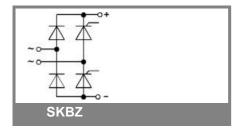


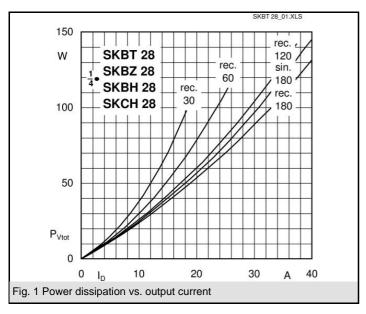
SEMIPONT® 1

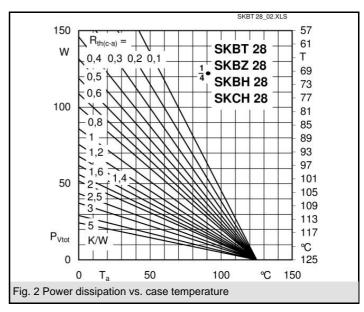
Controllable Bridge Rectifiers

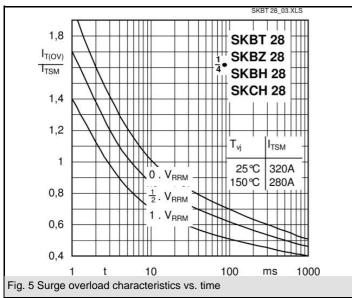
SKBZ 28

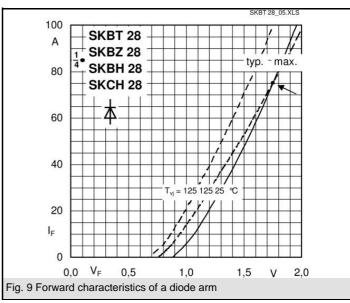
Features

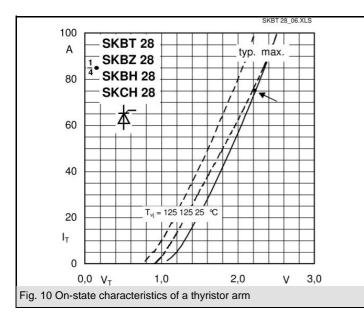

- · Sturdy isolated metal baseplate
- · Fast-on terminals with solder tips
- · Suitable for wave soldering
- · High surge current rating
- UL recognized, file no. E 63 532

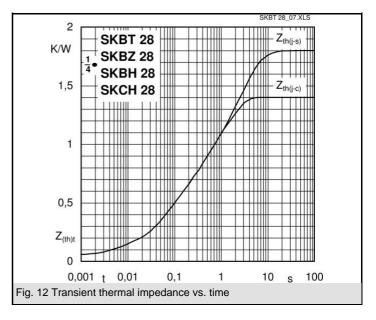

Typical Applications

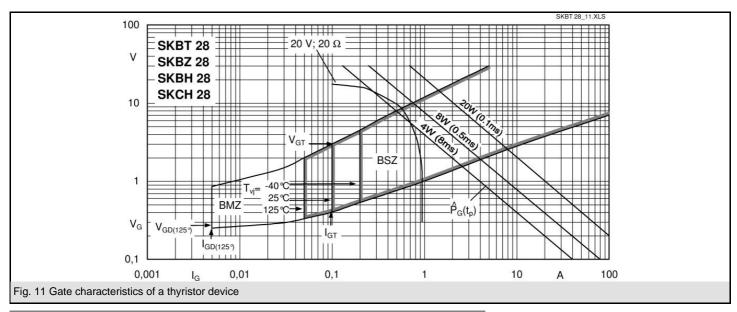

- Controllable single phase rectifierDC power supplies
- DC motor controllers
- · DC motor field controllers
- 1) Painted metal shield of minimum 250 x 250 x 1 mm: $R_{th(c-a)}$ = 1,85 K/W
- 2) Freely suspended or mounted on insulator

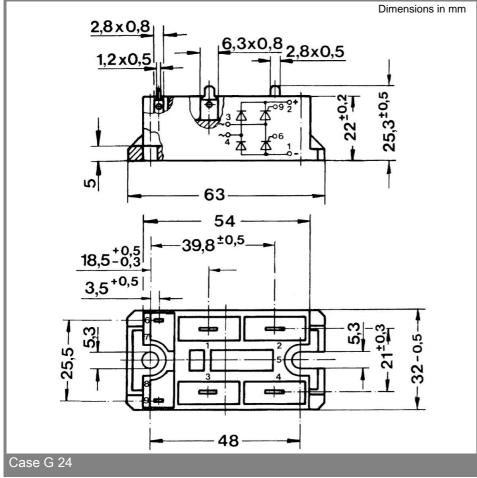

V _{RSM}	V_{RRM}, V_{DRM}	I _D = 28 A (full conduction)
V	V	(T _c = 89 °C)
400	400	SKBZ 28/04
600	600	SKBZ 28/06
800	800	SKBZ 28/08
1200	1200	SKBZ 28/12
1400	1400	SKBZ 28/14


Symbol	Conditions	Values	Units
I_D	T _c = 85 °C	30	Α
	T _a = 45 °C; chassis ¹⁾	13	Α
	T _a = 45 °C; P5A/100	15	Α
	T _a = 45 °C; P13A/125	16	Α
	T _a = 45 °C; P1A/120	23	Α
I _{TSM} , I _{FSM}	T _{vj} = 25 °C; 10 ms	320	Α
	$T_{vj} = 125 ^{\circ}\text{C}; 10 \text{ms}$	280	Α
i²t	$T_{vj} = 25 ^{\circ}\text{C}; 8,3 \dots 10 \text{ms}$	510	A²s
	T _{vj} = 125 °C; 8,3 10 ms	390	A²s
V_{T}	T _{vi} = 25 °C; I _T =75 A	max. 2,25	V
$V_{T(TO)}$	$T_{vj} = 125 ^{\circ}\text{C};$	max. 1	V
r _T	T _{vj} = 125 °C	max. 16	mΩ
$I_{DD}; I_{RD}$	T_{vj} = 125 °C; V_{DD} = V_{DRM} ; V_{RD} = V_{RRM}	max. 8	mA
t _{gd}	$T_{vj} = 25 \text{ °C}; I_G = 1 \text{ A}; di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_D = 0.67 \cdot V_{DRM}$	1	μs
(dv/dt) _{cr}	T _{vi} = 125 °C	max. 500	V/µs
(di/dt) _{cr}	T _{vi} = 125 °C; f = 50 Hz	max. 50	A/µs
t _q	$T_{vj} = 125 ^{\circ}\text{C}; \text{ typ.}$	80	μs
I _H	T_{vj} = 25 °C; typ. / max.	50 / 150	mA
IL	$T_{vj} = 25 ^{\circ}\text{C}; R_{G} = 33 \Omega$	100 / 300	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 2	V
I_{GT}	$T_{vi} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 100	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 3	mA
R _{th(j-c)}	per thyristor / diode	1,8	K/W
,	total	0,45	K/W
R _{th(c-s)}	total	0,1	K/W
$R_{th(j-a)}$	total ²⁾	15	K/W
T_{vj}		- 40 + 125	°C
T_{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	V
M _s	case to heatsink	2	Nm
M_t		n.a.	Nm
m		66	g
Case	SKBZ	G 24	









This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.