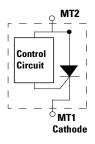
PLED Series



Agency Approvals

Agency	Agency File Number
71 °	E133083

Schematic Symbol

Description

PLED Series open LED protectors provide a switching electronic shunt path when an LED in an LED string fails as an open circuit. This ensures that the remaining string of LEDs will continue to function if a single LED does not.

PLED Series devices were designed to enable higher reliability in outdoor LED lighting applications such as street lighting, outdoor signage, aircraft runway lighting, roadside warning lights and other applictions.

Compatible with one, two and three watt LEDs that have a nominal 3V forward characteristic, PLED Series devices are available in two surface mount packages, the DO-214 and the Quad Flat Pak No-lead (QFN). The QFN's low profile, chip scale package (CSP) is ideal for dense board applications.

Features & Benefits

- Fast switching
- Automatically resets after power cycle
- Available in low profile, small footprint QFN and Standard DO214AA packages
- Compatible with industrial lighting environments
- Compatible with PWM frequencies up to 30 kHz
- RoHS-Compliant and Halogen-Free

Electrical Characteristics (All parameters are measured at T=25°C unless otherwise noted)

Part Number		V _{BR} Bre	akdown	V _{DRM} breakdown	I _H	I _s	I _T @V _T	V _τ @ I _τ = 1 Amp	Critical rate of rise dV/dt
	Marking	Volts		Volts	mAmps	mAmps	Amps	Volts	Volts
		Min	Max	Min	Min	Max	Max	Max	Max
PLED6Q12	PL6	6	16 6		9 5	100	1.0	1.2	250V/µs
PLED6S	PL6			В					
PLED9Q12	PL9	9	18	9					
PLED9S	PL9								
PLED13Q12	PL13	13	13 26	10	13	5 100			
PLED13S	PL13			13 20 13					
PLED18Q12	PL18	18	33 18	10					
PLED18S	PL18			10					

Thermal Considerations

Pack	cage	Symbol	Parameter	Value	Unit
QFN 3x3	DO-214	T,	Operating Junction Temperature Range	-40 to +150	°C
50214	T _s	Storage Temperature Range	-65 to +150	°C	
		R _{eJA}	Thermal Resistance: Junction to Ambient	DO-214: 90¹ DO-214: 40² QFN: 120¹ QFN: 60³	°C/W

Notes:

1) Standard FR-4 PCB with Copper Pads (Recommended Size)

2) Aluminum PCB Thickness: 1.6mm

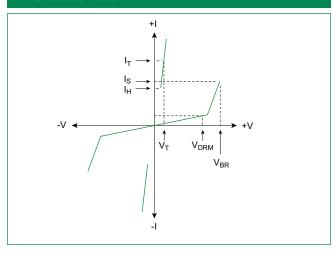
Grade: 1-2 W/mK Thermal Conductivity

Trace thickness: 2 oz

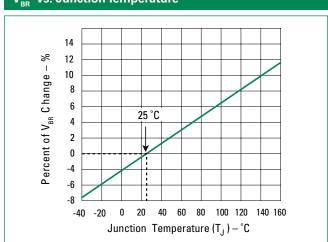
Insulation layer thickness: 215 um

Solder Pad Dimensions: 2.0mm x 2.8mm (Recommended Size)

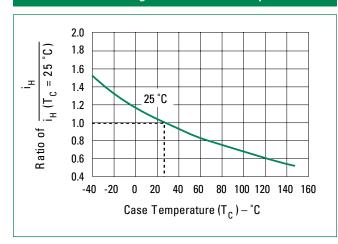
3) Aluminum PCB

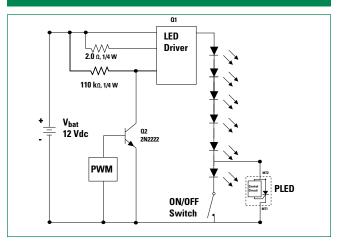

Thickness: 1.6mm

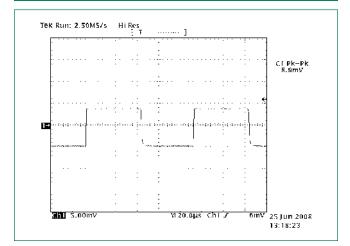
Grade: 1-2 W/mK Thermal Conductivity

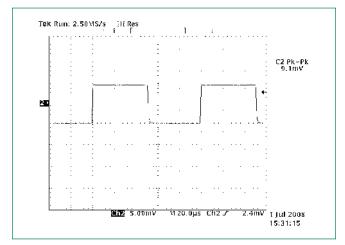

Trace thickness: 2 oz nsulation layer thickness: 60 um

Solder Pad Dimensions: 1.27mm x 2.54mm (Recommended Size)

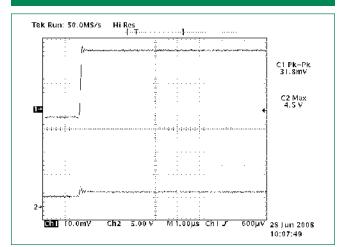

V-I Characteristics


$\mathbf{V}_{\mathtt{BR}}\ \mathbf{vs.}\ \mathbf{Junction}\ \mathbf{Temperature}$

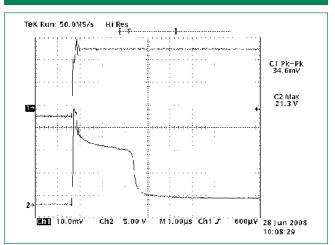

Normalized DC Holding Current vs. Case Temperature


LED Interference Test Circuit

6 LEDs in Series 50% Duty Cycle 10kHz

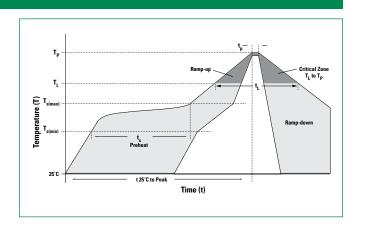

5 LEDs and 1 PLED in Series 50% Duty Cycle 10kHz

Note:


These two graphs show the current magnitude through the LED string with and without the PLED included. There is no noticeable effect on the LED current magnitude when the PLED is included in the circuit as compared to the LED current magnitude when the PLED is not in the circuit. (The conversion factor for the test measurement in the graphs above is 10mA/mV for the Pearson coil measurement, therefore, the current magnitude in the first figure is 10mA*8.9 = 89mA, while the second figure is 91mA.)

PLED in the Off-State 10kHz

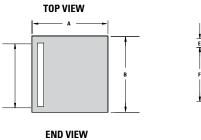
Channel 1: current through LEDs (318 mA) **Channel 2:** voltage across PLED device (4.5 V)

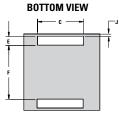

PLED device zeners and then turns fully on 10kHz

Channel 1: current through LEDs (346 mA) and PLED device once it is fully turned on 2.5 µsec later Channel 2: voltage across PLED device (21.3 V before PLED crowbars with 2 V drop)

Soldering Parameters

Reflow Cond	Pb – Free assembly		
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ram	np up rate (Liquidus Temp (T _L) to peak	3°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		3°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
Reflow	-Temperature (t _L)	60 – 150 seconds	
Peak Temperature (T _P)		260 ^{+0/-5} °C	
Time within	5°C of actual peak Temperature (t_p)	30 seconds	
Ramp-down	6°C/second max		
Time 25°C to	8 minutes max		
Do not exce	260°C		


Physical Specifications

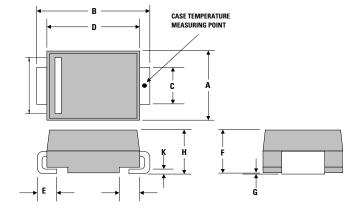

Terminal Material	Copper Alloy
Terminal Finish	100% Matte Tin Plated
Body Material	UL Recognized epoxy meeting flammability classification 94V-0

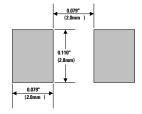
Environmental Specifications

High Temperature Voltage Blocking	MILSTD-750: Method 1040, Condition A 80% min V _{DRM} (VAC-peak), 150°C, 504 hours
Temperature Cycling	MILSTD-750: Method 1051 -65°C to 150°C, 15-minute dwell, 100 cycles
Biased Temperature & Humidity	EIA/JEDEC: JESD22-A101 52VDC, 85°C, 85%RH, 1008 hours
High Temperature Storage	MIL-STD-750: Method 1031 150°C, 1008 hours
Low Temperature Storage	-65°C, 1008 hours
Thermal Shock	MILSTD-750: Method 1056 0°C to 100°C, 5-minute dwell, 10-second transfer, 10 cycles
Resistance to Solder Heat	MIL-STD-750: Method 2031 260°C, 10 seconds

Dimensions - QFN (3x3) Package

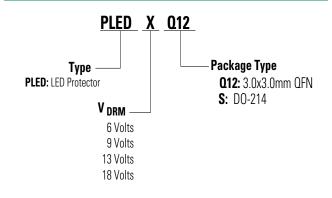
SIDE VIEW



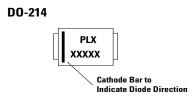

Recommended solder pad layout (Reference Only)

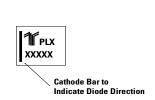
2.15mm

Dimensions - DO-214 AA Package



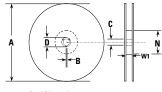
Dimensions	Inc	hes	Millimeters		
Difficusions	Min	Max	Min	Max	
Α	0.130	0.156	3.30	3.95	
В	0.201	0.220	5.10	5.60	
С	0.077	0.087	1.95	2.20	
D	0.159	0.181	4.05	4.60	
E	0.030	0.063	0.75	1.60	
F	0.075	0.096	1.90	2.45	
G	0.002	0.008	0.05	0.20	
Н	0.077	0.104	1.95	2.65	
K	0.006	0.016	0.15	0.41	

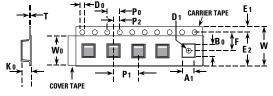

Recommended solder pad layout (Reference Only)


Part Numbering System

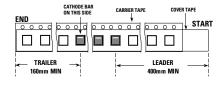
Part Marking System

QFN



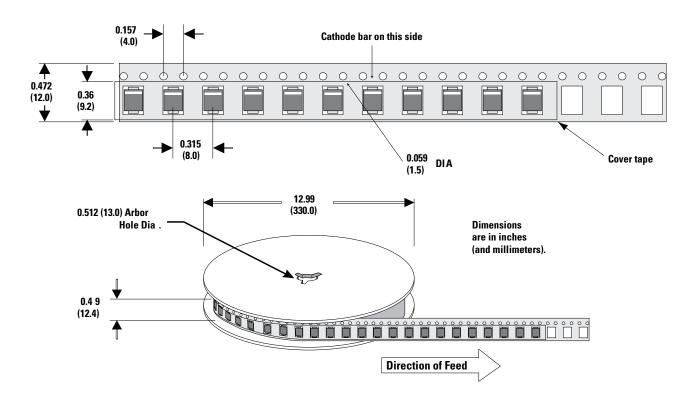

Packaging

Package	Description Packaging Quantity		Industry Standard	
Q12	QFN 3x3	5000	EIA-481-1	
S	DO-214	2500	EIA-481-1	


Tape and Reel Specification - QFN (3x3)

Reel Dimension

Tape Dimension Items



Leader and Trailer Dimension of the Ttape

Combala	Description	Inc	hes	Millimeters	
Symbols	Description	Min	Max	Min	Max
Α	Reel Diameter	N/A	12.992	N/A	330.0
В	Drive Spoke Width	0.059	N/A	1.50	N/A
С	Arbor Hole Diameter	0.504	0.531	12.80	13.50
D	Drive Spoke Diameter	0.795	N/A	20.20	N/A
N	Hub Diameter	1.969	N/A	50.00	N/A
W1	Reel Inner Width at Hub	0.488	0.567	12.40	14.40
A0	Pocket Width at bottom	0.126	0.134	3.20	3.40
В0	Pocket Length at bottom	0.126	0.134	3.20	3.40
D0	Feed Hole Diameter	0.059	0.063	1.50	1.60
D1	Pocket Hole Diameter	0.059	N/A	1.50	N/A
E1	Feed hole Position 1	0.065	0.073	1.65	1.85
E2	Feed hole Position 2	0.400	0.408	10.15	10.35
F	Feed hole center-Pocket hole	0.215	0.219	5.45	5.55
K0	Pocket Depth	0.039	0.051	1.00	1.30
P0	Feed hole Pitch	0.153	0.161	3.90	4.10
P1	Component Spacing	0.311	0.319	7.90	8.10
P2	Feed hole center-Pocket hole	0.077	0.081	1.90	2.06
Т	Carrier Tape Thickness	0.010	0.014	0.25	0.35
W	Embossed Carrier Tape Width	0.453	0.484	11.50	12.30
W0	Cover Tape Width	0.358	0.366	9.10	9.30

DO-214 Embossed Carrier Reel Pack (RP)

Meets all EIA-481-1 Standards

