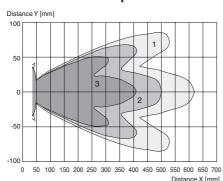


Model Number

UB300-18GM40-I-V1


Single head system

Features

- Short design, 40 mm
- Function indicators visible from all directions
- Analog output 4 mA ... 20 mA
- Measuring window adjustable
- · Program input
- Temperature compensation

Diagrams

Characteristic response curve

Curve 1: flat surface 100 mm x 100 mm Curve 2: flat surface 10 mm x 10 mm Curve 3: round bar, Ø 25 mm

Technical data

deneral specifications	
Sensing range	35 300 mm
Adjustment range	50 300 mm
Unusable area	0 35 mm
Standard target plate	100 mm x 100 mn
Transducer frequency	approx. 390 kHz
Response delay	approx 50 ms

Indicators/operating means

LED green Power on
LED yellow solid yellow: object in the evaluation range yellow, flashing: program function, object detected

LED red solid red: Error red, flashing: program function, object not detected

Electrical specifications

Operating voltage U_B 10 ... 30 V DC , ripple 10 %_{SS}

No-load supply current $I_0 \le 20 \text{ mA}$ Input

Input type 1 program input

lower evaluation limit A1: -U_B ... +1 V, upper evaluation limit A2: +4 V ... +U_B

input impedance: > 4.7 k Ω , pulse duration: \geq 1 s

Output

Output type 1 analog output 4 ... 20 mA, short-circuit/overload protected
Default setting evaluation limit A1: 50 mm evaluation limit A2: 300 mm
Resolution 0.4 mm at max. sensing range

Deviation of the characteristic curve ± 1 % of full-scale value Repeat accuracy ± 0.5 % of full-scale value Load impedance 0 ... 300 Ohm

Temperature influence ± 1.5 % of full-scale value

 Ambient conditions

 Ambient temperature
 -25 ... 70 °C (-13 ... 158 °F)

 Storage temperature
 -40 ... 85 °C (-40 ... 185 °F)

Mechanical specifications

Connection type Connector M12 x 1 , 4-pin

Degree of protection IP67

Degree of protection IP67 Material

Housing brass, nickel-plated

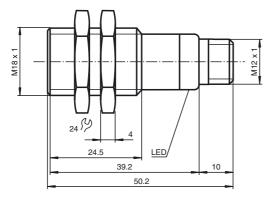
Transducer epoxy resin/hollow glass sphere mixture; foam

polyurethane, cover PBT

Mass 25 g

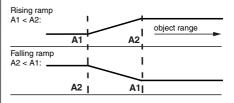
Compliance with standards and directives

Standard conformity
Standards FN 60947-5-7:2003

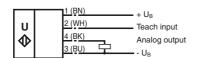

IEC 60947-5-7:2003

Approvals and certificates

UL approval	cULus Listed, General Purpose
CSA approval	cCSAus Listed, General Purpose


CCC approval CCC approval / marking not required for products rated ≤36 V

Dimensions


Additional Information

Programmed analogue output function

Electrical Connection

Standard symbol/Connections: (version I)

Core colors in accordance with EN 60947-5-2.

Pinout

Wire colors in accordance with EN 60947-5-2

1	BN	(brown)
2	WH	(white)
3	BU	(blue)
4	BK	(black)

FPEPPERL+FUCHS

Accessories

UB-PROG2

Programming unit

OMH-04

Mounting aid for round steel ø 12 mm or sheet 1.5 mm ... 3 mm

BF 18

Mounting flange, 18 mm

BF 18-F

Mounting flange with dead stop, 18 mm

BF 5-30

Universal mounting bracket for cylindrical sensors with a diameter of 5 ... 30 mm

V1-G-2M-PVC

Female cordset, M12, 4-pin, PVC cable

V1-W-2M-PUR

Female cordset, M12, 4-pin, PUR cable

Adjusting the evaluation limits

The ultrasonic sensor features an analogue output with two teachable evaluation limits. These are set by applying the supply voltage $-U_B$ or $+U_B$ to the TEACH-IN input. The supply voltage must be applied to the TEACH-IN input for at least 1 s. LEDs indicate whether the sensor has recognised the target during the TEACH-IN procedure. The lower evaluation limit A1 is taught with $-U_B$, A2 with $+U_B$.

Two different output functions can be set:

- 1. Analogue value increases with rising distance to object (rising ramp)
- 2. Analogue value falls with rising distance to object (falling ramp)

TEACH-IN rising ramp (A2 > A1)

- Position object at lower evaluation limit
- TEACH-IN lower limit A1 with U_B
- Position object at upper evaluation limit
- TEACH-IN upper limit A2 with + UB

TEACH-IN falling ramp (A1 > A2):

- Position object at lower evaluation limit
- TEACH-IN lower limit A2 with + U_B
- Position object at upper evaluation limit
- TEACH-IN upper limit A1 with UR

Default setting

A1: unusable area

A2: nominal sensing range

Mode of operation: rising ramp

LED Displays

Displays in dependence on operating mode	Red LED	Yellow LED
TEACH-IN evaluation limit		
Object detected	off	flashes
No object detected	flashes	off
Object uncertain (TEACH-IN invalid)	on	off
Normal mode (evaluation range)	off	on
Fault	on	previous state

Installation conditions

If the sensor is installed at places, where the environment temperature can fall below 0 °C, for the sensors fixation, one of the mounting flanges BF18, BF18-F or BF 5-30 must be used.

In case of direct mounting of the sensor in a through hole using the steel nuts, it has to be fixed at the middle of the housing thread. If a fixation at the front end of the threaded housing is required, plastic nuts with centering ring (accessories) must be used.