onsemi

Field Stop Trench IGBT 650 V, 75 A

FGHL75T65MQDT

Field stop 4th generation mid speed IGBT technology copacked with full rated current diode.

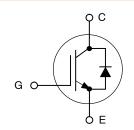
Features

- Maximum Junction Temperature: $T_J = 175^{\circ}C$
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(Sat)} = 1.45 V (Typ.) @ I_C = 75 A$
- 100% of the Parts are Tested for I_{LM} (Note 2)
- Smooth and Optimized Switching
- Tight Parameter Distribution
- RoHS Compliant

Typical Applications

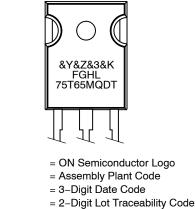
- Solar Inverter
- UPS, ESS
- PFC, Converters

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Collector-to-Emitter Voltage	V _{CES}	650	V
Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage	V_{GES}	±20 ±30	V
$ \begin{array}{c} \mbox{Collector Current (Note 1)} & @\ T_C = 25^\circ C \\ & @\ T_C = 100^\circ C \end{array} $	Ι _C	80 75	A
Pulsed Collector Current (Note 2)	I _{LM}	300	А
Pulsed Collector Current (Note 3)	I _{CM}	300	А
Diode Forward Current (Note 1) @ $T_{C =} 25^{\circ}C$ @ $T_{C =} 100^{\circ}C$	l _F	80 75	A
Pulsed Diode Maximum Forward Current	I _{FM}	300	А
$ \begin{array}{ll} \mbox{Maximum Power Dissipation} & @\ T_C = 25^\circ C \\ & @\ T_C = 100^\circ C \end{array} $	P _D	375 188	W
Operating Junction and Storage Temperature Range	T _J , T _{STG}	–55 to +175	°C
Maximum Lead Temp. for Soldering Purposes (1/8" from case for 5 s)	ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Value limit by bond wire


- 2. V_{CC} = 400 V, V_{GE} = 15 V, I_C = 300 A, R_G = 9 Ω , Inductive Load, 100% tested
- 3. Repetitive rating: pulse width limited by max. junction temperature

75 A, 650 V V_{CESat} = 1.45 V

MARKING DIAGRAM

FGHL75T65MQDT = Specific Device Code

&Y

&Ζ

&3

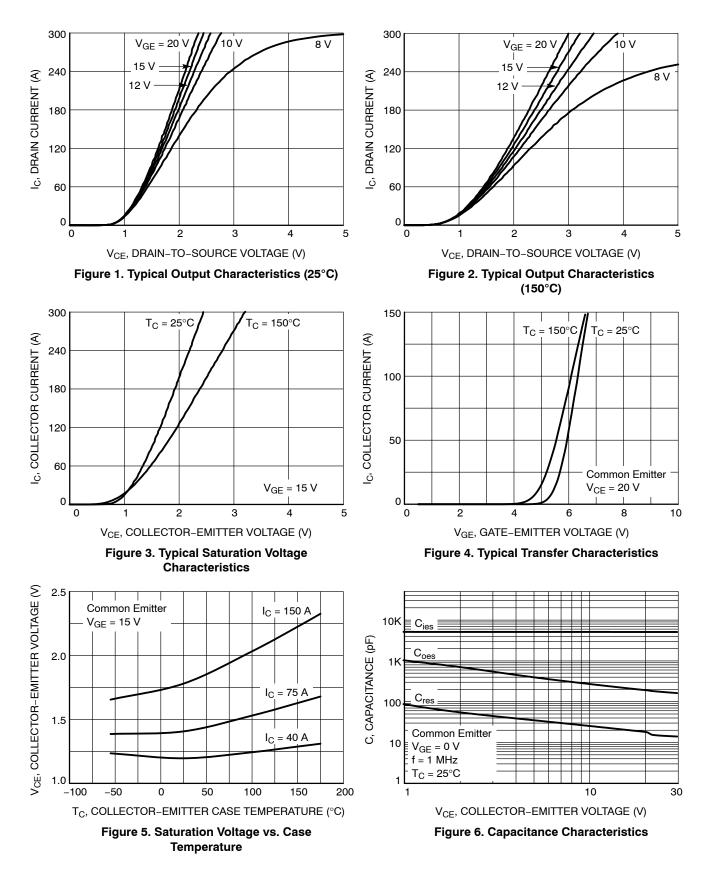
&K

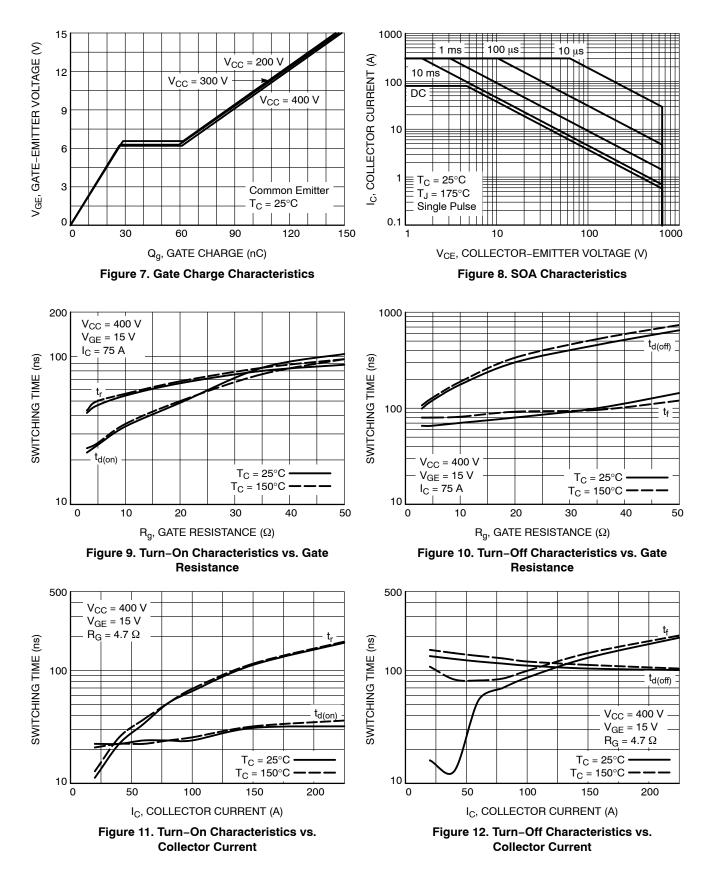
ORDERING INFORMATION

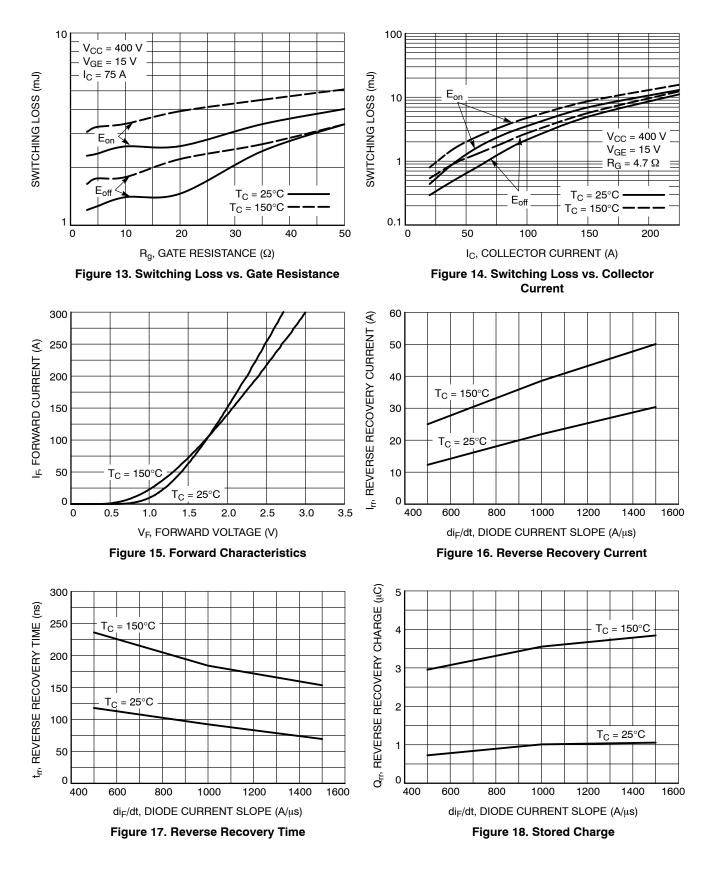
Device	Package	Shipping
FGHL75T65MQDT	TO-247-3L	30 Units / Tube

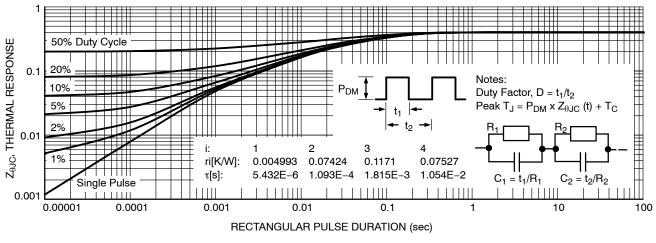
THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ extsf{ heta}JC}$	0.40	°C/W
Thermal resistance junction-to-case, for Diode	$R_{ extsf{ heta}JC}$	0.60	°C/W
Thermal resistance junction-to-ambient	$R_{ hetaJA}$	40	°C/W


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	·					
Collector-emitter breakdown voltage, gate-emitter short-circuited	V _{GE} = 0 V, I _C = 1 mA	BV _{CES}	650	-	-	V
Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	$\frac{\Delta BV_{CES}}{\Delta T_{J}}$	_	0.6	-	V/°C
Collector-emitter cut-off current, gate-emitter short-circuited	V _{GE} = 0 V, V _{CE} = 650 V	I _{CES}	_	-	250	μΑ
Gate leakage current, collector-emitter short-circuited	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	-	-	±400	nA
ON CHARACTERISTICS		-				-
Gate-emitter threshold voltage	$V_{GE} = V_{CE}$, $I_C = 75 \text{ mA}$	V _{GE(th)}	3.0	4.5	6.0	V
Collector-emitter saturation voltage	V_{GE} = 15 V, I _C = 75 A, T _J = 25°C V _{GE} = 15 V, I _C = 75 A, T _J = 150°C	V _{CE(sat)}		1.45 1.65	1.8 -	V
DYNAMIC CHARACTERISTICS				•		
Input capacitance	V _{CE} = 30 V,	C _{ies}	-	4954	-	pF
Output capacitance	V _{GE} = 0 V, f = 1 MHz	C _{oes}	-	163	-	
Reverse transfer capacitance		C _{res}	-	14	-	
Gate charge total	V _{CE} = 400 V,	Qg	-	149	-	nC
Gate-to-emitter charge	I _C = 75 A, V _{GE} = 15 V	Q _{ge}	-	27	-	
Gate-to-collector charge		Q _{gc}	-	34	-	1
SWITCHING CHARACTERISTICS, INDUC	TIVE LOAD	-				-
Turn-on delay time	$T_{\rm C} = 25^{\circ}{\rm C},$	t _{d(on)}	-	22	-	ns
Rise time	V _{CC} = 400 V, I _C = 37.5 A,	t _r	-	21	-	-
Turn-off delay time	R _G = 4.7 Ω, V _{GF} = 15 V,	t _{d(off)}	-	125	-	
Fall time	Inductive Load	t _f	-	11	-	
Turn-on switching loss		E _{on}	-	0.86	-	mJ
Turn-off switching loss		E _{off}	-	0.49	-	
Total switching loss	1	E _{ts}	-	1.35	-	
Turn-on delay time	$T_{C} = 25^{\circ}C,$ $V_{CC} = 400 \text{ V},$ $I_{C} = 75 \text{ A},$ $R_{G} = 4.7 \Omega,$ $V_{GE} = 15 \text{ V},$ Inductive Load	t _{d(on)}	-	24	-	ns
Rise time		t _r	-	46	-	7
Turn-off delay time		t _{d(off)}	-	118	-	1
Fall time		t _f	_	66	-	1
Turn-on switching loss		E _{on}	-	2.35	-	mJ
Turn-off switching loss		E _{off}	-	1.25	-	1
Total switching loss	1	E _{ts}	_	3.6	-	1


ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS, IND	UCTIVE LOAD					
Turn–on delay time	$T_{C} = 150^{\circ}C,$ $V_{CC} = 400 V,$ $I_{C} = 37.5 A,$	t _{d(on)}	-	22	-	ns
Rise time		t _r	-	22	-	
Turn-off delay time	R _G = 4.7 Ω, V _{GE} = 15 V,	t _{d(off)}	-	142	-	1
Fall time	Inductive Load	t _f	-	85	-	
Turn-on switching loss		Eon	-	1.43	-	mJ
Turn-off switching loss		E _{off}	-	0.85	-	
Total switching loss		E _{ts}	-	2.28	-	
Turn-on delay time	T _C = 150°C,	t _{d(on)}	-	24	-	ns
Rise time	$V_{CC} = 400 V,$ $I_{C} = 75 A,$	t _r	-	50	-	1
Turn-off delay time	R _G = 4.7 Ω, V _{GE} = 15 V,	t _{d(off)}	-	126	-	1
Fall time	Inductive Load	t _f	-	80	-	1
Turn-on switching loss		Eon	-	3.24	-	mJ
Turn-off switching loss		E _{off}	-	1.75	-	
Total switching loss		E _{ts}	-	4.99	-	
DIODE CHARACTERISTICS	·					
Diode Forward Voltage	$I_{F} = 75 \text{ A}, \text{ T}_{J} = 25^{\circ}\text{C}$	V _{FM}	-	1.65	2.1	V
	I _F = 75 A, T _J = 150°C		-	1.55	-	1
DIODE SWITCHING CHARACTERISTI	CS, INDUCTIVE LOAD					
Reverse Recovery Energy	$T_{C} = 25^{\circ}C, V_{CE} = 400 \text{ V}, I_{F} = 37.5 \text{ A},$	E _{rec}	-	105	-	μJ
Diode Reverse Recovery Time	dl _F /dt = 1000 A/μs	T _{rr}	-	58	-	ns
Diode Reverse Recovery Charge		Q _{rr}	-	591	-	nC
Reverse Recovery Energy	$T_{C} = 25^{\circ}C, V_{CE} = 400 V, I_{F} = 75 A,$	E _{rec}	-	235	-	μJ
Diode Reverse Recovery Time	dl _F /dt = 1000 A/μs	T _{rr}	-	107	-	ns
Diode Reverse Recovery Charge		Q _{rr}	-	1113	-	nC
Reverse Recovery Energy	$T_{C} = 150^{\circ}C, V_{CE} = 400 V, I_{F} = 37.5 A,$	E _{rec}	-	747	-	μJ
Diode Reverse Recovery Time	dI _F /dt = 1000 A/µs	T _{rr}	-	151	-	ns
Diode Reverse Recovery Charge		Q _{rr}	_	2780	_	nC
Reverse Recovery Energy	$T_{C} = 150^{\circ}C, V_{CE} = 400 V, I_{F} = 75 A,$	E _{rec}	-	865	-	μJ
Diode Reverse Recovery Time	dl _F /dt = 1000 A/μs	T _{rr}	-	171	-	ns
Diode Reverse Recovery Charge	1 1	Q _{rr}	_	3286	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

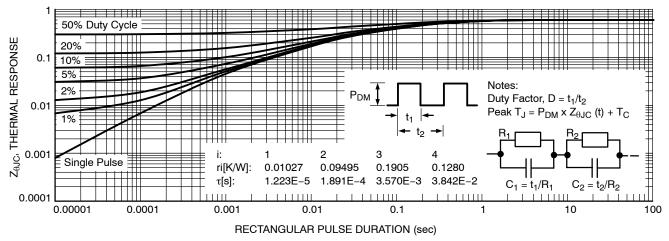
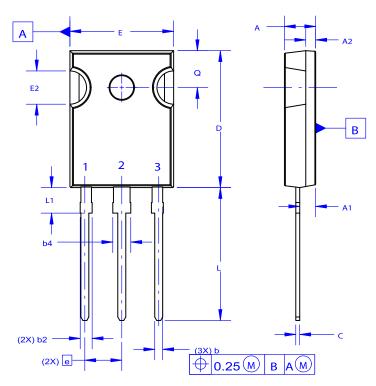
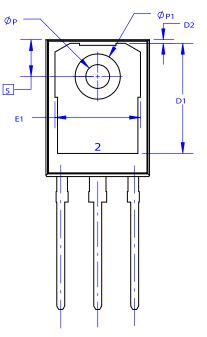



Figure 20. Transient Thermal Impedance of Diode


PACKAGE DIMENSIONS

NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
 D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1. E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

DIM	MILLIMETERS			
DIN	MIN	NOM	MAX	
Α	4.58	4.70	4.82	
A1	2.20	2.40	2.60	
A2	1.40	1.50	1.60	
D	20.32	20.57	20.82	
E	15.37	15.62	15.87	
E2	4.96	5.08	5.20	
е	~	5.56	~	
L	19.75	20.00	20.25	
L1	3.69	3.81	3.93	
ØР	3.51	3.58	3.65	
Q	5.34	5.46	5.58	
S	5.34	5.46	5.58	
b	1.17	1.26	1.35	
b2	1.53	1.65	1.77	
b4	2.42	2.54	2.66	
с	0.51	0.61	0.71	
D1	13.08	~	~	
D2	0.51	0.93	1.35	
E1	12.81	~	~	
Ø P 1	6.60	6.80	7.00	

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not onvey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 **Europe, Middle East and Africa Technical Support:** Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative