg of theoretical life time calculation**
 - Axial load \(Fa = 2000 \text{ N} \)
 - Radial load \(Fr = 1000 \text{ N} \)
 - Operating speed \(N = 2000 \text{ RPM} \)
 - \(L10 = 2000 [10^6 \text{ rev}] \) (see on curve page)

\[L_{10H} = \frac{16 666}{2000} \times 2000 \quad L_{10} = 16 666 \text{ hours.} \]
Max ratings M5A*

- These are running condition limits; for starting performances see page 7.
- Intermittent conditions: do not exceed 6 seconds per minute of rotation.
- Typical curves, at 24 cSt 45°C.
- For higher specifications or for operating speed under 100 RPM, please consult our technical department.
012 - 018

- These are running condition limits; for starting performances see page 7.
- Intermittent conditions: do not exceed 6 seconds per minute of rotation.
- Typical curves, at 24 cSt 45° C.
- For higher specifications or for operating speed under 100 RPM, please consult our technical department.
Model No.
Series External drain
Series Internal drain
Displacement
Volumetric displacement (ml/rev.)
006 = 6,3
010 = 10,0
012 = 12,5
016 = 16,0
Type of shaft
1 = taper (non SAE)
2 = keyed (non SAE)
Direction of rotation (view on shaft end) - M5AF - M5AF1
R = Clockwise
L = Counter-clockwise
Direction of rotation (view on shaft end) - M5AF
N = Bi-rotational
Porting combination

ROTATION = BI-ROTATIONAL (N)

View from shaft end :
CW rotation A = inlet
B = outlet
CCW rotation A = outlet
B = inlet

OVERALL LEAKAGE (internal + external)

TORQUE LOSS

PERMISSIBLE AXIAL AND RADIAL LOADS

L10 = Theoretical lifetime (10^6 rev.)
M5AF - Dimensions - Weight : 15 kg

Vane Motors

M5A* / M5B*

PERFORMANCES : PRESSURE & SPEED

<table>
<thead>
<tr>
<th>Displacement</th>
<th>006</th>
<th>010</th>
<th>012</th>
<th>016</th>
<th>018</th>
<th>023</th>
<th>025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure max (bar)</td>
<td>300</td>
<td>280</td>
<td>275</td>
<td>260</td>
<td>240</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>Speed max (RPM)</td>
<td>4000</td>
<td>4200</td>
<td>4400</td>
<td>4600</td>
<td>4800</td>
<td>5000</td>
<td>5200</td>
</tr>
</tbody>
</table>

MINIMUM REPLENISHMENT PRESSURE (BAR ABSOLUTE AT THE B PORT) for M5AF with an internal check valve

<table>
<thead>
<tr>
<th>Flow (l/min)</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min pressure (bar)</td>
<td>1.3</td>
<td>1.5</td>
<td>2.5</td>
<td>3.0</td>
<td>4.2</td>
<td>6.2</td>
<td>9.0</td>
</tr>
</tbody>
</table>

1) 60 l/min is the maximum flow allowed through the internal check valve.

2) This torque is for a steel coupling and a nut of at least grade 8.8 quality. It is compulsory to install a castle nut and cotter pin for right-hand rotation - bi-rotational.
Vane Motors

M5A*/M5B*

Model No.

- **Series External drain**
 - ISO 3019-2 - 100 A2/B4 HW
 - SAE B - J744

Displacement

Volumetric displacement (ml/rev.)

<table>
<thead>
<tr>
<th>Volume (ml/rev.)</th>
<th>Model No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>M5B S 036</td>
</tr>
<tr>
<td>18.0</td>
<td>M5B 036</td>
</tr>
<tr>
<td>23.0</td>
<td>M5B 045</td>
</tr>
</tbody>
</table>

Type of shaft

1 = taper (SAE B)
2 = keyed (ISO E25M)
3 = splined (SAE B)
4 = splined (SAE BB)

Direction of rotation (view on shaft end)

- **N** = Bi-rotational

Modifications

- **Drain variables - M5BS**
 - 2 = 9/16” 18 SAE drain
 - 3 = M18 x 1.5 metric drain

- **Drain variables - M5B**
 - 3 = M18 x 1.5 metric drain

End cap variables

- **M** = 3/4” - 4 bolts SAE flange J518 - Metric thread
- **0** = 3/4” - 4 bolts SAE flange J518 - UNC thread

Seal class

- **1** = S1 - BUNA N
- **5** = S5 - VITON

Design letter

Porting combination

Noise Level - M5BF - 036

OVERALL LEAKAGE (internal + external)

<table>
<thead>
<tr>
<th>Pressure p [bar]</th>
<th>Overall leakage [l/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 cSt</td>
<td>10</td>
</tr>
<tr>
<td>24 cSt</td>
<td>12</td>
</tr>
</tbody>
</table>

PERMISSIBLE AXIAL AND RADIAL LOADS

<table>
<thead>
<tr>
<th>Pressure p [bar]</th>
<th>Torque T [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 rpm</td>
<td>10</td>
</tr>
<tr>
<td>1500 rpm</td>
<td>5</td>
</tr>
<tr>
<td>1000 rpm</td>
<td>2</td>
</tr>
<tr>
<td>500 rpm</td>
<td>1</td>
</tr>
</tbody>
</table>

L10 = Theoretical lifetime [10^6 rev.]

1) **L or R rotation is a new internal concept: A is always "in" and B always "out".**
Vane Motors

M5B / M5BS - Dimensions - Weight: 18.5 kg

M5A* / M5B*

Dimensions

- **Port Code 0**:
 - Ø A
 - SAE 9/16” - 18
 - M18 x 1.5
 - Ø 14,3
 - 88,9
 - Ø 6
 - Ø 38,1
 - 71,4
 - 133,6

- **Port Code 3**:
 - Ø B
 - SAE 9/16” - 18
 - M18 x 1.5
 - Ø 14,3
 - 88,9
 - Ø 6
 - Ø 38,1
 - 71,4
 - 133,6

- **Port Code 1**:
 - Ø E
 - SAE 9/16” - 18
 - M18 x 1.5
 - Ø 14,3
 - 88,9
 - Ø 6
 - Ø 38,1
 - 71,4
 - 133,6

<table>
<thead>
<tr>
<th>Port Code</th>
<th>Ø B</th>
<th>Ø E</th>
<th>Ø F</th>
<th>Ø G</th>
<th>Ø H</th>
<th>Ø J</th>
<th>Ø K</th>
<th>Ø L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø B</td>
<td>88,9</td>
<td>44,9</td>
<td>14,3</td>
<td>9,7</td>
<td>1,5</td>
<td>73,0</td>
<td>100,0</td>
<td>160,0</td>
</tr>
<tr>
<td>Ø E</td>
<td>44,9</td>
<td>14,3</td>
<td>9,7</td>
<td>1,5</td>
<td>73,0</td>
<td>100,0</td>
<td>160,0</td>
<td>160,0</td>
</tr>
<tr>
<td>Ø F</td>
<td>14,3</td>
<td>9,7</td>
<td>1,5</td>
<td>73,0</td>
<td>100,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
</tr>
<tr>
<td>Ø G</td>
<td>9,7</td>
<td>1,5</td>
<td>73,0</td>
<td>100,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
</tr>
<tr>
<td>Ø H</td>
<td>1,5</td>
<td>73,0</td>
<td>100,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
</tr>
<tr>
<td>Ø J</td>
<td>73,0</td>
<td>100,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
</tr>
<tr>
<td>Ø K</td>
<td>100,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
</tr>
<tr>
<td>Ø L</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
<td>160,0</td>
</tr>
</tbody>
</table>

Weight: 18.5 kg
Model No.

Series External drain

Series Internal drain

Displacement

Volumetric displacement (ml/rev.)
- 012 = 12.0
- 028 = 28.0
- 018 = 18.0
- 036 = 36.0
- 023 = 23.0
- 045 = 45.0

Type of shaft

1 = keyed taper (non SAE)
2 = keyed (SAE C)
W = keyed (ISO G32N)

Direction of rotation (view on shaft end)

M5BF - M5BF1

R = Clockwise
L = Counter-clockwise
N = Bi-rotational

Porting combination

Modifications or special option

Ex.: AP21 = Anti-starve valve + proportional pressure relief valve set at 210 bar.

For a flow above 75 l/min a special cap is needed, please consult Parker Denison.

Drain variables - M5BF

2 = 9/16" 18 SAE drain
3 = M18 x 1.5 metric drain

Drain variables - M5BF1

x = no drain connection

End cap variables M5BF

M = 3/4" - 4 bolts SAE flange J518 - Metric thread
0 = 3/4" - 4 bolts SAE flange J518 - UNC thread

End cap variables M5BF1

M = 3/4" - 4 bolts SAE flange J518 - Metric thread

Seal class

1 = S1 - BUNA N
5 = S5 - VITON

Design letter

View from shaft end:

CW rotation A = inlet
B = outlet
CCW rotation A = outlet
B = inlet

OVERALL LEAKAGE (internal + external)

NOISE LEVEL - M5BF - 036

PERMISSIBLE AXIAL AND RADIAL LOADS

1) L or R rotation is a new internal concept: A is always “in” and B always “out”.

L10 = Theoretical lifetime \[10^6\] rev.
Vane Motors

M5BF/M5BF1 - Dimensions - Weight: 18.5 kg M5A* / M5B*

Torque of the nut: 80 Nm

1. This torque is for a steel coupling and a nut of at least grade 8.9 quality.

It is compulsory to install a castle nut and cotter pin for right-hand rotation - bi-rotational.
Parker Hannifin is the world’s premier supplier of motion and control systems and solutions, with sales and manufacturing facilities throughout the world. For product information and details of your nearest Parker sales office, visit us at www.parker.com or call free on 00800 2727 5374.

Europe

<table>
<thead>
<tr>
<th>Country</th>
<th>City</th>
<th>Tel:</th>
<th>Fax:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Wiener Neustadt</td>
<td>+43 (0)2622 23501</td>
<td>+43 (0)2622 66212</td>
</tr>
<tr>
<td>Austria</td>
<td>(Resp for East Europe)</td>
<td>+43 (0)2622 23501-970</td>
<td>+43 (0)2622 23501-977</td>
</tr>
<tr>
<td>Belgium</td>
<td>Nivelles</td>
<td>+32 (0)67 280 900</td>
<td>+32 (0)67 280 999</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>Klecticy</td>
<td>+420 284 083 111</td>
<td>+420 284 083 112</td>
</tr>
<tr>
<td>Denmark</td>
<td>Ballerup</td>
<td>+45 4356 0400</td>
<td>+45 4373 3107</td>
</tr>
<tr>
<td>Finland</td>
<td>Vantaa</td>
<td>+358 20 753 2500</td>
<td>+358 20 753 2200</td>
</tr>
<tr>
<td>France</td>
<td>Contamine-sur-Arve</td>
<td>+33 (0)450 25 80 25</td>
<td>+33 (0)450 25 24 25</td>
</tr>
<tr>
<td>Germany</td>
<td>Kaarst</td>
<td>+49 (0)2131 4016 0</td>
<td>+49 (0)2131 4016 9199</td>
</tr>
<tr>
<td>Ireland</td>
<td>Dublin</td>
<td>+353 (0)1 466 6370</td>
<td>+353 (0)1 466 6376</td>
</tr>
<tr>
<td>Italy</td>
<td>Corsico (MI)</td>
<td>+39 02 45 19 21</td>
<td>+39 02 4 47 93 40</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>Oldenzaal</td>
<td>+31 (0)541 585000</td>
<td>+31 (0)541 585459</td>
</tr>
<tr>
<td>Norway</td>
<td>Ski</td>
<td>+47 64 91 10 00</td>
<td>+47 64 91 10 90</td>
</tr>
<tr>
<td>Poland</td>
<td>Warsaw</td>
<td>+48 (0)22 573 24 00</td>
<td>+48 (0)22 573 24 03</td>
</tr>
<tr>
<td>Portugal</td>
<td>Leca da Palmeira</td>
<td>+351 22 9997 360</td>
<td>+351 22 9961 527</td>
</tr>
<tr>
<td>Slovakia</td>
<td>Ref. Czech Republic</td>
<td>+48 (0)22 573 24 00</td>
<td>+48 (0)22 573 24 03</td>
</tr>
<tr>
<td>Spain</td>
<td>Madrid</td>
<td>+34 91 675 73 00</td>
<td>+34 91 675 77 11</td>
</tr>
<tr>
<td>Sweden</td>
<td>Spånga</td>
<td>+46 (0)8 597 950 00</td>
<td>+46 (0)8 597 951 10</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Warwick</td>
<td>+44 (0)1926 317 878</td>
<td>+44 (0)1926 317 855</td>
</tr>
</tbody>
</table>

International

<table>
<thead>
<tr>
<th>Country</th>
<th>City</th>
<th>Tel:</th>
<th>Fax:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Castle Hill</td>
<td>+61 (0)2-9634 7777</td>
<td>+61 (0)2-9842 5111</td>
</tr>
<tr>
<td>Canada</td>
<td>Milton, Ontario</td>
<td>+1 905-693-3000</td>
<td>+1 905-876-0788</td>
</tr>
<tr>
<td>China</td>
<td>Shanghai</td>
<td>+86 21 5031 2525</td>
<td>+86 21 5834 3714</td>
</tr>
<tr>
<td>India</td>
<td>Mumbai</td>
<td>+91 22 5613 7081/82-85</td>
<td>+91 22 2768 6616/6618</td>
</tr>
<tr>
<td>Japan</td>
<td>Tokyo</td>
<td>+(81) 3 6408 3900</td>
<td>+(81) 3 5449 7201</td>
</tr>
<tr>
<td>Latin America Group</td>
<td>Brazil</td>
<td>+55 51 3470 9144</td>
<td>+55 51 3470 9281</td>
</tr>
<tr>
<td>South Africa</td>
<td>Kempton Park</td>
<td>+27 (0)11-981 0700</td>
<td>+27 (0)11-392 7213</td>
</tr>
<tr>
<td>USA</td>
<td>Cleveland (industrial)</td>
<td>+1 216-896-3000</td>
<td>+1 216-896-4031</td>
</tr>
<tr>
<td></td>
<td>Lincolnshire (mobile)</td>
<td>+1 847-821-1500</td>
<td>+1 847-821-7600</td>
</tr>
</tbody>
</table>

Parker Hannifin is the world’s premier supplier of motion and control systems and solutions, with sales and manufacturing facilities throughout the world. For product information and details of your nearest Parker sales office, visit us at www.parker.com or call free on 00800 2727 5374.