Over- and undervoltage relay

Function diagram IL 9077

Circuit diagram

IL 9077.12, SL 9077.12

- According to IEC/EN 60 255, DIN VDE 0435-303
- Identification of overvoltage, undervoltage and phase failure
- With asymmetry identification as an option
- Mains fault diagnostics with a number of LEDs
- Setting values for overvoltage and undervoltage can be set separately
- Large setting ranges $0.9 \ldots 1.3 U_{N}$ and $0.7 \ldots 1.1 U_{N}$
- Time delay variable between 0.1 ... 20 s
- Closed circuit operation
- No auxiliary voltage
- Independant of phase sequence
- As option with phase sequence detection
- Single-phase connection possible
- Optionally for 3P3W Systems
- 2 changeover contacts, at IP/SP 90772 x 2 changeover contacts
- Devices available in 2 enclosure versions:

I-model: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
S-model: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct

- IL 9077, SL 9077: width 35 mm

IP 9077, SP 9077: width 70 mm

Approvals and marking

C ϵ

Application

Monitoring of three-phase voltage systems to identify overvoltage and undervoltage, e.g.to monitor in-house generation equipment in accordance with VDE 0100.

Function

All 3 phase voltages are measured with N (L1 and L2 are measured against L3 in the case of equipment without an N connection). If they are in the acceptable range, a green LED goes on and the output relay is activated. If at least one phase exceeds the setting value for overvoltage (variable between $0.9 \ldots 1.3 \mathrm{U}_{\mathrm{N}}$) or if at least one phase falls short of the setting value for undervoltage (variable between $0.7 \ldots 1.1 \mathrm{U}_{\mathrm{N}}$), the output relay releases after the set time delay and the green LED goes off (fault state). 2 red LEDs then indicate the cause of the fault:

- Undervoltage " < U"
- Overvoltage " > U"

When all 3 phase voltages are below the chosen setting value for overvoltage and above the chosen setting value for undervoltage again, the relevant red LED goes out, the output relay is activated again and the green LED goes on again (acceptable state).
When the system returns to an acceptable state, there is a hysteresis of about 4% of the set value with both the set voltage thresholds.
On the unit with phase sequence detection IL/SL 9077/003 (only available without neutral) the wrong phase sequence is handled like undervoltage: The red LED " $<U$ " is active and the output relay switches off.
The model with asymmetry identification IL/SL 9077/010 monitors the symmetry of the three-phase voltage system as well. When all 3 voltages are in the acceptable range between the two setting values here, but there is voltage asymmetry of more than about 6 ... 8%, the output relay releases after the set time delay and the LED that is green when the state is acceptable goes red. (This model can, for example, also be used for immediate identification of the regeneration of failed phases by feedback).
The IP/SP 9077.39 is an under- and overvoltage relay with seperate output relays (each with 2 changeover contacts) for undervoltage and overvoltage monitoring. For every output a seperate delay 0.1 ... 20 s is adjustable.

Function diagram IP 9077

P 9077.39, SP 9077.39

IP 9077.39/001, SP 9077.39/001 IP 9077.39/002, SP 9077.39/002

Indicators

green LED ___
green LED goes red:
red LED " < U":
red LED " > U":

state

voltage asymmetry (only IL/SL 9077/010) fault message / undervoltage fault message / overvoltage

Notes

The terminals L1, L2 and L3 have to be bridged if the relay is used in single phase systems. (For 3p3w units L1 and L2 have to be linked).
The maximum fault delay amounts to only about 0.6 s if there is a total failure of phase L3.
The overvoltage output on IP/SP 9077.39/002 can only switch if the voltage between $L 2$ and $L 3$ is $>0.7 U_{N}$ as the unit works without auxiliary supply.

Technical Data

Input

Nominal voltage U_{N} :

Voltage range:
Maximum overload:
Nominal consumption:

Nominal frequency:

3/N AC 100 / 58, 400 / 230 V
3 AC 100, 400 V
other voltages on request
$0.7 \ldots 1.3 U_{N}$
$1.35 \mathrm{U}_{\mathrm{N}}$, permanent
approx. 8 VA (L3-N)
(approx. 16 VA for IP 9077)
50 / 60 Hz

Setting ranges

Setting value for
overvoltage "> U":
Setting value for
undervoltage "< U":
Hysteresis:

Time delay:

Threshold for
asymmetry identification
IL/SL 9077/010:
variable between $0.9 \ldots 1.3 \mathrm{U}_{\mathrm{N}}$
variable between $0.7 \ldots 1.1 \mathrm{U}_{\mathrm{N}}$ approx. 4% of the set value in each case
variable between $0.1 \ldots 20$ s

Output

Contacts

IL/SL 9077.12:
IP/SP 9077.39:
Thermal current $I_{\text {th }}$:
Switching capacity
to AC 15:
NO contact:
NC contact:
Electrical life:
to AC 15 at $1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}$:
Short circuit strength
max. fuse rating:
Mechanical life:

General Data

Operating mode:
Temperature range:
Clearance and creepage
distances
rated impuls voltage /
pollution degree:
EMC
Electrostatic discharge:
HF irradiation:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
Interference suppression:
Degree of protection:
Housing:

Vibration resistance:

Climate resistance:
Wire connection:

Mounting:

Weight
IL 9077:
SL 9077:
IP 9077:
SP 9077:

EC 60 664-1
$\begin{array}{ll}8 \mathrm{kV} \text { (air) } & \text { IEC/EN 61 000-4-2 } \\ 10 \mathrm{~V} \mathrm{/} \mathrm{~m} & \text { IEC/EN 61 000-4-3 }\end{array}$
$4 \mathrm{kV} \quad$ IEC/EN 61 000-4-4

2 kV IEC/EN 61 000-4-5
2 kV
IEC/EN 61 000-4-5
EN 55011
Limit value class B
EC/EN 60529 IP 40

EC/EN 60529
Highly non-flammable thermoplastic
with V0 behaviour according to
UL subject 94
Amplitude 0.35 mm ,
frequency 10 ... 55 Hz IEC/EN 60 068-2-6
20 / 060 / 04
IEC/EN 60 068-1
$2 \times 2.5 \mathrm{~mm}^{2}$ solid or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled
DIN 46 228-1/-2/-3/-4
DIN rail
IEC/EN 60715

110 g
137 g
210 g
259 g

Technical Data

Dimensions

Width x height x depth

IL 9077:
$35 \times 90 \times 59 \mathrm{~mm}$
SL 9077:
$35 \times 90 \times 98 \mathrm{~mm}$
IP 9077: $70 \times 90 \times 59 \mathrm{~mm}$
SP 9077:
$70 \times 90 \times 98 \mathrm{~mm}$

Standard type

IL 9077.12 3/N AC 400 / 230 V $0.1 \ldots 20$ s
Article number: 0045788

- Output:
- Nominal voltage U_{N} :
- De-energized on trip
- Variable time delay
- Width:

0045788 stock item
2 changeover contacts
3/N AC 400/230 V
$0.1 \ldots 20$ s
35 mm
SL $9077.123 / \mathrm{N}$ AC 400 / $230 \mathrm{~V} 0.1 \ldots 20 \mathrm{~s}$
Article number:

- Output:

0054758

- Nominal voltage U_{N} :
- De-energized on trip
- Variable time delay

2 changeover contacts 3/N AC 400/230 V

- Width:
$0.1 \ldots 20 \mathrm{~s}$
35 mm

Variants	
I_ 9077._ _/001:	$3 p 3 w$, de-energized on trip
IL 9077.12/003:	3p3w, de-energized on trip with phase sequence detection
IL 9077.12/010:	$3 p 4 w$, de-energized on trip with asymmetry detection
L 9077.12/011:	3p3w, de-energized on trip with asymmetry detection
IL 9077.12/800:	with fast respone and high overload at overvoltage. See datasheet IL 9077/800.
IP 9077.39:	$3 p 4 w$, de-energized on trip
IP 9077.39/002:	3p3w, undervoltage output de-energized on trip, overvoltage output energized on trip

Ordering example for variants

