

ESCC (a) 4001/023 Qualified R Failure Rate High Precision (10 ppm/°C, 0.05 %) Thin Film Chip Resistors

DESIGN SUPPORT TOOLS

click logo to get started

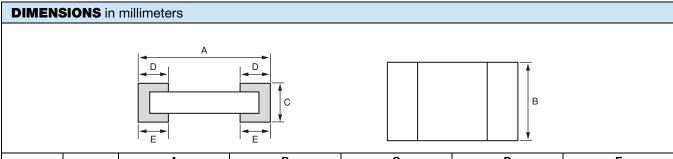
Vishay Sfernice Thin Film division holds ESCC QML qualification (ESCC technology flow qualification).

These HiRel components are ideal for low noise and precision applications, superior stability, low temperature coefficient of resistance, and low voltage coefficient, Vishay Sfernice's precision thin film wraparound resistors exceed requirements of MIL-PRF-55342G characteristics Y (± 10 ppm/°C).

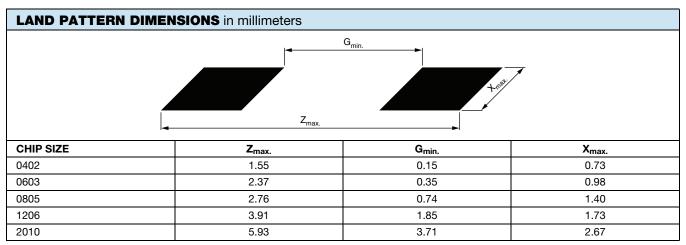
FEATURES

HALOGEN FREE

- Load life stability at ± 70 °C for 2000 h: 0.25 % under Pn
- Temperature coefficient to: 10 ppm/°C
- Very low noise (< -35 dB) and voltage coefficient (< 0.01 ppm/V)
- Resistance range: 100 Ω to 3.01 M Ω (depending on size)
- Tolerances down to 0.05 %
- SnPb terminations over nickel barrier
- ESCC 4001 (generic specification)
- ESCC 4001/023 (detail specification)
- ESCC qualified
- R failure rate (0.01 % per 1000 h)
- · SMD wraparound chip resistor
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912


STANDARD	STANDARD ELECTRICAL SPECIFICATIONS							
MODEL	SIZE	ESCC VARIANT NUMBER	RESISTANCE RANGE Ω	RATED POWER AT +70 °C (Pn) W	LIMITING ELEMENT VOLTAGE (UL) V	INSULATION VOLTAGE (U _i) V	TOLERANCE ± %	TEMPERATURE COEFFICIENT ± ppm/°C
PFRR 0402 📀	0402	15	100 to 150K	0.05	40	50	0.05, 0.1	10, 25
PFRR 0603 🕑	0603	09	100 to 500K	0.1	50	100	0.05, 0.1	10, 25
PFRR 0805 💿	0805	10	100 to 750K	0.125	100	200	0.05, 0.1	10, 25
PFRR 1206 🕑	1206	11	100 to 3.5M	0.25	150	300	0.05, 0.1	10, 25
PFRR 2010 🕑	2010	12	100 to 6M	0.50	200	300	0.05, 0.1	10, 25

CLIMATIC SPECIFICATIONS				
Operating temperature range	-55 °C; +155 °C			
Soldering temperature (T _{sol})	260 °C, immersion 10 s			


MECHANICAL SPECIFICATIONS					
Substrate material	Alumina				
Technology	Thin Film				
Film	Nickel Chromium with mineral passivation				
Protection	Epoxy and Silicon				
Terminations	B type: SnPb over nickel barrier for solder reflow				

QUALIFIED OHMIC RANGE: MAX. VALUE					
PFRR0402	PFRR0603	PFRR0805	PFRR1206	PFRR2010	
100 kΩ	261 kΩ	301 kΩ	1 ΜΩ	3.01 MΩ	

VARIANT CTVLE	-	4	E	3	()	[)	ı		
NUMBER	STYLE	Min.	Max.								
09	0603	1.39	2.16	0.62	1.01	0.25	1.02	0.17	0.51	0.25	0.51
10	0805	1.78	2.55	1.14	1.53	0.25	1.02	0.17	0.51	0.25	0.51
11	1206	2.87	3.64	1.47	1.86	0.25	1.02	0.17	0.51	0.25	0.51
12	2010	4.95	5.72	2.41	2.8	0.25	1.02	0.35	0.85	0.35	0.85
15	0402	0.87	1.64	0.47	0.86	0.25	1.02	0.09	0.38	0.12	0.38

Note

• Suggested land pattern: According to IPC-7351

TRACEABILITY DEFINITIONS

The two major traceability elements are defined as:

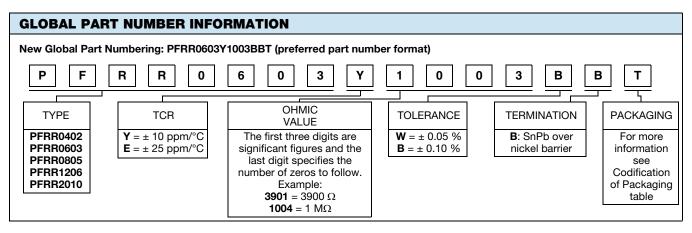
- The primary process lot number named Front End lot (FE lot). One "FE lot" is composed of several wafers issued from the same thin film deposition sequence.
- The date code named Batch Number(BN). The "BN" is defined after completion of the end of production testing sequence. The lot homogeneity is given by the "FE lot" and not by the "BN".

According to the applied rules validated by the ESCC through the product qualification, the following situations are agreed:

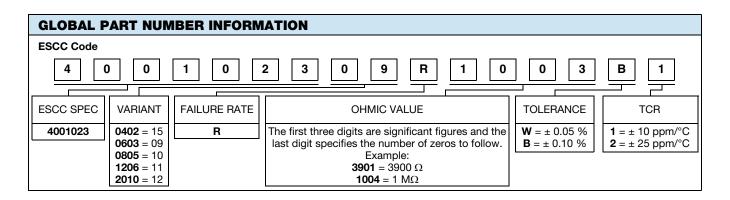
- Parts coming from different "FE lost" might have the same "BN".
- A maximum of two different "BN" might be applied to the same "FE lot" to enable the use of overruns from a previous PO.
- Unless requested / approved by the customer the "BN" will be 2 years old maximum.

SPECIFIC TRACEABILITY REQUIREMENTS

The following specific requirements have to be treated as:


- A customer who requires "Lot Homogeneity" has to mention it on the PO as "SINGLE PRODUCTION LOT".
- A customer who requires "Lot Homogeneity" in addition to a "Single Batch Number" has to mention it on the PO as "SINGLE PRODUCTION LOT AND OPTION R0101".

END OF PRODUCTION TESTING


Mandatory testing performed at the end of the production process:

• 100 % overload: Voltage $\sqrt{(6.25 P_n \times R_n)}$ or 2 U_L whichever is less - duration 2 s

CODIFICATION OF PACKAGING				
CODE 18	PACKAGING			
WAFFLE PACK				
W	100 min., 1 mult			
WA	100 min., 100 mult (available only in size 1206)			
PLASTIC TAPE (in standard for a	Il sizes)			
Т	100 min., 1 mult			
TA	100 min., 100 mult			
ТВ	250 min., 250 mult			
TC	500 min., 500 mult			
TD	1000 min., 1000 mult			
TE	2500min., 2500 mult			
TF	Full tape (quantity depending on size of chips)			
PAPER TAPE (Available for 0402,	0603, 0805 and 1206. Please consult Vishay Sfernice for 2010 size.)			
PT	100 min., 1 mult			
PA	100 min., 100 mult			
РВ	250 min., 250 mult			
PC	500 min., 500 mult			
PD (not available for size 0402)	1000 min., 1000 mult			
PE (not available for size 0402)	2500min., 2500 mult			
PF (not available for size 0402)	Full tape (quantity depending on size of chips)			

www.vishay.com

Vishay

Vishay Sfernice thin film is the first passive manufacturer to hold the ESCC Technology Flow Qualification, official certificate is available on ESCIES web site https://escies.org/ReadArticle?docId=727).

This qualification open the door to a new concept at ESA: The Failure Rate option (similar to the one offered in the MIL system), for instance R failure rate: 0.01 % per 1000 h.

New specifications describing this new concept have been released by the ESA:

2544001: Requirements for the Technology Flow Qualification of Film Resistors

https://escies.org/escc/specifications/2544001.pdf

26000: Failure Rate Level Sampling Plans and Procedures https://escies.org/escc/specifications/26000.pdf

21300: Terms, Definitions, Abbreviations, Symbols and Units https://escies.org/escc/specifications/21300.pdf

21700: General Requirements for the Marking of the ESCC Components

https://escies.org/escc/specifications/21700.pdf

4001: Generic Specification Resistors Fixed Film https://escies.org/escc/specifications/4001.pdf

4001023: Resistors, Fixed, Chip, Thin Film, Type PHR and PFRR

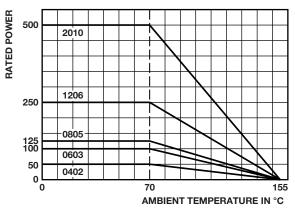
https://escies.org/escc/specifications/4001023.pdf

Parts are delivered with space C.O.C.

Parts undergo 100 % overload at end of production process.

ESCC/PFRR CODIFICATION CORRESPONDANCE TABLES

VARIANT	MODEL	CASE SIZE	TERMINATION
15	PFRR	0402	B (tin/lead)
09	PFRR	0603	B (tin/lead)
10	PFRR	0805	B (tin/lead)
11	PFRR	1206	B (tin/lead)
12	PFRR	1210	B (tin/lead)


TEMPERATURE COEFFICIENT	ESCC CODE	PFRR CODE
10 ppm/°C (- 55 °C; + 155 °C)	1	Y
25 ppm/°C (- 55 °C; + 155 °C)	2	Е

TOLERANCE	MODEL	CASE SIZE
0.1 %	В	В
0.05 %	W	W

PACKAGING Two types of packaging are available: waffle-pack and tape

and reel.						
	NUMBER OF PIECES PER PACKAGE					
SIZE	WAFFLE	TAPE AN	TAPE			
	PACK 2" × 2" MIN. MAX.		MAX.	WIDTH		
0402	340		5000			
0603	100		5000			
0805	100	100	4000	8 mm		
1206	140		4000			
2010	60		1000			

POWER DERATING CURVE

EXTENDED FEATURES

You may consult Vishay Sfernice for chip sizes, ohmic values and tolerances outside of the qualified range.

PERFORMANCE				
TEST	CONDITIONS	REQUIREMEN	TYPICAL	
1531	CONDITIONS	ESA/SCC 4001/023	MIL-PRF-55342G	TYPICAL
Short time overload	$U = \sqrt{(6.25 \text{ Pr x Rn})}$ $U_{\text{max.}} < 2 \text{ UL - 2 s}$	± 0.05 % + (0.05 Ω x 100/Rn)	0.10 %	± 0.01 %
Rapid temperature change	- 55 °C/+ 155 °C 5 cycles CEI 66-2-14 Test Na	± 0.05 % + (0.05 Ω x 100/Rn)	0.1 % (for 100 cycles)	± 0.01 % ± 0.015 % (for 500 cycles)
Soldering (thermal shock)	260 °C/10 s CEI 68-2-20 A Test T6 (met. 1A)	± 0.05 % + (0.05 Ω x 100/Rn)	-	± 0.005 %
Terminal strength: Adhesion bend strength of end plated facing	CEI 115-1 Clause 4.32 CEI 115-1 Clause 4.33	± 0.05 % + (0.05 Ω x 100/Rn)	-	± 0.01 %
Climatic sequence	CEI 67-2-1/CEI 68-2-2 CEI 67-2-13/CEI 68-2-30	± 0.10 % + (0.05 Ω x 100/Rn)	-	$\pm~0.02~\%$ Insulation resistance > 1 G Ω
Load life	2000 h Pr at + 70 °C 90'/30' cycle 8000 h	± 0.25 % + (0.05 Ω x 100/Rn) 1 % + (0.05 Ω x 100/Rn)	0.5 %	\pm 0.05 % (8000 h) Insulation resistance > 1 G Ω
High temperature exposure	2000 h Pr at + 155 °C CEI 68-2-20A Test B	± 0.15 % + (0.05 Ω x 100/Rn)	± 0.10 % (duration 1000 h)	$\pm~0.05~\%$ Insulation resistance > 1 G Ω

CODIFICATION OPTIONS ON TWO DIGITS					
OPTION	OPTION 2 DIGITS				
0099	99				
0100	0A				
0101	0B				
0102	0C				
0103	0D				
0104	0E				
0105	0F				
•••					
0124	0Y				
0125	0Z				
0126	1A				
0127	1B				
0128	1C				
0320	8M				
0321	8N				
0322	8O				
0323	8P				
0324	8Q				
0325	8R				

CODIFICATION OF SIZES	
CODE 18	CODE 40
9	0402
С	0603
D	0805
Н	1206
J	2010

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.