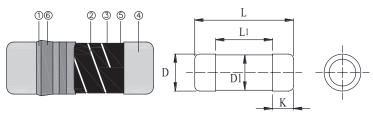
Metal Film Precision Resistor Jumper

multicomp PRO

RoHS

Compliant

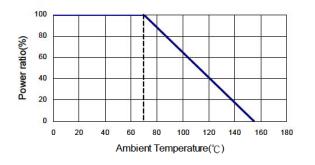

Features

- · Excellent overall stability
- Tight tolerance down to ±0.1%
- Extremely low TCR down to ±10 PPM/°C
- High power rating up to 1 Watts

Applications

- Telecommunication
- Medical Equipment
- Measurement / Testing Equipment

Construction


1	Insulation Coating	4	Electrode Cap (Fe, Cu, Sn)
2	Trimming Line	5	Resistor Layer
3	Ceramic Road	6	Marking

Dimensions

Part Number	L	L1	ØD	Ø D 1	к	Weight (1,000ER) (g)
MCFRJT-UR0R0	5.90 ±0.2	2.9	2.20 ±0.20	D +0/-0.2	1.3 ±0.1	80.9

Dimensions : Millimetres

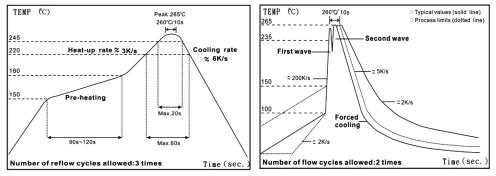
Derating Curve

Standard Electrical Specifications

Item	Power Rating at 70°C	Operating Temp. Range	Max. Operating Voltage	Max. Overload Voltage	Resistance Range	TCR (PPM/°C)
Size			, en ge	Jennige	±5%	
0207	1/2W	-55 ~ +155°C	300V	500∨	0Ω (<15mΩ)	
0207	Jumper: 4A	-55 % 1 155 C	5000	5000	052 (<101152)	

Environmental Characteristics

ltore	Requirement		Test Mathed
ltem	5% and Below% Jumper		Test Method
Temperature Coef- ficient of Resistance (T.C.R.)	As Spec		JIS-C-5201-1 4.8 IEC 60115-1 4.8 -55°C ~ +125°C, 25°c is the reference temperature
Short Time Over- load	±(0.15% + 0.05Ω)	<15mΩ	JIS-C-5201-1 4.13 IEC-60115-1 4.13 RCWV × 2.5 or Max. overload voltage for 5 seconds
Insulation Resist- ance	≥ 10G		JIS-C-5201-1 4.6 IEC-60115-1 4.6 Max.overload voltage for 1minute
Endurance	±(0.5% + 0.05Ω)	<15mΩ	JIS-C-5201-1 4.25 IEC-60115-1 4.25.1 70 ±2°C, Max. RCWV for 1,000 hrs with 1.5 hrs "ON" and 0.5 hr "OFF"
Damp Heat with Load	±(1 0% + 0.05Ω)	<15mΩ	JIS-C-5201-1 4.24 IEC-60115-1 4.24 40 ±2°C, 90 ~ 95% R.H. Max. RCWV for 1,000 hrs with 1.5 hrs "ON" and 0.5 hr "OFF"
Dry Heat	±(1.0% + 0.05Ω)	<15mΩ	JIS-C-5201-1 4.23 IEC-60115-1 2.23.2 at +155°C for 1,000 hrs
Bending Strength	±(0 5% + 0.05Ω)	<15mΩ	JIS-C-5201-1 4.33 IEC 60115-1 4.33 Bending once for 5 seconds with 2mm
Solderability	95% min. Coverage	;	JIS-C-5201-1 4.17 IEC 60115-1 4.17 245 ±5°C for 3 seconds
Resistance to Soldering Heat	±(0.5% + 0.05Ω)	<15mΩ	JIS-C-5201-1 4.18 IEC 60115-1 4.18 260 ±5°C for 10 seconds
Voltage Proof	No breakdown or flashover		JIS-C-5201-1 4.7 IEC 60115-1 4.7 1.42 times Max. Operating Voltage for 1minute
Leaching	Individual leaching a Total leaching area		JIS-C-5201-1 4.18 IEC 60068-2-58 8.2.1 260 ±5°C for 30 seconds

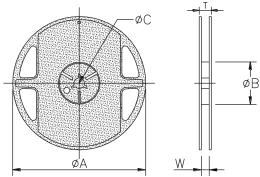


Item	Requirement		Test Method	
item	5% and Below%	Jumper	Test Method	
Rapid Change of Temperature	±(0 5% + 0.05Ω)	<15mΩ	JIS-C-5201-1 4.18 IEC 60115-1 4.18 -55°C ~ +155°C, 5 cycles	

RCWV (Rated Continuous Working Voltage) = $\sqrt{(P \times R)}$ or Max. Operating Voltage whichever in lower

Storage Temperature : 25 ± 3°C; Humidity < 80%RH

Soldering Condition

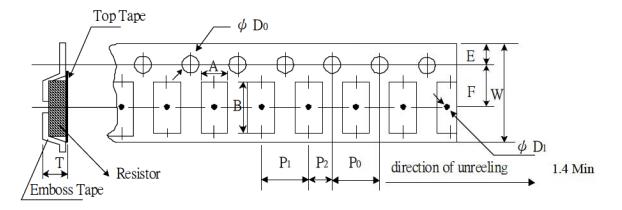


IR Reflow Soldering

Wave Soldering <u>(For R>10Ω)</u>

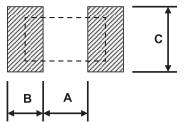
- 1. Time of IR reflow soldering at maximum temperature point 260°C : 10s
- 2. Time of wave soldering at maximum temperature point 260°C : 10s
- 3. Time of soldering iron at maximum temperature point 410°C : 5s

Packing



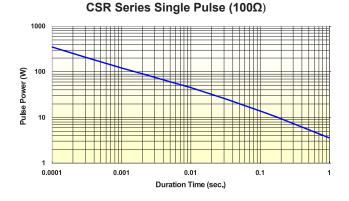
Packing Quantity & Real Specifications

Part Number	Reel	ΦA	ФВ	ΦC	W	T	Emboss Plastic
	Diameter	(mm)	(mm)	mm)	(mm)	(mm)	Tape (EA)
MCFRJT-UR0R0	7 inch	178.5 ±1.5	60 +1	13 ±0.5	13 ±0.5	15.5 ±0.5	2,000



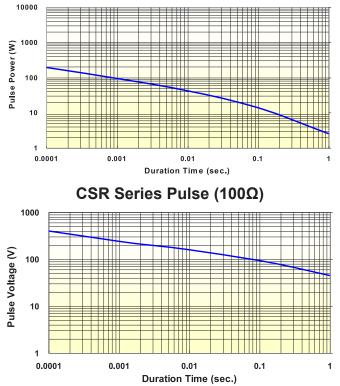
Emboss Plastic Tape Specifications

Part Number	A (mm)	B (mm)	w (mm)	E (mm)	F (mm)	P₀ (mm)	P ₁ (mm)	P ₂ (mm)	ΦD ₀ (mm)	T (mm)
MCFRJT-UR0R0	2.4 ±0.1	6.15 ±0.1	12 ±0.1	1.75±0.1	5.5 ±0.05	4 ±0.1	4 ±0.1	2 ±0.05	1.5 +0.1	2.7 ±0.1


Recommend Land Pattern

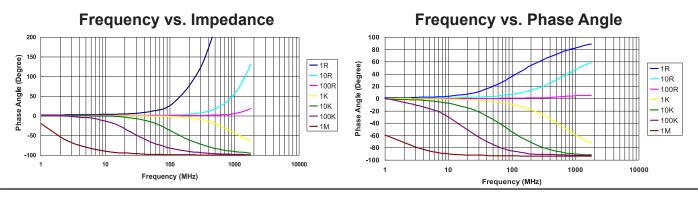
Part Number	A	B	C
	(mm)	(mm)	(mm)
MCFRJT-UR0R0	3	1.7	2.4

Pulse withstanding capacity


The single impulse graph is the result of 50 impulses of rectangular shape applied at one-minute intervals. The limit of acceptance was a shift in resistance of less than 1% from the initial value. The power applied was subject to the restrictions of the maximum permissible impulse voltage graph shown.

Continuous Pulse

The continuous load graph was obtained by applying repetitive rectangular pulses where the pulse period was adjusted so that the average power dissipated in the resistor was equal to its rated power at 70°C. Again the limit of acceptance was a shift in resistance of less than 1% from the initial value.



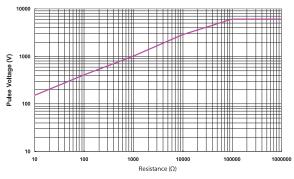
CSR Series Continuous Pulse (100 Ω)

Frequency behavior

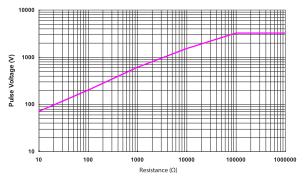
Resistors are designed to function according to ohmic laws. This is basically true of resistors for frequencies up to 100KHz. At higher frequencies, there is an additional contribution to the impedance by an ideal resistor switched in series with a coil and both switched parallel to a capacitor. The values of the capacitance and inductance are mainly determined by the dimensions of the terminations and the conductive path length.

The environment surrounding components has a large influence on the behavior of the component on the printed-circuit board.

Newark.com/multicomp-pro Farnell.com/multicomp-pro Element14.com/multicomp-pro


multicomp PRO

multicomp PRO


Lightning Surge

Resistors are tested in accordance with IEC 60 115-1using both 1.2 / 50µs and 10 / 700µs pulse shapes. The limit of acceptance is a shift in resistance of less than 0.5% from the initial value.

1.2 / 50µs Lightning Surge

10 / 700µs Lightning Surge

Part Number Table

Description	Part Number
Resistor, Metal Film, 0R, ±5%, 0207	MCFRJT-UR0R0

Important Notice : This data sheet and its contents (the "Information") belong to the members of the AVNET group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp Pro is the registered trademark of Premier Farnell Limited 2019.

