onsemi

Hex Inverter MM74HCT04

General Description

The MM74HCT04 is a logic function fabricated by using advanced silicon–gate CMOS technology which provides the inherent benefits of CMOS—low quiescent power and wide power supply range. This device is input and output characteristic as well as pin–out compatible with standard 74LS logic families. The MM74HCT04, triple buffered, hex inverters, features low power dissipation and fast switching times. All inputs are protected from static discharge by internal diodes to V_{CC} and ground.

MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug–in replacements for LS–TTL devices and can be used to reduce power consumption in existing designs.

Features

- TTL, LS Pin-out and Threshold Compatible
- Fast Switching: t_{PLH}, t_{PHL} = 10 ns (typ.)
- Low Power: 10 µW at DC, 3.7 mW at 5 MHz
- High Fan Out: ≥10 LS Loads
- Inverting, Triple Buffered
- These Devices are Pb-Free, Halide Free and are RoHS Compliant

Connection Diagram

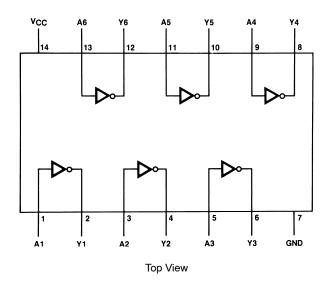
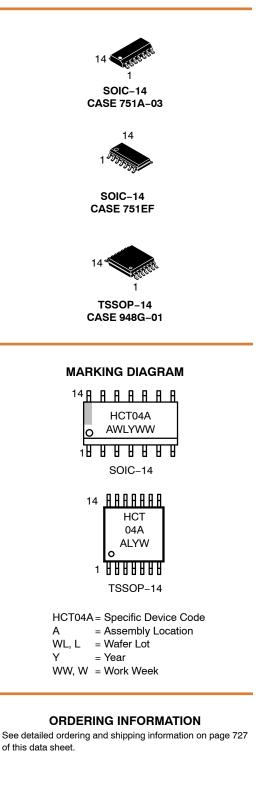



Figure 1. Pin Assignments for SOIC and TSSOP

ABSOLUTE MAXIMUM RATINGS (Note 1)

Symbol	Parameter		Rating	
V _{CC}	Supply Voltage	Supply Voltage		
V _{IN}	DC Input Voltage		-0.5 to V _{CC} + 0.5 V	
V _{OUT}	DC Output Voltage		–0.5 to V _{CC} + 0.5 V	
I _{IK} , I _{OK}	Clamp Diode Current		±20 mA	
I _{OUT}	DC Output Current, per Pin		±25 mA	
I _{CC}	DC V _{CC} or GND Current, per Pin		±50 mA	
T _{STG}	Storage Temperature Range		–65°C to +150°C	
PD	Power Dissipation S.O. Package Only		500 mW	
ΤL	Lead Temperature (Soldering 10 Seconds)		260°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Unless otherwise specified all voltages are referenced to ground.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Max	Unit
V _{CC}	Supply Voltage	4.5	5.5	V
V _{IN} , V _{OUT}	DC Input or Output Voltage	0	V _{CC}	V
T _A	Operating Temperature Range	-55	+125	°C
t _r , t _f	Input Rise or Fall Times		500	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

MM74HCT04

Symbol	Parameter	Conditions	T _A = 25°C		T _A = −40°C to 85°C	T _A = −55°C to 125°C	
			Тур.	G	uaranteed Limit	ts	Unit
V _{IH}	Minimum HIGH Level Input Voltage		_	2.0	2.0	2.0	V
V_{IL}	Maximum LOW Level Input Voltage		_	0.8	0.8	0.8	V
V _{OH}	Minimum HIGH Level Output Voltage	V_{IN} = V_{IH} or V_{IL} , $ I_{OUT} $ = 20 μ A	V _{CC}	V _{CC} – 0.1	V _{CC} – 0.1	V _{CC} – 0.1	V
			4.2	3.98	3.84	3.7	
			5.2	4.98	4.84	4.7	
OL	Maximum LOW Level Voltage	V _{IN} = V _{IH} I _{OUT} = 20 μA	0	0.1	0.1	0.1	V
		$ \begin{array}{l} V_{IN} = V_{IH} \\ \mid I_{OUT} \mid = 4.0 \text{ mA} \\ V_{CC} = 4.5 \text{ V} \end{array} $	0.2	0.26	0.33	0.4	
			0.2	0.26	0.33	0.4	
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND, V_{IH} or V_{IL}	-	±0.1	±1.0	±1.0	μA
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0 \ \mu A$	-	2.0	20	40	μA
		V _{IN} = 2.4 V or 0.5 V (Note 2)	-	0.3	0.4	0.5	mA

DC ELECTRICAL CHARACTERISTICS (V_{CC} = 5 V ±10% (unless otherwise specified))

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. This is measured per input with all other inputs held at V_{CC} or ground.

MM74HCT04

AC ELECTRICAL CHARACTERISTICS

(V_{CC} = 5.0 V, $t_r = t_f = 6$ ns, C_L = 15 pF, T_A = 25°C (unless otherwise specified))

Symbol	Parameter	Conditions	Тур.	Guaranteed Limit	Unit
t_{PLH}, t_{PHL}	Maximum Propagation Delay		10	18	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, t_r = t_f = 6 ns, C_L = 50 pF (unless otherwise specified))

			T _A =	25°C	T _A = −40°C to 85°C	T _A = −55°C to 125°C	
Symbol	Parameter	Conditions	Тур.	Gu	aranteed Lim	its	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay		14	20	25	30	ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time		8	15	19	22	ns
C _{PD}	Power Dissipation Capacitance	(Note 3)	20	-	-	-	pF
C _{IN}	Input Capacitance		5	10	10	10	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

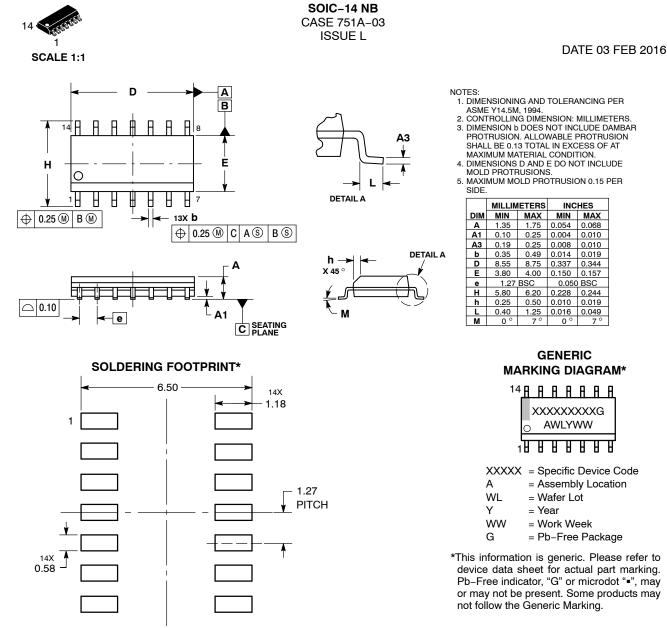
3. CPD determines the no load dynamic power consumption, PD = CPD VCC² f + ICC VCC, and the no load dynamic current consumption, $I_{\rm S} = C_{\rm PD} V_{\rm CC} f + I_{\rm CC}$.

ORDERING INFORMATION

Device	Package	Shipping [†]	
MM74HCT04M	SOIC-14, Case 751A-03 (Pb-Free and Halide Free)	55 Units / Tube	
MM74HCT04MX	SOIC-14, Case 751EF (Pb-Free and Halide Free)	2500 Units / Tape & Reel	
MM74HCT04MTCX	TSSOP-14, Case 948G-01 (Pb-Free and Halide Free)	2500 Units / Tape & Reel	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NOTE: All packages are lead free per JEDEC: J-STD-020B standard.


DUSEM

0.068

0.019

0.344

0.244

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB42565B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOIC-14 NB PAGE 1 OF 2 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2	

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC14 CASE 751EF **ISSUE O** DATE 30 SEP 2016 8.75 8.50 Α 0.65 7.62 14 8 14 8 В 4.00 6.00 5.60 3.80 Ħ 1.70 7 **PIN #1** 1,27 7 0.51 **IDENT.** 1.270.35 (0.33) \oplus 0.25 (M) С В Α LAND PATTERN RECOMMENDATION TOP VIEW 1.75 MAX 0.25 С 0.19 0.10 С 1.50 0.25 0.10 1.25 SIDE VIEW **FRONT VIEW** NOTES: A. CONFORMS TO JEDEC MS-012, VARIATION AB, ISSUE C **B. ALL DIMENSIONS ARE IN MILLIMETERS** 0.50 0.25 × 45° C. DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS LAND PATTERN STANDARD: R0.10 GAGE D. SOIC127P600X145-14M PLANE R0.10 E. CONFORMS TO ASME Y14.5M, 2009 0.36 8° 0° 0.90 0.50 SEATING PLANE (1.04)DETAIL A SCALE 16 : 1 Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98AON13739G Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOIC14 PAGE 1 OF 1

ON Semiconductor and (1) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>