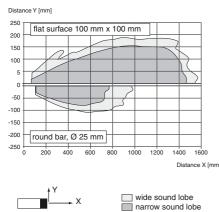


Model Number

UB1000-18GM75A-I-V15


Single head system

Features

- Analog output 4 mA ... 20 mA
- Measuring window adjustable
- Selectable sound lobe width
- **Program input**
- Synchronization options
- **Deactivation option**
- **Temperature compensation**
- Very small unusable area

Curves

Characteristic response curve

Technical data

General specifications	
Sensing range	70 1000 mm
Adjustment range	90 1000 mm
Unusable area	0 70 mm
Standard target plate	100 mm x 100 mm
Transducer frequency	approx. 255 kHz
Response delay	approx. 125 ms

Indicators/operating means

LED yellow	solid yellow: object in the evaluation range
	yellow, flashing: program function, object detected
LED red	solid red: Error

Electrical specifications

No-load supply current I₀ ≤ 45 mA

Input/Output

bi-directional Synchronization 0 level -U_B...+1 V 1 level: +4 V...+UB

input impedance: > 12 KOhm

synchronization pulse: ≥ 100 μs, synchronization interpulse

red, flashing: program function, object not detected

period: ≥ 2 ms

Synchronization frequency Common mode operation ≤ 40 Hz Multiplex operation ≤ 40/n

Input

Output

Input type 1 program input

lower evaluation limit A1: -U_B ... +1 V, upper evaluation limit A2: +4 V ... +UB

input impedance: > 4.7 k Ω , pulse duration: \geq 1 s

Output type 1 analog output 4 ... 20 mA

Resolution

Deviation of the characteristic curve ± 1 % of full-scale value Repeat accuracy ± 0.1 % of full-scale value Load impedance 0 ... 300 Ohm

Temperature influence ± 1.5 % of full-scale value

Ambient conditions

Ambient temperature -25 ... 70 °C (-13 ... 158 °F) -40 ... 85 °C (-40 ... 185 °F) Storage temperature

Mechanical specifications

Connection type Device connector M12 x 1 , 5-pin

Protection degree IP65

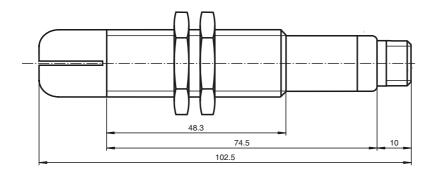
Material

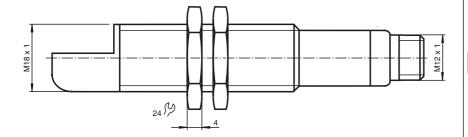
Housing brass, nickel-plated Transducer epoxy resin/hollow glass sphere mixture; polyurethane foam

IEC 60947-5-7:2003

Mass

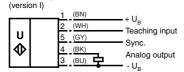
Compliance with standards and directives


Standard conformity


Standards	EN 60947-5-2:2007
	IEC 60947-5-2:2007
	EN 60047 E 7,0000

Approvals and certificates

UL approval	cULus Listed, General Purpose
CSA approval	cCSAus Listed, General Purpose


Dimensions

Electrical Connection

Standard symbol/Connections

Core colours in accordance with EN 60947-5-2

Pinout

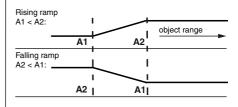
Connector V15

Synchronisation

The sensor features a synchronisation input for the suppression of mutual interference. If this input is not used, the sensor will operate using an internally generated clock rate. The synchronisation of multiple sensors can be realised as follows:

External synchronisation

The sensor can be synchronised by the external application of a square wave voltage. A synchronisation pulse at the synchronisation input starts a measuring cycle. The pulse must have a duration greater than $100 \, \mu s$. The measuring cycle starts with the falling edge of a synchronisation pulse. A low level $> 1 \, s$ or an open synchronisation input will result in the normal operation of the sensor. A high level at the synchronisation input disables the sensor. Two operating modes are available:


- Multiple sensors can be controlled by the same synchronisation signal. The sensors are synchronised.
- 2. The synchronisation pulses are sent cyclically to individual sensors. The sensors operate in multiplex mode.

Internal synchronisation

The synchronisation connections of up to 5 sensors capable of internal synchronisation are connected to one another. When power is applied, these sensors will operate in multiplex mode.

Additional Information

Programmed analogue output function

Accessories

UB-PROG2

Programming unit

OMH-04

Mounting aid for round steel ø 12 mm or sheet 1.5 mm \dots 3 mm

BF 18

Mounting flange, 18 mm

BF 18-F

Mounting flange with dead stop, 18 mm

BF 5-30

Universal mounting bracket for cylindrical sensors with a diameter of 5 ... 30 mm

UVW90-K18

Ultrasonic -deflector

V15-G-2M-PVC

Cable socket, M12, 5-pin, PVC cable

V15-W-2M-PUR

Cable socket, M12, 5-pin, PUR cable

The response delay increases according to the number of sensors to be synchronised. Synchronisation cannot be performed during TEACH-IN and vice versa. The sensors must be operated in an unsynchronised manner to teach the evaluation limits.

Note:

If the option for synchronisation is not used, the synchronisation input has to be connected to ground (0V) or the sensor has to be operated via a V1 cable connector (4-pin).

Adjusting the evaluation limits

The ultrasonic sensor features an analogue output with two teachable evaluation limits. These are set by applying the supply voltage $-U_B$ or $+U_B$ to the TEACH-IN input. The supply voltage must be applied to the TEACH-IN input for at least 1 s. LEDs indicate whether the sensor has recognised the target during the TEACH-IN procedure. The lower evaluation limit A1 is taught with $-U_B$, A2 with $+U_B$.

Two different output functions can be set:

- 1. Analogue value increases with rising distance to object (rising ramp)
- 2. Analogue value falls with rising distance to object (falling ramp)

Evaluation limits may only be specified within the first 5 minutes after Power on. To modify the evaluation limits later, the user may specify the desired values only after a new Power On.

TEACH-IN rising ramp (A2 > A1)

- Position object at lower evaluation limit
- TEACH-IN lower limit A1 with U_B
- Position object at upper evaluation limit
- TEACH-IN upper limit A2 with + U_B

TEACH-IN falling ramp (A1 > A2):

- Position object at lower evaluation limit
- TEACH-IN lower limit A2 with + UB
- Position object at upper evaluation limit
- TEACH-IN upper limit A1 with U_B

Default setting

A1: unusable area

A2: nominal sensing range

Mode of operation: rising ramp

LED Displays

Displays in dependence on operating mode	Red LED	Yellow LED
TEACH-IN evaluation limit		
Object detected	off	flashes
No object detected	flashes	off
Object uncertain (TEACH-IN invalid)	on	off
Normal mode (evaluation range)	off	on
Fault	on	previous state

Adjusting the sound cone characteristics:

The ultrasonic sensor enables two different shapes of the sound cone, a wide angle sound cone and a small angle sound cone.

1. Small angle sound cone

- switch off the power supply
- connect the Teach-input wire to -U_B
- switch on the power supply
- the red LED flashes once with a pause before the next.
- yellow LED: permanently on: indicates the presence of an object or disturbing object within the sensing range
- disconnect the Teach-input wire from -U_B and the changing is saved

2. Wide angle sound cone

- switch off the power supply
- connect the Teach-input wire with +UB
- switch on the power supply
- the red LED double-flashes with a long pause before the next.
- yellow LED: permanently on: indicates an object or disturbing object within the sensing range
- disconnect the Teach-input wire from +U_R and the changing is saved

