MOSFET - Single N-Channel

40 V, 2.1 mΩ, **150 A**

NTTFS2D1N04HL

Features

- Max $R_{DS(on)} = 2.1 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 23 \text{ A}$
- Max $R_{DS(on)} = 3.3 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 18 \text{ A}$
- High Performance Technology for Extremely Low R_{DS(on)}
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- DC-DC Buck Converters
- Point of Load
- High Efficiency Load Switch and Low Side Switching
- Oring FET

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

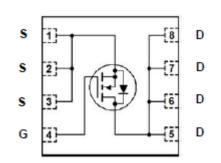
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	40	V
Gate-to-Source Voltag	Gate-to-Source Voltage			±20	V
Continuous Drain Current $R_{\theta JC}$ (Note 1)	Steady	$T_C = 25^{\circ}C$	۱ _D	150	A
Power Dissipation $R_{\theta JC}$ (Note 1)	State		P _D	83	W
Continuous Drain Current $R_{\theta JA}$ (Notes 1, 2)	Steady State	T _A = 25°C	ID	24	A
Power Dissipation $R_{\theta JA}$ (Notes 1, 2)	Oldie		P _D	2.2	W
Pulsed Drain Current	$T_A = 25^{\circ}C$, $t_p = 10 \ \mu s$		I _{DM}	958	А
Operating Junction and Storage Temperature Range		T _J , T _{stg}	– 55 to +150	°C	
Source Current (Body Diode)		۱ _S	69	А	
Single Pulse Drain-to-Source Avalanche Energy (I _{AV} = 29 A, L = 0.3 mH) (Note 3)		E _{AS}	126	mJ	
Lead Temperature Soldering Reflow for Sol- dering Purposes (1/8" from case for 10 s)		ΤL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 1)	$R_{\theta JC}$	1.5	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	54.8	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


2. Surface-mounted on FR4 board using 1 in² pad size, 1 oz. Cu pad. 3. E_{AS} of 126 mJ is based on started T_J = 25°C, I_{AS} = 29 A, V_{DD} = 32 V, V_{GS} = 10 V. 100% test at I_{AS} = 29 A.

ON Semiconductor®

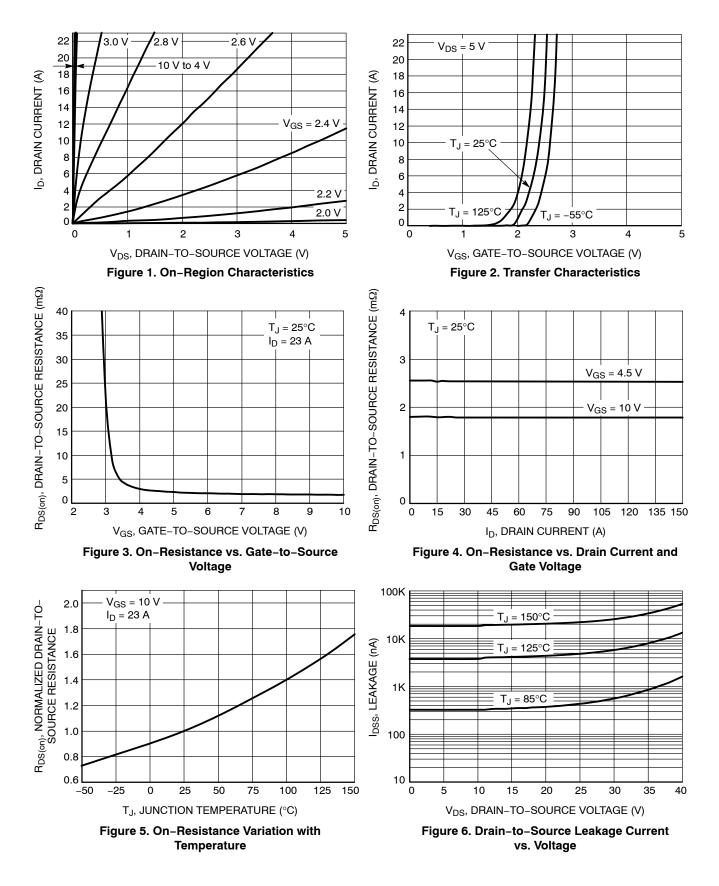
www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
40 V	2.1 mΩ @ 10 V	150 A
40 V	3.3 mΩ @ 4.5 V	150 A

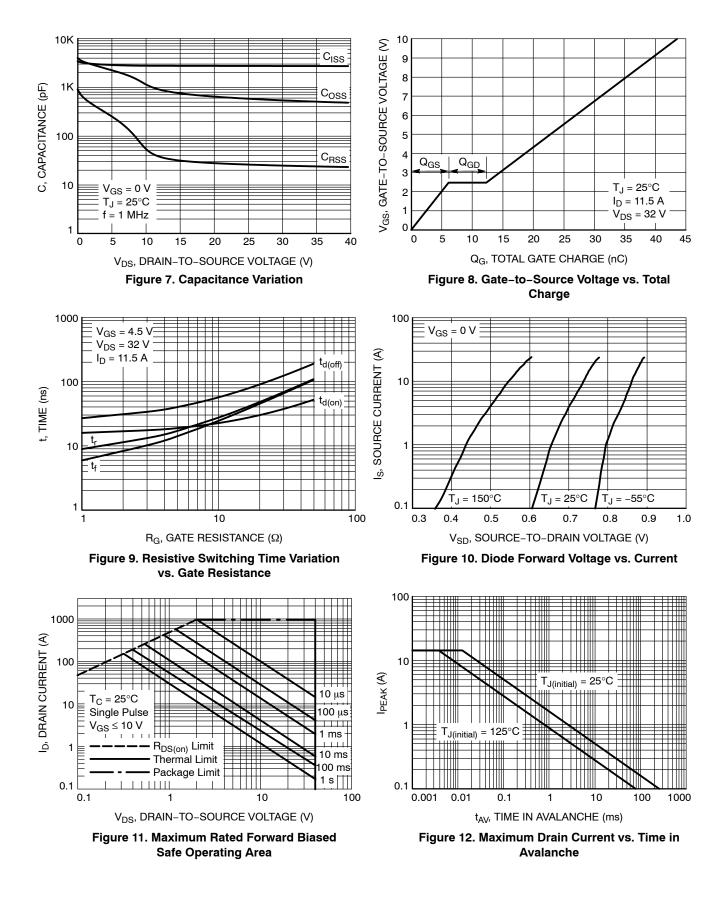
N-CHANNEL MOSFET

ORDERING INFORMATION

Device	Package	Shipping†
NTTFS2D1N04HLTWG	PQFN8 (Pb-Free)	3000 / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

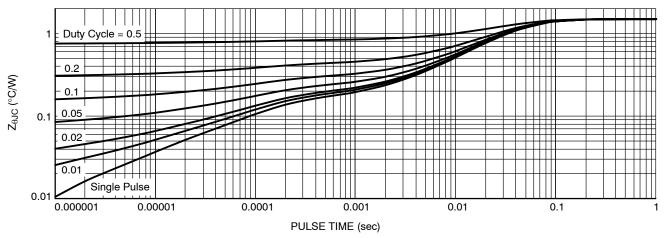
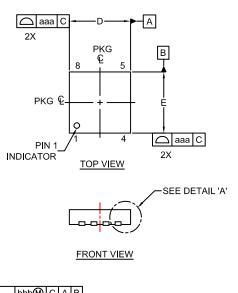

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 μ A		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	$I_D = 250 \ \mu\text{A}$, ref to 25°C			21.80		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, T _J = 25°C				10	μΑ
		V _{DS} = 40 V	T _J = 125°C			100	
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS}	= 20 V			±100	nA
ON CHARACTERISTICS (Note 4)	-						
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D =	= 120 μA	1.2		2.0	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 120 μA, ref	to 25°C		-4.63		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D	= 23 A		1.7	2.1	mΩ
		V _{GS} = 4.5 V, I _D = 18 A			2.5	3.3	
Forward Transconductance	9 _{FS}	V_{DS} = 15 V, I _D	= 23 A		256		S
Gate-Resistance	R _G	T _A = 25°	С		1		Ω
CHARGES & CAPACITANCES						-	-
Input Capacitance	C _{ISS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 20 V			2745		pF
Output Capacitance	C _{OSS}				645		-
Reverse Transfer Capacitance	C _{RSS}				38		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 32 V, I_{D} = 11.5 A			43.6		nC
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 4.5 V, V_{DS} = 32 V, I_{D} = 11.5 A			20.7		nC
Gate-to-Source Charge	Q _{GS}				6.1]
Gate-to-Drain Charge	Q _{GD}				6.2		
Plateau Voltage	V _{GP}				2.5		V
SWITCHING CHARACTERISTICS (Note	4)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 4.5 V, V_{DD} = 32 V, I_{D} = 11.5 A, R_{G} = 2.5 Ω			17		ns
Rise Time	tr				12		1
Turn-Off Delay Time	t _{d(OFF)}				32		1
Fall Time	t _f				9		
DRAIN-SOURCE DIODE CHARACTERIS	STICS					-	-
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$		0.79	1.2	V
		I _S = 23 A	T _J = 125°C		0.64		1
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dI _S /dt = 100 A/µs, I _S = 11.5 A			22		ns
Reverse Recovery Charge	Q _{RR}				17		nC
Charge Time	t _a	V_{GS} = 0 V, dI _S /dt = 100 A/µs, I _S = 11.5 A			22		ns
Discharge Time	t _b				13		ns

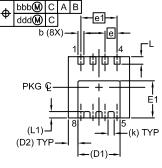
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product Product parametric performance is indicated in the Electrical Characteristics if operated under different conditions.
Switching characteristics are independent of operating junction temperatures
As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.

TYPICAL CHARACTERISTICS

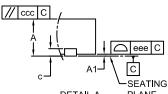
TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

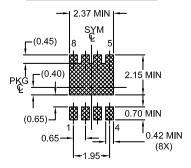




Figure 13. Transient Thermal Impedance

PACKAGE DIMENSIONS


WDFN8 3.3X3.3, 0.65P CASE 483AW

ISSUE A



BOTTOM VIEW

DETAIL A PLANE SCALE: 2x

LAND PATTERN RECOMMENDATION*

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETERS.
- 2. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 4. SEATING PLANE IS DEFINED BY THE TERMINALS. 'A1' IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

DIM	MILLIMETERS				
	MIN	NOM	MAX		
A	0.70	0.75	0.80		
A1	-	-	0.05		
b	0.27	0.32	0.37		
С	0.15	0.20	0.25		
D	3.20	3.30	3.40		
D1	2.27 REF				
D2	0.52 REF				
E	3.20	3.30	3.40		
E1	1.85	1.95	2.05		
е	0.65 BSC				
e1	1.95 BSC				
k	0.33 REF				
L	0.30	0.40	0.50		
L1	0.34 REF				
aaa	0.10				
bbb	0.10				
ccc	0.10				
ddd	0.05				
eee	0.05				

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor and the support yestems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and

PUBLICATION ORDERING INFORMATION

Email Requests to: orderlit@onsemi.com

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

Voice Mail: 1 800–28 ON Semiconductor Website: www.onsemi.com Phone: 011 421 33 79

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative