Data Sheet

Description

The ASSR-14XX Series consists of an AIGaAs infrared light-emitting diode (LED) input stage optically coupled to a high-voltage output detector circuit. The detector consists of a high-speed photovoltaic diode array and driver circuitry to switch on/off two discrete high voltage MOSFETs. The relay turns on (contact closes) with a minimum input current of 3 mA through the input LED. The relay turns off (contact opens) with an input voltage of 0.8 V or less.

The single channel configurations, ASSR-1410 and ASSR-1411, are equivalent to 1 Form A Electromechanical Relays (EMR), and the dual channel configuration, ASSR-1420, is equivalent to 2 Form A EMR. They are available in 4 -pin SO, 6-pin DIP, 8-pin DIP and Gull Wing Surface Mount for DIP packages. Their electrical and switching characteristics are specified over the temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. They are used for general purpose switching of signals and low power AC/DC loads.

ASSR-1411 enables AC/DC and DC-only output connections. For DC-only connection, the output current, lo, increases to 1.2 A and the on-resistance, $\mathrm{R}_{(\mathrm{ON})}$ reduces to 0.5Ω.

Functional Diagram

Features

- Compact Solid-State Bi-directional Signal Switch
- Single and Dual Channel Normally-off Single-Pole-Single-Throw (SPST) Relay
- 60V Output Withstand Voltage
- 0.6 A or 1.2 A Current Rating
(See Schematic for ASSR-1411 Connection A and B)
- Low Input Current: CMOS Compatibility
- Low On-Resistance:
0.2Ω Typical for DC-only, 0.7Ω Typical for AC/DC
- Very High Output Off-state Impedance: 10 Teraohms Typical
- High Speed Switching: 0.1 ms (Ton), 0.02 ms (Toff) Typical
- High Transient Immunity: > $1 \mathrm{kV} / \mu \mathrm{s}$
- High Input-to-Output Insulation Voltage
(Safety and Regulatory Approvals)
- 3750 Vrms for 1 min per UL1577
- CSA Component Acceptance

Applications

- Telecommunication Switching
- Data Communications
- Industrial Controls
- Medical
- Security
- EMR / Reed Relay Replacement

Ordering Information

ASSR-xxxx is UL Recognized with 3750 Vrms for 1 minute per UL1577 and is approved under CSA Component Acceptance Notice \#5, File CA 88324.

Part number	Option	Package	Surface Mount	Gull Wing	$\begin{gathered} \text { Tape } \\ \text { \& Reel } \end{gathered}$	Quantity
	RoHS Compliant					
ASSR-1410	-003E	S0-4	X			100 units per tube
	-503E		X		X	1500 units per reel
ASSR-1411	-001E	300 mil DIP-6				50 units per tube
	-301E		X	X		50 units per tube
	-501E		X	X	X	1000 units per reel
ASSR-1420	-002E	300 mil DIP-8				50 units per tube
	-302E		x	X		50 units per tube
	-502E		X	X	X	1000 units per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:
ASSR-1411-501E to order product of 300mil DIP-6 Gull Wing Surface Mount package in Tape and Reel packaging and RoHS Compliant.

Example 2:

ASSR-1420-002E to order product of 300 mil DIP-8 package in tube packaging and RoHS Compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Schematic

ASSR-1410

ASSR-1411 Connection A

ASSR-1420

Package Outline Drawings

ASSR-1410 4-Pin Small Outline Package

DIMENSIONS IN MILLIMETERS AND [INCHES] OPTION NUMBER 500 AND UL RECOGNITION NOT MARKED

ASSR-1411 6-Pin DIP Package

DIMENSIONS IN MILLIMETERS AND (INCHES).

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

ASSR-1420 8-Pin DIP Package

DIMENSIONS IN MILLIMETERS AND (INCHES). OPTION NUMBERS 300 AND 500 NOT MARKED.

ASSR-1420 8-Pin DIP Package with Gull Wing Surface Mount Option 300

Lead Free IR Profile

Non-halide flux should be used.

Regulatory Information

The ASSR-1410, ASSR-1411 and ASSR-1420 are approved by the following organizations:
UL
Approval under UL 1577, component recognition program up to $\mathrm{V}_{\text {ISO }}=3750 \mathrm{~V}_{\text {RMS }}$

CSA

Approval under CSA Component Acceptance Notice \#5.

Insulation and Safety Related Specifications

Parameter	Symbol	ASSR-1410	ASSR-1411 ASSR-1420	Units	Conditions
Minimum External Air Gap (Clearance)	L(101)	4.9	7.1	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	$\mathrm{L}(102)$	4.9	7.4	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)	0.08	0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.	
Tracking Resistance (Comparative Tracking Index)	CTI	175	175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group (DIN VDE0109)	IIIa	IIIa		Material Group (DIN VDE 0109)	

Parameter		Symbol	Min.	Max.	Units	Note
Storage Temperature		TS	-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature		T_{A}	-40	85	${ }^{\circ} \mathrm{C}$	
Junction Temperature		TJ		125	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temperature			260	${ }^{\circ} \mathrm{C}$	
	Time			10	s	
Input Current	Average	I_{F}		25	mA	
	Surge			50		
	Transient			1000		
Reversed Input Voltage		$V_{\text {R }}$		5	V	
Input Power Dissipation	ASSR-1410	$\mathrm{PIN}^{\text {N }}$		40	mW	
	ASSR-1411	$\mathrm{PIN}_{\text {IN }}$		40	mW	
	ASSR-1420	$\mathrm{PIN}_{\text {IN }}$		80	mW	
Output Power Dissipation	ASSR-1410	P_{0}		360	mW	
	ASSR-1411	P_{0}		720	mW	
	ASSR-1420	P_{0}		720	mW	
Average Output Current$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~T}_{\mathrm{C}} \leq 100^{\circ} \mathrm{C}\right)$		I_{0}		0.6	A	1
	ASSR-1411 Connection B	I_{0}		1.2	A	
Output Voltage ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$		V_{0}	-60	60	V	2
	ASSR-1411 Connection B	V_{0}	0	60	V	
Solder Reflow Temperature Profile		See Lead	Profile			

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Input Current (ON)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	3	20	mA	3
Input Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(0 \mathrm{FF})}$	0	0.8	V	
Operating Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

Package Characteristics

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions	Note
Input-Output Momentary With- stand Voltage	V_{150}	3750			Vrms	$\mathrm{RH} \leq 50 \%$, $\mathrm{t}=1 \mathrm{~min}$	4,5
Input-Output Resistance	R_{1-0}		10^{12}		Ω	$\mathrm{~V}_{1-0}=500 \mathrm{Vdc}$	
Input-Output Capacitance	ASSR-1410	0.4	pF	$\mathrm{f}=1 \mathrm{MHz} ;$	4		
	C_{1-0}			$\mathrm{~V}_{1-0}=0 \mathrm{Vdc}$			

Electrical Specifications (DC)

Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$ to 10 mA , unless otherwise specified.

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions	Fig.	Note
Output Withstand Voltage	\| $\mathrm{V}_{0(\text { OFF) }} \mid$	60	65		V	$\begin{aligned} & V_{F}=0.8 \mathrm{~V}, \mathrm{I}_{0}=250 \mu \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		
		55			V	$V_{F}=0.8 \mathrm{~V}, \mathrm{l}_{0}=250 \mu \mathrm{~A}$	5	
Output Leakage Current	$\mathrm{I}_{0(0 \mathrm{FF})}$		0.5	100	$n \mathrm{n}$	$\mathrm{V}_{\mathrm{F}}=0.8 \mathrm{~V}, \mathrm{~V}_{0}=60 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
				1	$\mu \mathrm{A}$	$V_{F}=0.8 \mathrm{~V}, \mathrm{~V}_{0}=60 \mathrm{~V}$	6	
Output Offset Voltage	$\left\|V_{(0 S)}\right\|$		1		$\mu \mathrm{V}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{0}=0 \mathrm{~mA}$		
Input Reverse Breakdown Voltage	$V_{\text {R }}$	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
Input Forward Voltage	V_{F}	1.1	1.3	1.65	V	$\mathrm{If}_{\mathrm{F}}=5 \mathrm{~mA}$	7,8	
Output On-resistance	$\mathrm{R}_{(\mathrm{ON})}$		0.7	1	Ω	$\begin{aligned} & I_{F}=5 \mathrm{~mA}, \mathrm{I}_{0}=600 \mathrm{~mA} \\ & \text { Pulse } \leq 30 \mathrm{~ms}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	9,10	6
	ASSR-1411 Connection B $\mathrm{R}_{(\mathrm{ON})}$		0.2	0.5	Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1.2 \mathrm{~A}, \\ & \text { Pulse } \leq 30 \mathrm{~ms}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$		

Switching Specifications (AC)

Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$ to 10 mA , unless otherwise specified.

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions	Fig.	Note
Turn On Time	Ton		0.25	0.5	ms	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{0}=600 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 11, \\ & 15 \end{aligned}$	
				1.0	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{0}=600 \mathrm{~mA}$	12	
			0.1	0.25	ms	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{0}=600 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		
				0.5	ms	$\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{0}=600 \mathrm{~mA}$		
Turn Off Time	Toff		0.02	0.2	ms	$\begin{aligned} & I_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{0}=600 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 13 \\ & 15 \end{aligned}$	
				0.5	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{l}_{0}=600 \mathrm{~mA}$	14	
			0.02	0.15	ms	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{0}=600 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		
				0.2	ms	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{0}=600 \mathrm{~mA}$		
Output Transient Rejection	dV ${ }_{0} / \mathrm{dt}$	1	7		kV/ $\mu \mathrm{s}$	$\Delta V_{0}=60 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	16	
Input-Output Transient Rejection	$d V_{1-0} / \mathrm{dt}$	1	≥ 10		kV/ $/ \mathrm{s}$	$\Delta V_{1-0}=1000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	17	

Notes:

1. For derating, refer to Figure $1,2,3$ and 4 .
2. The voltage across the output terminals of the relay should not exceed this rated withstand voltage. Over-voltage protection circuits should be added in some applications to protect against over-voltage transients.
3. Threshold to switch device is $\mathrm{I}_{\mathrm{F}} \geq 0.5 \mathrm{~mA}$, however, for qualified device performance over temperature range, it is recommended to operate at $I_{F}=5 \mathrm{~mA}$.
4. Device is considered as a two terminal device:

ASSR-1410 - pin 1, 2 shorted and pin 3, 4 shorted.
ASSR-1411 - pin 1, 2, 3 shorted and pin 4, 5, 6 shorted.
ASSR-1420 - pin 1, 2, 3, 4 shorted and pin 5, 6, 7, 8 shorted.
5. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equipment level safety specification, or Avago Technologies Application Note 1074, "Optocoupler Input-Output Endurance Voltage."

Applications Information

On-Resistance and Derating Curves

The Output On-Resistance, $\mathrm{R}_{(\mathrm{ON})}$, specified in this data sheet, is the resistance measured across the output contact when a pulsed current signal ($\mathrm{lo}=0.6 \mathrm{~A}$) is applied to the output pins. The use of a pulsed signal (\leq 30 ms) implies that each junction temperature is equal to the ambient and case temperatures. The steady-state resistance, Rss, on the other hand, is the value of the resistance measured across the output contact when a DC current signal is applied to the output pins for a duration sufficient to reach thermal equilibrium. Rss includes the effects of the temperature rise in the device.

Derating curves are shown in Figures 1, 2, 3 and 4, specifying the maximum output current allowable for a given ambient temperature. The maximum allowable output current and power dissipation are related by the expression Rss=Po(max)/(Io(max)) ${ }^{2}$ from which Rss can be calculated. Staying within the safe area assures that the steady state MOSFET junction temperature remains less than $125^{\circ} \mathrm{C}$.

Turn On Time and Turn Off Time Variation

The ASSR-14XX Series exhibits a very fast turn on and turn off time. Both the turn on and turn off time can be adjusted by choosing proper forward current as depicted in Figures 11 and 13. The changes of the turn on and turn off time with ambient temperature are also shown in Figures 12 and 14.

Figure 1. Maximum Output Current Rating vs Ambient Temperature (ASSR-1410-003E)

Figure 4. Maximum Output Current Rating vs Ambient Temperature (ASSR-1420-002E)

Figure 2. Maximum Output Current Rating vs Ambient Temperature (ASSR-1411-001E)

Figure 5. Normalized Typical Output Withstand Voltage vs. Temperature

Figure 3. Maximum Output Current Rating vs Ambient Temperature (ASSR-1411-001E DC Connection)

Figure 6. Typical Output Leakage Current vs. Temperature

Figure 7. Typical Forward Voltage vs. Temperature

Figure 10. Typical Output Current vs. Output Voltage

Figure 13. Typical Turn Off Time vs. Input Current

Figure 8. Typical Forward Current vs. Forward Voltage

Figure 11. Typical Turn On Time vs. Input Current

Figure 14. Typical Turn Off Time vs. Temperature

Figure 9. Typical On Resistance vs.Temperature

Figure 12. Typical Turn On Time vs. Temperature

Figure 15. Switching Test circuit for $\mathrm{t}_{\mathrm{ON}}, \mathrm{t}_{\mathbf{0 F F}}$

$\frac{d V_{0}}{d t}=\frac{(0.8) V_{\text {PEAK }}}{\mathrm{t}_{\mathrm{R}}} O R \frac{(0.8) \mathrm{V}_{\text {PEAK }}}{\mathrm{t}_{\mathrm{F}}}$
OVER SHOOT ON $\mathrm{V}_{\text {Peak }}$ IS TO BE 10%
Figure 16. Output Transient Rejection Test Circuit

Figure 17. Input - Output Transient Rejection Test Circuit

