



- IT & Medical Safety Approvals
- Industry Standard 2.0" x 4.0 x 1.25" Format
- < 0.5W Standby Power
- Convection & Forced Cooled Ratings
- -40° C to +70° C Operation
- Class I & Class II Installations
- Low Earth Leakage Current
- Class B Emissions
- 3 Year Warranty

The ECS130 Series has been designed to minimise the no load power consumption (<0.5 W) and maximise efficiency in order to facilitate equipment design to the latest environmental legislation.

Approved for Class I and Class II applications, the ECS130 range of single output AC-DC, 130 W power supplies feature high power density in an industry standard 2" x 4" (51.0 mm x 102.0 mm) footprint. The 1.25" (31.8 mm) high, 1U compatible high-density power supplies meet EN55032 Level B emissions with low earth leakage currents of 100 µA at 115 VAC or 215 µA at 230 VAC. Making these switchers ideal for industrial, IT and medical applications.

The ECS130 series has single output versions from 12 V to 48 VDC, adjustable by  $\pm 10\%$ . They are dual-fused for compliance with IEC60601-1 and efficiency is 88% typical, so minimal excess heat is generated. The ECS130 require only 10 CFM of cooling to delivers a full 130 W of power up to +50 °C and operates at up to +70 °C with derating or equally can supply 100 W when convection cooled up to +50 °C with operation to +70 °C with derating.

#### Models and Ratings

| Output Power           |                   | Output Voltago | Output Current |                           |  |
|------------------------|-------------------|----------------|----------------|---------------------------|--|
| Forced Cooled (10 CFM) | Convection-cooled |                |                |                           |  |
| 130 W                  | 100 W             | 12.0 VDC       | 10.9 A         | ECS130US12 <sup>†</sup> ^ |  |
| 130 W                  | 100 W             | 15.0 VDC       | 8.7 A          | ECS130US15 <sup>†</sup> ^ |  |
| 130 W                  | 100 W             | 18.0 VDC       | 7.3 A          | ECS130US18                |  |
| 130 W                  | 100 W             | 24.0 VDC       | 5.4 A          | ECS130US24 <sup>†</sup> ^ |  |
| 130 W                  | 100 W             | 28.0 VDC       | 4.7 A          | ECS130US28†^              |  |
| 130 W                  | 100 W             | 48.0 VDC       | 2.7 A          | ECS130US48 <sup>†^</sup>  |  |

1. For covered versions, add suffix '-C' to model number or order part no. ECM40/60 COVER for standalone cover, see derating curve. The cover is not suitable for Class II installations. '-C'.

## **Input Characteristics**

| Characteristic            | Minimum          | Typical                                   | Maximum | Units | Notes & Conditions                                   |  |  |
|---------------------------|------------------|-------------------------------------------|---------|-------|------------------------------------------------------|--|--|
| Input Voltage - Operating | 80               | 115/230                                   | 264     | VAC   | See derating curve. See fig 1.                       |  |  |
| Input Frequency           | 47               | 50/60                                     | 63      | Hz    |                                                      |  |  |
| Power Factor              |                  | >0.5                                      |         |       | 230 VAC, 100% load<br>EN61000-3-2 Class A Compliant. |  |  |
| Input Current - No Load   |                  | 0.03                                      |         | A     |                                                      |  |  |
| Input Current - Full Load |                  | 1.9/1.1                                   |         | A     | 115/230 VAC                                          |  |  |
| Inrush Current            |                  |                                           | 40      | A     | 230 VAC cold start 25 °C                             |  |  |
| No Load Input Power       |                  |                                           | 0.5     | W     |                                                      |  |  |
| Earth Leakage Current     |                  |                                           | 260     | μA    | 264 VAC/60 Hz (Max.)                                 |  |  |
| Input Protection          | T3.15 A/250 V in | T3.15 A/250 V internal fuse in both lines |         |       |                                                      |  |  |

## **Output Characteristics**

| Characteristic                | Minimum | Typical | Maximum | Units   | Notes & Conditions                                                       |
|-------------------------------|---------|---------|---------|---------|--------------------------------------------------------------------------|
| Output Voltage - V1           | 12      |         | 48      | VDC     | See Models and Ratings table                                             |
| Initial Set Accuracy          |         |         | ±1      | %       | 50% load, 115/230 VAC                                                    |
| Output Voltage Adjustment -V1 | ±10     |         |         | %       | Via potentiometer. See mech. details,                                    |
| Minimum Load                  | 0       |         |         | A       |                                                                          |
| Start Up Delay                |         | 1       |         | s       | 115/230 VAC full load                                                    |
| Hold Up Time                  |         | 18      |         | ms      |                                                                          |
| Drift                         |         |         | ±0.2    | %       | After 20 min warm up                                                     |
| Line Regulation               |         |         | ±0.5    | %       | 90-264 VAC                                                               |
| Load Regulation               |         |         |         | %       | 0-100% load                                                              |
| Transient Response - V1       |         |         | 4       | %       | Recovery within 1% in less than 500 µs for a 50-75% and 75-50% load step |
| Over/Undershoot - V1          |         | 5       |         | %       |                                                                          |
| Ripple & Noise - V1           |         |         | 1       | % pk-pk | 20 MHz bandwidth, 12V Models 1.5% max                                    |
| Overvoltage Protection - V1   | 115     |         | 140     | %       | Vnom DC. Output 1, recycle input to reset                                |
| Overload Protection - V1      | 110     |         | 160     | % I nom | See fig. 2. Trip and Restart                                             |
| Short Circuit Protection - V1 |         |         |         |         | Continuous                                                               |
| Temperature Coefficient       |         |         | 0.05    | %/°C    |                                                                          |
| Overtemperature Protection    |         |         |         | °C      | Not fitted                                                               |

#### Input Voltage Derating Curve





#### **Output Overload Characteristic**



Figure 2 12V Models

### **General Specifications**

| Characteristic             | Minimum | Typical     | Maximum | Units   | Notes & Conditions                   |
|----------------------------|---------|-------------|---------|---------|--------------------------------------|
| Efficiency                 |         | 88          |         | %       | 230 VAC Full load (see fig.3-5)      |
| Isolation: Input to Output | 4000    |             |         | VAC     |                                      |
| Input to Ground            | 1500    |             |         | VAC     |                                      |
| Output to Ground           | 500     |             |         | VDC     |                                      |
| Switching Frequency        |         | 65          |         | kHz     |                                      |
| Power Density              |         |             | 13      | W/in³   |                                      |
| Mean Time Between Failure  |         | 715         |         | kHrs    | MIL-HDBK-217F, Notice 2<br>+25 °C GB |
| Weight: Open Frame         |         | 0.40 (0.18) |         | lb (kg) |                                      |
| Covered Unit               |         | 0.80 (0.36) |         | lb (kg) |                                      |

#### Efficiency Versus Load



#### Environmental

| Characteristic        | Minimum | Typical | Maximum | Units | Notes & Conditions                                                                                                                            |
|-----------------------|---------|---------|---------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Operating Temperature | -40     |         | +70     | °C    | See derating curve, fig. 6                                                                                                                    |
| Storage Temperature   | -40     |         | +85     | °C    |                                                                                                                                               |
| Cooling               | 10      |         |         | CFM   | Forced Cooled >100 W                                                                                                                          |
| Humidity              | 5       |         | 95      | %RH   | Non-condensing                                                                                                                                |
| Operating Altitude    |         |         | 5000    | m     |                                                                                                                                               |
| Shock                 |         |         |         |       | $\pm 3 \times 30g$ shocks in each plane, total 18<br>shocks. $30g = 11ms$ (+/-0.5msec), half sine.<br>Conforms to EN60068-2-27 & EN60068-2-47 |
| Vibration             |         |         |         |       | Single axis 10 - 500 Hz at 2g sweep and<br>endurance at resonance in all 3 planes.<br>Conforms to EN60068-2-6                                 |

## **Thermal Derating Curve**



Figure 6

# Electromagnetic Compatibility - Emissions

| Phenomenon           | Standard    | Test Level | Criteria | Notes & Conditions |
|----------------------|-------------|------------|----------|--------------------|
| Conducted            | EN55011/32  | Class B    |          |                    |
| Radiated             | EN55011/32  | Class A    |          |                    |
| Voltage Fluctuations | EN61000-3-3 |            |          |                    |

### Electromagnetic Compatibility - Immunity

| Phenomenon             | Standard             | Test Level                            | Criteria | Notes & Conditions           |
|------------------------|----------------------|---------------------------------------|----------|------------------------------|
| Low Voltage PSU EMC    | EN61204-3            | High severity level                   | as below |                              |
| Harmonic Current       | EN61000-3-2          | Class A                               |          |                              |
| ESD Immunity           | EN61000-4-2          | ±6 kV Contact<br>±15 kV Air Discharge | A        |                              |
| Radiated               | EN61000-4-3          | 3                                     | А        |                              |
| EFT                    | EN61000-4-4          | 3                                     | A        |                              |
| Surges                 | EN61000 4 5          | Installation class 3                  | ^        |                              |
| Surges                 | EN01000-4-5          | Installation class 5                  | A        |                              |
| Conducted              | EN61000-4-6          | 3                                     | А        |                              |
|                        | EN55024<br>(100 VAC) | Dip >95% (0 VAC), 8.3ms               | В        |                              |
|                        |                      | Dip 30% (70 VAC), 416ms               | В        |                              |
|                        |                      | Dip >95% (0 VAC), 4160ms              | В        |                              |
|                        | EN55024<br>(240 VAC) | Dip >95% (0 VAC), 10.0ms              | В        |                              |
|                        |                      | Dip 30% (168 VAC), 500ms              | В        |                              |
|                        |                      | Dip >95% (0 VAC), 5000ms              | В        |                              |
| Dipa and Interruptions |                      | Dip >95% (0 VAC), 10.0ms              | А        | Derate Output Power to 100 W |
| Dips and interruptions | EN60601-1-2          | Dip 60% (40 VAC), 100ms               | A        | Derate Output Power to 12 W  |
|                        | (100 VAC)            | Dip 30% (70 VAC), 500ms               | А        | Derate Output Power to 100 W |
|                        |                      | Dip >95% (0 VAC), 5000ms              | В        |                              |
|                        |                      | Dip >95% (0 VAC), 10.0ms              | А        |                              |
|                        | EN60601-1-2          | Dip 60% (96 VAC), 100ms               | А        |                              |
|                        | (240 VAC)            | Dip 30% (168 VAC), 500ms              | А        |                              |
|                        |                      | Dip >95% (0 VAC), 5000ms              | В        |                              |

## Safety Agency Approvals

| Safety Agency | Safety Standard                           | Category               |
|---------------|-------------------------------------------|------------------------|
| CB Report     | IEC60950-1:2005 Ed 2 / IEC62368-1:2014    | Information Technology |
| UL            | UL 62368-1 & CAN/CSA C22.2 No. 62368-1-14 | Information Technology |
| TUV           | EN62368-1:2014/A11:2017                   | Information Technology |
| CE            | LVD                                       |                        |

| Safety Agency | Safety Standard                                     | Category |
|---------------|-----------------------------------------------------|----------|
| CB Report     | IEC60601-1 Ed 3 Including Risk Management           | Medical  |
| UL            | ANSI/AAMI ES60601-1:2005 & CSA C22.2, No.60601-1:08 | Medical  |
| TUV           | EN60601-1/A12:2006                                  | Medical  |

|                      | Category                               |                 |
|----------------------|----------------------------------------|-----------------|
| Primary to Secondary | 2 x MOPP (Means of Patient Protection) |                 |
| Primary to Earth     | 1 x MOPP (Means of Patient Protection) | IEC60601-1 Ed 3 |
| Secondary to Earth   | 1 x MOPP (Means of Patient Protection) |                 |

| Equipment Protection Class | Safety Standard                                          | Notes & Conditions                                           |
|----------------------------|----------------------------------------------------------|--------------------------------------------------------------|
| Class I & Class II         | IEC60950-1:2005 Ed 2 / IEC62368-1:2014 & IEC60601-1 Ed 2 | See safety agency conditions of acceptibility<br>for details |

#### **Mechanical Details**



| Input Connector J1 |                     |   | Output Connector J2 |     |  |
|--------------------|---------------------|---|---------------------|-----|--|
| Molex PN           | Molex PN 09-65-2038 |   | Molex PN 09-65-2048 |     |  |
| Pin 1              | Line                | 1 | Pin 1               | +V1 |  |
| Pin 2              | Neutral             | 1 | Pin 2               | +V1 |  |
| 0.25" Faston       | Earth               | 1 | Pin 3               | RTN |  |
|                    |                     | • | Pin 4               | RTN |  |

J1 mates with Molex Housing PN 09-50-1031, J2 mates with Molex Housing PN 09-50-1041 and both with Molex Series 5194 Crimp Terminals

#### Notes

1. All dimensions in inches (mm).

Tolerance .xx =  $\pm 0.02$  (0.50); .xxx =  $\pm 0.01$  (0.25) 2. Weight: 0.386 lbs (175 g)

#### Mechanical Details - Covered (-C)



#### Notes

1. All dimensions in inches (mm). Tolerance .xx =  $\pm 0.02$  (0.50); .xxx =  $\pm 0.01$  (0.25)

2. Weight: 0.8 lbs (360 g)

#### **Thermal Considerations**

In order to ensure safe operation of the PSU in the end-use equipment, the temperature of the components listed in the table below must not be exceeded. Temperature should be monitored using K type thermocouples placed on the hottest part of the component (out of any direct air flow). See Mechanical Details for component locations.

| Temperature Measurements (Ambient 50 °C) |                    |
|------------------------------------------|--------------------|
| Component                                | Max Temperature °C |
| T1 Coil                                  | 120 ° C            |
| Q1 Body                                  | 120 ° C            |
| C5                                       | 105 ° C            |
| C4                                       | 105 ° C            |

#### Service Life

The estimated service life of the ECS130 Series is determined by the cooling arrangements and load conditions experienced in the end application. Due to the uncertain nature of the end application this estimated service life is based on the actual measured temperature of a key capacitor within the product when installed in the end application. In order to ensure safe operation of the PSU in the most adverse conditions permitted in the end-use equipment, the temperature of the components listed in the table below must not be exceeded.

The graph below expresses the estimated lifetime for a given component temperature and assumes continuous operation at this temperature.

#### Estimated Service Life vs Component Temperature

