30W FLUSH MOUNT POWER SUPPLY Our range of encapsulated 30W power supplies offers the perfect solution if your application demands extended service life and protection from harsh environments. The compact shape is designed to be out of sight, fitting comfortably inside a wall mount installation box. Alternatively the power supply can be fixed to any surface using the integrated mounting holes. Polyurethane potting resin protects the electronic components from mechanical stress and water ingress to IP68. - Fully encapsulated - IP68 waterproof - MTBF 43 years at 50°C ambient - Ultra low standby losses - High Efficiency - Protection class II - Various connection options - Thermally protected and short circuit proof - Premium quality Japanese brand capacitors - Manufacturing according to ISO 9001 - Designed in Austria - Made in the Czech Republic | Specification | | | | | | |-------------------------|-----------|----|--|--|--| | Output Power | 30 | W | | | | | Output Voltage | 5 - 24 | V | | | | | Output current | 3 | Α | | | | | Universal input voltage | 90 - 264 | V | | | | | Operating temperature | -20 - 70 | °C | | | | | Efficiency | typ. 88,5 | % | | | | | Standby Power | typ. 50 | mW | | | | | Efficiency level | VI | | | | | | Means of protection | 2 x MOPP | | | | | | Insulation of output | SELV | | | | | | Leakage current | max. 100 | μΑ | | | | | Test standards | | | | | | | |-----------------------------|-------------------------|--|--|--|--|--| | Test standard | Valid for voltage types | Explanation | | | | | | EN 55014-1 | 5-24V | | | | | | | EN 55014-2 | 5-24V | Canaral EMC | | | | | | EN 55032 | 5-24V | General EMC | | | | | | EN 55024 | 5-24V | standards | | | | | | EN 60601-1-2 | 5-24V | | | | | | | EN 60950-1 | 12V, 24V | Information | | | | | | UL 60950-1 | 12V, 24V | | | | | | | EN 62368-1 | 5-24V | technology | | | | | | UL 62368-1 | 5-24V | equipment | | | | | | EN 60335-1 | 12V, 24V | Household | | | | | | EN 61558-2-16 | 12V, 24V | devices | | | | | | EN 61558-1 | 12V, 24V | devices | | | | | | EN 60601-1 | 12V, 24V | Medical electrical | | | | | | ES 60601-1 | 12V, 24V | equipment | | | | | | EN 61347-2-13
EN 61347-1 | 12V, 24V
12V, 24V | Electronic
controlgear for
LED modules | | | | | | Connections | Ordering code | |-----------------------|---------------| | Fixed wire leads | N1hFSW3 30 | | Insulated input cable | N1hISW3 30 | | PCB mount pins | N1hPSW3 30 | | Terminal blocks | N1hKSW3 30 | **Approvals** # **N1hxyW3 30** | Parameter | Symbol | Min | Тур. | Max | Unit | Test Cond. | |--|---|--------------------|--|-------------------|-----------------------|------------------------------| | Specifications are subject to change without any notice. | | | | | | | | | U _{IN} | 90 | | 264 | V _{AC} | | | Input Voltage | | | | | voltage may ca | | | Input Current | | w the minimur
9 | | | not meet the | specification. | | Input Current | I _{IN} | 47 | 290
50 | 1000
63 | mA
Hz | | | Input Frequency | f _{IN} | 4/ | | 63 | | at full land | | Efficiency | η | | 88,5 | 7.5 | % | at full load
without load | | Stand-by power | P _{stb} | | 50 | 75 | mW | without load | | International efficiency mark | | | VI | 70 | \ \ \ / | | | Output Power | P _{out} | 11.0.4 | 10 | 30 | W | | | Output Valtage | U_out | 11,64 | 12 | 12,36 | V _{DC} | | | Output Voltage | | 23,28 | 24
ut voltages on | 24,72 | | | | Output voltage tolerance | A., | Other outpo | it voitages on | request. | % | at PCB | | Ripple Voltage | ∆ _{Uout PCB} | | | 75 | mV _{rms} | 25°C ambient | | Ripple Voltage | U _{r rms} | | | 2,5 | III V rms | 12V | | Output Current | l _{out} | | | 2,5
1,25 | А | 12 V
24 V | | Man O a landa a sand | out overload | | 170 | , | 0/ 61 | U _{IN} = 264V | | Max. Overload current | | | 140 | | % of I _{out} | U _{IN} = 90V | | Isolation | Galvanic isolation with safety extra low voltage (SELV) output | | | | | | | Means of protection | | 2 | х МОРР | | | | | Dielectric Strength | | 4,4 | | | kV _{AC} | 50Hz
sinusoidal | | Leakage current | I | | | 100 | ^ | waveform | | Leakage current | I _{LK} | | 2 | 100 | μA
A | innut l | | Internal Fuse | IF 2 A input L Approved for direct connection to 16A (20A) mains circuit. | | | | iliput L | | | | Approved | rior direct con | nection to 167 | (ZUA) Mains | Circuit. | free convection | | Operating Temperature | T_OP | -20 | | 70 | °C | derating >50°C | | operating reinperature | Insulated Cable Vi | ersion Power S | Junnly with HO |
 3V2V2 nrimar | y Cable min on | | | Thermal protection | Insulated Cable Version Power Supply with H03V2V2 primary Cable min operating temperature is 5°C The power supply is thermally protected against overload. The output voltage is reduced in over temperature conditions, it will return to normal once the temperature is reduced. Prolonged operation at or near the thermal limit will severely shorten operating life and is not | | | | | | | Storage Temperature | T _{ST} | -30 | 25 | ommended.
80 | °C | | | Humidity | '31 | | 20 | 95 | % | non condensing | | Altitude | | | | 3000 | m | Operating | | Atmospheric Pressure | | 70 | | 106 | kPa | operacing | | Degree of protection by enclosure | ID68 | | cable version
insulated cable version | | | | | Single component failure | A single component failure does not cause any damage to persons or ambient (fire, explosions, etc). | | | | | | | Reliability | | | | | |--|-------------|-----------------|--|--| | MTBF 12V | 42,71 years | at 50°C ambient | | | | MTBF 24V | 43,34 years | at 50°C ambient | | | | MTBF calculation according to standards MIL-HDBK-217 F; - Notice 1; - Notice 2 | | | | | | Maintainability The power supply is not to be repaired | | | | | | Laser marking | Marking plate symbol explanation | | | | | |--|----------------------------------|--|--|--|--| | | C€ | Conformity with the relevant EU directives. | | | | | Product name | 22 | ENEC is the high quality European Mark for electrical products that demonstrates compliance with European standards (EN). | | | | | Input parameters Output parameters Safety instructions | c us | NRTL Canada / USA Mark issued by Curtis Straus. | | | | | Date code CE marking Approval marks | RoHS conform | The power supply has to be disposed appropriately according the local regulations for Waste Electrical and Electronic Equipment. | | | | | | | For indoor use only. | | | | | | []i | Read instruction manual. | | | | # Installation Maximum mounting screw torque M=30Ncm Recommended screws: Slotted pan head screw ISO 1580 max. M3 Alternative: Phillips pan head screw ISO 7045 max. M3 Alternative: fillister socket head screw low design ISO 7984 max. M3 Alternative: fillister socket head screw ISO 4762 max. M3 The power supply must be installed in an environment that allows heat dissipation, do not enclose it in thermally insulating material. | Packaging and weight | | | | |--|------|------|---------------| | | pcs | kg | size (mm) | | Single Carton | 1 | 0,17 | 95x85x40 | | Packaging Case | 35 | 8 | 427x196x165 | | Full EU-Pallet Layer, 10 Packaging cases | 350 | 100 | 1200x800x165 | | 1 Full Pallet (9 Layer) | 3150 | 720 | 1200x800x1500 | | EMC - Special requirements according medical standard (Only for medical devices) | | | | | | |---|--|--|--|--|--| | Intended use and intended environment | Home healthcare and/or Professional environment | | | | | | Basic safety and essential performance of the EUT | The power supply unit is not a medical end product, therefore no essential performance is defined by the manufacturer. | | | | | | Basic safety regarding The power supply has to ensure proper output voltage according characteristics, without service within expected service life. | | | | | | | | Medical electrical equipment needs special precautions regarding EMC and needs to be installed according to EMC information. | | | | | | | PE of power supply shall be connected to PE of end medical product. User shall not modify power supply. | | | | | | WARNINGS | The switch mode power supply is designed to achieve the EMI behavior of the specified environment, it includes specific EMI filter to reduce the emissions which are specified in the IEC60601-1-2 standard. | | | | | | | Please read the complete technical documentation to avoid adverse events to the patient and operator. Read also instructions for use. | | | | | #### **EMC - Environment** The power supply is intended for use in the electromagnetic environment specified below. The customer or the user of the power supply should assure that it is used in such an environment. | Emissions test | Compliance | | Electromagnetic enviror | nment - guidance | | |---|---------------------------------------|---|---|--|--| | RF emissions
CISPR 11 | Group 1 | | The power supply uses RF energy only for its internal function. Therefore, its RF emissions are very low and are not likely to cause any interference in nearby electronic equipment. | | | | RF emissions
CISPR 11 | Class B | | | | | | Harmonic
emissions
IEC 61000-3-2 | Complies | | The power supply is suitable for use in all establishments, including domestic establishments and those directly connected to the public low-voltage power supp | | | | Voltage
fluctuations /
flicker emissions
IEC 61000-3-3 | Complies | network that supplies buildings used for domestic purposes. | | a for aomestic purposes. | | | Immunity test | EN 60601-1-2:2
test level | 2015 | Achieved levels according EN 60601-1-2:2015 and achieved levels from additional standards. | Electromagnetic
environment - guidance | | | Electrostatic | ± 8 kV conta | ct | ± 8 kV contact | Floors should be wood, concrete or | | | discharge (ESD)
IEC 61000-4-2 | ±2 kV, ± 4 kV, ±
± 15 kVair | 8 kV, | ±2 kV, ± 4 kV, ± 8 kV, ± 15
kVair | ceramic tile. If floors are covered with
synthetic material, the relative
humidity should be at least 30%. | | | Electrical fast
transient/burst
IEC 610004-4 | ± 2 kV
100 kHz repeti
frequency | | ± 2 kV (mains input),
100 kHz | Mains power quality should be that of a typical commercial or hospital environment. | | | | | ± 2 kV (DC output),
5 kHz | | |--|---|--|--| | Surge
IEC 61000-4-5 | Line-Line:± 0,5 kV, ± 1
kV
Line-to-ground: ± 0 ,5
kV, ± 1 kV, ± 2 kV | ±1 kV symmetrical – Differential mode (AC), ±2 kV symmetrical – Common mode (AC), ±0.5 kV symmetrical – Differential mode (DC), ±0.5 kV symmetrical – Common mode (DC), 1.2/50 us Open Circuit Voltage | Mains power quality should be that of a
typical commercial or hospital
environment. | | Voltage dips,
short interruptions
and voltage | 0 % Ut; 0,5 cycle At 0°, 45°, 90°, 135°, 180°, 225°, 270° and 315° | 0 % Ut; 0,5 cycle
At 0°, 45°, 90°, 135°, 180°, 225°, 270° and
315°
———————————————————————————————————— | Mains power quality should be that of a
typical commercial or hospital
environment. If the user of the power
supply requires continued operation | | variations on
power supply
input lines
IEC 61000-4-11 | 0 % Ut; 1 cycle
and
70 % Ut; 25/30 cycles
Single phase: at 0° | and 70 % Ut; 25/30 cycles Single phase: at 0° 0 % Ut; 250/300 cycle | during power mains interruptions, it is
recommended that the power supply is
powered from an uninterruptible
power supply or battery. | | | 0 % Ut; 250/300 cycle | | | | Power frequency
(50/60 Hz)
magnetic field
IEC 61000-4-8 | 30 A/m | 1, 3, 30 A/m | Power should be at levels characteristic of frequency magnetic fields a typical location in a typical commercial or hospital environment. | | Conducted RF
IEC 61000-4-6 | 6 Vrms
150 kHz to 80 MHz | 6 Vrms | Portable and mobile RF
communications equipment should not
be used closer to any part of the power
supply, including cables, than the
recommended separation distance. | | Radiated RF
IEC 61000-4-3 | 10 V/m
80 MHz to 2.7 GHz | 10 V/m | Recommended separation distances see following table. | Field strengths from fixed transmitters such as base stations for radio (cellular/cordless) telephones, land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast, cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters an electromagnetic site survey should be considered. If the measured field strength in the location in which the power supply is used, exceeds the applicable RF compliance level above, the power supply should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as reorienting or relocating the power supply. Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey should be less than the compliance level in each frequency range. Over the frequency range 150 kHz to 80 MHz, field strength should be less than 3 V/m. Interference may occur in the vicinity of equipment marked with the following symbol: | | ((:)) | |---|--------------| | • | | | | _ | | | Frequency range and Level: RF wireless communication equipment | | | | | | |--|--|----------------------------------|-------------------------|--|--|--| | | Test Frequency
(MHz) | Modulation | Immunity
Level (V/m) | Supplementary information: | | | | | 385 | **Pulse Modulation: 18Hz | 27 | EUT powered at one of the nominal | | | | Proximity fields
from RF wireless
communications
equipment
IEC 61000-4-3 | 450 | *FM
±5Hz deviation: 1kHz sine | 28 | input voltages and frequencies. | | | | | 710
745
780 | **Pulse Modulation: 217Hz | 9 | Dwell time minimum 1s. Actual dwell time noted in results table. Note * - As an alternative to FM | | | | | 810
870
930 | **Pulse Modulation: 18Hz | 28 | modulation, 50% pulse modulation at
18Hz may be used because while it
does not represent actual modulation,
it would be worst case. | | | | | 1720
1845 | **Pulse Modulation: 217Hz | 28 | it would be worst case. | | | ## **N1hxyW3 30** | 1970 | | | Note ** - The carrier shall be | |----------------------|---------------------------|----|---| | 2450 | **Pulse Modulation: 217Hz | 28 | modulated using 50% duty cycle
square wave signal. | | 5240
5500
5785 | **Pulse Modulation: 217Hz | 9 | | ## Recommended separation distances between portable and mobile RF communications equipment and the power supply The power supply is intended for use in the electromagnetic environment in which radiated RF disturbances are controlled. The customer or the user of the power supply can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communications equipment (transmitters) and the power supply as recommended below, according to the maximum output power of the communication equipment. | | · · · · · · · · · · · · · · · · · · · | <u> </u> | | | | |----------------------|---|-------------------|--------------------|--|--| | Rated maximum output | Separation distance according to frequency of transmitter (m) | | | | | | power of transmitter | 150 kHz to 80 MHz | 80 MHz to 800 MHz | 800 MHz to 2.5 GHz | | | | (W) | d = 1.2√P | d = 1.2√P | d = 2.3√P | | | | 0.01 | 0.12 | 0.12 | 0.23 | | | | 0.1 | 0.38 | 0.38 | 0.73 | | | | 1 | 1.2 | 1.2 | 2.3 | | | | 10 | 3.8 | 3.8 | 7.3 | | | | 100 | 12 | 12 | 23 | | | For transmitters rated at a maximum output power not listed above, the recommended separation distance d in metres (m) can be determined using the equation applicable to the frequency of the transmitter, where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer. NOTE 1 At 80 MHz and 800 MHz, the separation distance for the higher frequency range applies. NOTE 4 These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people. #### **Energy Efficiency** This power supply family fulfills Directive 2009/125/EC with Commission Regulation (EU) 2019/1782. The vales "Average active efficiency", "Efficiency at low load" and "No-load power consumption" are typical measured values, measured at one representative sample at an input voltage of 230VAC. | Input specification | | | | | |---------------------|---------|-----|--|--| | Input Voltage | 100-240 | VAC | | | | Input Frequency | 50-60 | Hz | | | | Output specification | | | | | | | |--|-------|-------|-------|-------|-------|-----| | Output voltage | 5 | 9 | 12 | 15 | 24 | VDC | | Output current | 3 | 3 | 2,5 | 2 | 1,25 | Α | | Output power | 15 | 27 | 30 | 30 | 30 | W | | Average active efficiency (100%/75%/50%/25%) | 82,62 | 87,22 | 88,49 | 88,04 | 89,82 | % | | Efficiency at low load (10 %) | 77,13 | 82,79 | 83,64 | 83,66 | 83,58 | % | | No-load power consumption | 42 | 47 | 48 | 51 | 58 | mW | ## **N1hxyW3 30** | Revision | Date | Author | Change | |----------|------------|---------|---| | Α | 16.07.2015 | Mauritz | First edition | | В | 10.12.2015 | Mauritz | Nomeclature changed, Description of symbols from marking plate added, EMC added | | С | 04.03.2016 | Mauritz | Approvals changed | | D | 10.03.2016 | Mauritz | Altitude and Atmospheric pressure added | | E | 28.10.2016 | Mauritz | Temperature derating added | | F | 02.12.2016 | Mauritz | PCB-/Insulated Cable-/Terminal-Version added | | G | 07.02.2017 | Krimmel | IP68 | | Н | 25.04.2017 | Mauritz | Connector at terminal version updated | | I | 08.05.2017 | Mauritz | EMC (only for medical devices) updated | | J | 24.05.2017 | Mauritz | Ordering Information changed | | K | 29.05.2017 | Mauritz | Ripple Voltage changed, Housing Versions changed | | L | 07.07.2017 | Mauritz | IP68 added; Mechanical parameter changed | | М | 07.08.2017 | Mauritz | HV testing voltage changed | | N | 29.09.2017 | Mauritz | MTBF added | | 0 | 23.03.2018 | Trethan | Update to new document design | | Р | 29.01.2020 | Mauritz | Energy Efficiency added | | Q | 25.02.2020 | Mauritz | Energy Efficiency changed, Test standards changed | | R | 17.11.2020 | Mauritz | Trademark Pulse added | #### CONFIDENTIAL This document contains proprietary information originated and/or owned by EGSTON System Electronics Eggenburg GmbH. This information shall not be duplicated, used or disclosed in whole, or in part, to any other party or used for any other purpose without the prior consent of EGSTON System Electronics Eggenburg GmbH. Copyright © 2020 EGSTON System Electronics Eggenburg GmbH, A-3730 Eggenburg, Grafenberger Straße 37 All Rights Reserved.