

DATA SHEET

SURFACE MOUNT MULTILAYER CERAMIC CAPACITORS

General purpose class II

X6S

4 V TO 50 V 100 pF to 47μF

RoHS compliant & Halogen free

YAGEO Phi(comp

2/10

SCOPE

This specification describes X6S series chip capacitors with lead-free terminations.

APPLICATIONS

PCs, Hard disk, Game PCs Power supplies DVD players Mobile phones Data processing

FEATURES

Supplied in tape on reel Nickel-barrier end termination RoHS compliant Halogen free compliant

ORDERING INFORMATION - GLOBAL PART NUMBER,

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

YAGEO BRAND ordering code GLOBAL PART NUMBER (PREFERRED)

CC <u>xxxx x x x X6S x BB xxx</u> (1) (2) (3) (4) (5)

(I) SIZE – INCH BASED (METRIC)

0201 (0603)

0402 (1005)

0603 (1608)

0805 (2012)

1206 (3216)

1210 (3225)

(2) TOLERANCE

 $K = \pm 10\%$

 $M = \pm 20\%$

(3) PACKING STYLE

R = Paper/PE taping reel; Reel 7 inch

K = Blister taping reel; Reel 7 inch

P = Paper/PE taping reel; Reel 13 inch

F = Blister taping reel; Reel 13 inch

C = Bulk case

(4) RATED VOLTAGE

 $4 = 4 \ \lor$

5 = 6.3 V

6 = 10 V

7 = 16 V

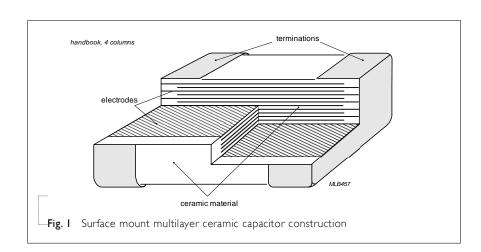
8 = 25 V

9 = 50 V

(5) CAPACITANCE VALUE

2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

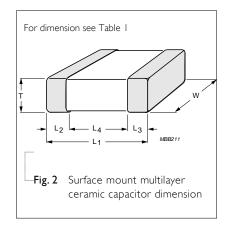

Example: $103 = 10 \times 10^3 = 10,000 \text{ pF} = 10 \text{ nF}$

3

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). Thterminations are lead-free. A cross section of the structure is shown in Fig.1.



DIMENSION

Table I For outlines see fig. 2

TYPE	l (m.m.)	\\\ (\)	T (MM)	L ₂ / L ₃	L ₂ / L ₃ (mm)	
TYPE	L _I (mm)	W (mm)	T (MM)	min.	max.	min.
0201	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.10	0.20	0.20
	0.6±0.09	0.3 ±0.09	0.3±0.09	0.10	0.20	0.20
	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05			
0402	1.0 ± 0.15	0.5 ±0.15	0.5 ±0.15	0.15	0.35	0.40
	1.0 ±0.20	0.5 ±0.20	0.5 ±0.20			
	1.6±0.10	0.8 ±0.10	0.8 ±0.10			
0603	1.6 ±0.15	0.8 ±0.15	0.8 ±0.15	0.20	0.60	0.40
	1.6 ±0.20	0.8 ±0.20	0.8 ±0.20			
0805	2.0±0.20	1.25 ±0.20	1.25 ±0.20	0.25	0.75	0.55
1206	3.2 ±0.30	1.6 ±0.20	1.6 ±0.20	0.25	0.75	1.40
1210	3.2 ± 0.40	2.5 ±0.30	2.5 ±0.20	0.25	0.75	1.40
1210	3.2 ± 0.40	2.5 ±0.30	2.5 ±0.30	0.23	0.75	1.10

OUTLINES

CAPACITANCE RANGE & THICKNESS FOR X6S

Table 2 Sizes from 0201 to 0603

CAP.	0201			0402				0603						
	6.3V	IOV	16V	25V	63 V	10 V	16 V	25 V	4 V	63 V	10 V	16 V	25 V	50 V

100 nF 0.3±0.03 0.3±0.03		
220 nF	0.5±0.05 0.5±0.05 0.5±0.05 0.5±0.0	05
470 nF	0.5±0.05	
l uF	0.5±0.05 0.5±0.05	0.8±0.1 0.8±0.1 0.8±0.1 0.8±0.1 0.8±0.1
2.2 uF	0.5±0.20 0.5±0.20	0.8±0.1 0.8±0.1 0.8±0.1 0.8±0.2
4.7 uF	0.5±0.15	0.8±0.2
IO uF		0.8±0.2
22 uF		0.8±0.2
47 uF		

Table 3 Sizes from 0805 to 1210

CAP.	0805					1206				1210		
	6.3 V	10 V	16 V	25 V	50 V	6.3 V	10 V	16 V	25 V	6.3 V	10 V	16V
100 nF												
220 nF												
470 nF												
I uF												
2.2 uF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2							
4.7 uF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2								
10 uF	1.25±0.2	1.25±0.2	1.25±0.2			1.6±0.2	1.6±0.2	1.6±0.2	1.6±0.2			
22 uF	1.25±0.2					1.6±0.2	1.6±0.2	1.6±0.2				
47 uF										2.5±0.2	2.5±0.2	
100 uF												

5

THICKNESS CLASSES AND PACKING QUANTITY

-	_			4
	a	h	le	4

SIZE	THICKNESS	TAPE WIDTH -	Ø180 MN	1/7 INCH	Ø330 MN	1 / 13 INCH	CH QUANTITY	
CODE	CLASSIFICATION	QUANTITY PER REEL	Paper	Blister	Paper	Blister	PER BULK CASE	
0201	0.3 ±0.03 mm	8 mm	15,000		50,000			
0402	0.5 ±0.05 mm	8 mm	10,000		50,000		50,000	
0603	0.8 ±0.1 mm	8 mm	4,000		15,000		15,000	
0805	1.25 ±0.2 mm	8 mm		3,000		10,000	5,000	
1206	1.6 ±0.2 mm	8 mm		2,000		8,000		
1210	2.5±0.2/0.3 mm	8 mm		500				

ELECTRICAL CHARACTERISTICS

X6S DIELECTRIC CAPACITORS; NISN TERMINATIONS

Unless otherwise specified, all tests and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

Temperature: 15 °C to 35 °C
Relative humidity: 25% to 75%
Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

Table 5

DESCRIPTION	VALUE
Capacitance range	100 nF to 100 μF
Capacitance tolerance	±10% and ±20%
Dissipation factor (D.F.)	≤10%
Insulation resistance after 1 minute at U _r (DC)	Rins × Cr ≥ 100 / 50 Ω.F *
Maximum capacitance change as a function of temperature (temperature characteristic/coefficient):	±22%
Operating temperature range:	-55 °C to +105 °C

Note:

Rins × Cr ≥ 100 Ω.F

0201: 100nF to 470nF

0603: IuF, 2.2uF/ 6.3V to 16V, 4.7uF/ 6.3V to 16V

0805: 2.2uF, 4.7uF to 10uF/ 6.3V to 16V 1206: 10uF/ 6.3V to 16V, 22uF/ 6.3V to 10V

Rins × Cr ≥ 50 Ω.F

0201: IuF

0402: 220nF/ 6.3V to 25V, 470nF/ 6.3V to 10V, 1uF to 2.2uF/ 6.3V to 10V, 4.7uF/ 6.3V 0603: 2.2uF/ 25V, 4.7uF/ 25V, 10uF to 22uF 0805: 4.7uF/ 50V, 10uF/ 25V, 22uF to 47uF 1206: 10uF/ 25V, 22uF/ 16V, 47uF to 100uF

1210: 47uF to 100uF

6

SOLDERING RECOMMENDATION

Table 6

SOLDERING METHOD	SIZE ≤ 0402	0603	0805	1206	≥ 1210
Reflow	Reflow only	≥ 1.0 µF	≥ 2.2 µF	≥ 4.7 µF	Reflow only
Reflow/Wave		< 1.0 µF	< 2.2 µF	< 4.7 µF	

TESTS AND REQUIREMENTS

Table 7 Test procedures and requirements

TEST	TEST MET	HOD	PROCEDURE	REQUIREMENTS
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage
Visual Inspection and Dimension Check		4.4	Any applicable method using × 10 magnification	In accordance with specification
Capacitance (I)		4.5.1	Class 2:	Within specified tolerance
			At 20 °C, 24 hrs after annealing	
			Cap \leq 1 μ F, f = 1 KHz, measuring at voltage 1 Vrms at 20 °C	
			Cap $>$ 1 μ F, f = 1 KHz for C \leq 10 μ F, rated voltage $>$ 6.3 V,	
			measuring at voltage I Vrms at 20 °C	
			f = 1 KHz, for C \leq 10 μ F, rated voltage \leq 6.3 V, measuring at voltage 0.5 to 1 Vrms at 20 °C	
			f = 120 Hz for C > 10 μF , measuring at voltage 0.5 Vrms at 20 °C	
Dissipation		4.5.2	Class 2:	In accordance with specification
Factor (D.F.) (1)			At 20 °C, 24 hrs after annealing	
			Cap \leq 1 μ F, f = 1 KHz, measuring at voltage 1 Vrms at 20 °C	
			Cap > 1 μ F, f = 1 KHz for C \leq 10 μ F, rated voltage > 6.3 V,	
			measuring at voltage I Vrms at 20 °C	
			$f = 1$ KHz, for C \leq 10 μ F, rated voltage \leq 6.3 V, measuring at voltage 0.5 Vrms at 20 °C	
			$_{\rm f}$ = 120 Hz for C > 10 $_{\rm \mu}$ F, measuring at voltage 0.5 Vrms at 20 $^{\circ}$ C	
Insulation Resistance		4.5.3	At U _r (DC) for I minute	In accordance with specification

NOTE

 $I.\ The\ figure\ indicates\ typical\ inspection.\ Please\ refer\ to\ individual\ specifications.$

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS	
Temperature Characteristic	4.	Capacitance shall be measured by the steps shown in the following table.	Class1: Δ C/C: ±30ppm	
		The capacitance change should be measured after 5 min at each specified temperature stage.	Class2: X6S: ∆ C/C: ±22%	
		Step Temperature(°C)		
		a 25±2		
		b Lower temperature±3°C		
		c 25±2		
		d Upper Temperature±2°C		
		e 25±2		
		(I) Class I		
		Temperature Coefficient shall be calculated from the formula as below		
		Temp, Coefficient = $\frac{C2 - C1}{C1 \times \Delta T} \times 10^6$ [ppm/°C]		
		C1: Capacitance at step c		
		C2: Capacitance at 125°C		
		ΔT: 100°C(=125°C-25°C)		
		(2) Class II		
		Capacitance Change shall be calculated from the formula as below		
		$\Delta C = \frac{C2 - C1}{C1} \times 100\%$		
		C1: Capacitance at step c		
		C2: Capacitance at step b or d		
Adhesion	4.7	A force applied for 10 seconds to the line joining the terminations and in a plane parallel to the substrate	Force size ≥ 0603: 5N size = 0402: 2.5N size = 0201: 1N	
Bending Strength	IEC 60384- 4.8 21/22	Mounting in accordance with IEC 60384-22 paragraph 4.3	No visible damage	
		Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm	ΔC/C Class2: X6S: ±10%	

TEST	TEST METH	IOD	PROCEDURE	REQUIREMENTS		
Resistance to Soldering Heat		4.9	Precondition: 150 +0/ $-$ 10 °C for 1 hour, then keep for 24 ±1 hours at room temperature Preheating: for size \leq 1206: 120 °C to 150 °C for 1	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned		
		minute Preheating: for size >1206: 100 °C to 120 °C f minute and 170 °C to 200 °C for 1 minute		ΔC/C Class2: X6S: ±10%		
			Solder bath temperature: 260 ±5 °C Dipping time: 10 ±0.5 seconds Recovery time: 24 ±2 hours	D.F. within initial specified value R _{ins} within initial specified value		
Solderability		4.10	Preheated the temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds. 1. Temperature: 235±5°C / Dipping time: 2 ±0.5 s 2. Temperature: 245±5°C / Dipping time: 3 ±0.5 s (lead free) Depth of immersion: 10mm	The solder should cover over 95% of the critical area of each termination		
Rapid Change of Temperature	IEC 60384- 4.1 21/22				Preconditioning; 150 +0/-10 °C for I hour, then keep for 24 ±1 hours at a room temperature 5 cycles with following detail: 30 minutes at lower category temperature 30 minutes at upper category temperature	No visual damage $\Delta C/C$ Class2: $X6S: \pm 15\%$
			Recovery time 24 ±2 hours	D.F. meet initial specified value R _{ins} meet initial specified value		

X6S

TEST	TEST METHO	D	PROCEDURE	REQUIREMENTS
Damp Heat with U _r Load	4	4.13	 Preconditioning, class 2 only: 150 +0/-10 °C /I hour, then keep for 24 ±1 hour at room temp Initial measure: Spec: refer to initial spec C, D, IR Damp heat test: 500 ±12 hours at 40 ±2 °C; 90 to 95% R.H. I.0 U_r applied Recovery: Class 2: 24 ±2 hours Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirements shall be met. 	No visual damage after recovery
Endurance	IEC 60384- 4. 21/22	1.14	 Preconditioning, class 2 only: 150 +0/-10 °C /I hour, then keep for 24 ±I hour at room temp Initial measure: Spec: refer to initial spec C, D, IR Endurance test:: Temperature: X6S: 105 °C Specified stress voltage applied for I,000 hours:	No visual damage ΔC/C Class 2: ±20% D.F. Class 2: 2 × initial value max R _{ins} Class 2: Rins × Cr ≥ 10s
Voltage Proof	IEC 60384-1 4	1.6	Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied 2.5 Ur Charge/Discharge current is less than 50 mA	No breakdown or flashover

Surface Mount Multilayer Ceramic Capacitors General Purpose

X6S

4 V to 50 V

10

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 6	Jan. 20, 2021	-	- Product range updated
Version 5	Jun. 2, 2020	-	- Product range updated
Version 4	Aug 7, 2017	-	- 0402 Dimension update
Version 3	Jul 19, 2017	-	- Product range updated
Version 2	Feb. 20, 2017	-	- Dimension & capacitance update
Version I	Sep. 16, 2015	-	- Dimension & capacitance update
Version 0	Nov. 18, 2014	-	- New datasheet for general purpose High Cap X6S

Surface-Mount Ceramic Multilayer Capacitors

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly YAGEO Corporation and its affiliates do not recommend the use of commercial, automotive, and/or COTS grade products for high reliability applications or manned space flight.

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.